1
|
González A, Odriozola I, Fullaondo A, Odriozola A. Microbiota and detrimental protein derived metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:255-308. [PMID: 39396838 DOI: 10.1016/bs.adgen.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third leading cancer in incidence and the second leading cancer in mortality worldwide. There is growing scientific evidence to support the crucial role of the gut microbiota in the development of CRC. The gut microbiota is the complex community of microorganisms that inhabit the host gut in a symbiotic relationship. Diet plays a crucial role in modulating the risk of CRC, with a high intake of red and processed meat being a risk factor for the development of CRC. The production of metabolites derived from protein fermentation by the gut microbiota is considered a crucial element in the interaction between red and processed meat consumption and the development of CRC. This paper examines several metabolites derived from the bacterial fermentation of proteins associated with an increased risk of CRC. These metabolites include ammonia, polyamines, trimethylamine N-oxide (TMAO), N-nitroso compounds (NOC), hydrogen sulphide (H2S), phenolic compounds (p-cresol) and indole compounds (indolimines). These compounds are depicted and reviewed for their association with CRC risk, possible mechanisms promoting carcinogenesis and their relationship with the gut microbiota. Additionally, this paper analyses the evidence related to the role of red and processed meat intake and CRC risk and the factors and pathways involved in bacterial proteolytic fermentation in the large intestine.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
2
|
Yin X, Gu HW, Ning D, Li YS, Tang HB. Testosterone Exacerbates the Formation of Liver Cancer Induced by Environmental N-Nitrosamines Exposure: Potential Mechanisms and Implications for Human Health. Onco Targets Ther 2024; 17:395-409. [PMID: 38774818 PMCID: PMC11107913 DOI: 10.2147/ott.s456746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/11/2024] [Indexed: 05/24/2024] Open
Abstract
Background Humans are frequently exposed to N-nitrosamines through various sources, including diet, cigarette smoking, contaminated water, the atmosphere, and endogenous nitrosation. Exposure to these carcinogens may also contribute to the gender-specific incidence of liver cancer, which is significantly higher in males than in females, possibly due to the influence of endogenous hormones such as testosterone. However, the effect of testosterone on N-nitrosamine-induced liver cancer and its underlying mechanism remains unclear. Purpose To investigate the effect of testosterone on the development of liver cancer induced by N-nitrosamines exposure. Patients and Methods Histopathological and immunohistochemical staining techniques were employed to analyze the expression levels and nuclear localizations of key signaling molecules, including androgen receptor (AR), β-catenin, and HMGB1, in both tumor and non-tumor regions of liver samples obtained from human patients and mice. Results The findings demonstrated a strong correlation between AR and β-catenin in the nuclear region of tumor areas. AR also showed a significant correlation with HMGB1 in the cytoplasmic region of non-tumor areas in both human and mice samples. The study further analyzed the expression levels and patterns of these three proteins during the progression of liver tumors. Conclusion This study confirms that AR has the ability to modulate the expression levels and patterns of β-catenin and HMGB1 in vivo, thereby exacerbating the progression of liver cancer induced by environmental N-nitrosamines exposure. Importantly, the effect of testosterone on the formation of liver cancer induced by environmental N-nitrosamine exposure intensifies this progression. These findings have important implications for drug safety in clinical practice and emphasize the significance of reducing N-nitrosamines exposure through conscious choices regarding diet and lifestyle to ensure environmental safety.
Collapse
Affiliation(s)
- Xin Yin
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People’s Republic of China
| | - Hong-Wei Gu
- Pharmacy Department, Mental Health Center of Wuhan, Wuhan, Hubei, People’s Republic of China
| | - Dan Ning
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People’s Republic of China
| | - Yu-Sang Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People’s Republic of China
| | - He-Bin Tang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
3
|
Niklas AA, Borge GIA, Rødbotten R, Berget I, Müller MHB, Herrmann SS, Granby K, Kirkhus B. Levels of nitrate, nitrite and nitrosamines in model sausages during heat treatment and in vitro digestion - The impact of adding nitrite and spinach (Spinacia oleracea L.). Food Res Int 2023; 166:112595. [PMID: 36914322 DOI: 10.1016/j.foodres.2023.112595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
Nitrite derivatives react with endogenous precursors forming N-nitrosamines associated with development of colorectal cancer. The present study aims to investigate the formation of N-nitrosamines in sausage during processing and in vitro gastrointestinal digestion after adding sodium nitrite and/or spinach emulsion. The INFOGEST digestion protocol was used to simulate the oral, gastric, and small intestinal phases of digestion, and sodium nitrite was added in the oral phase to mimic the input of nitrite from saliva as it has shown to affect the endogenous formation of N-nitrosamines. The results show that the addition of spinach emulsion, in spite of it being a source of nitrate, did not affect the nitrite content in either batter, sausage, or roasted sausage. The levels of N-nitrosamines increased with the added amount of sodium nitrite, and further formation of some volatile N-nitrosamines was observed during roasting and in vitro digestion. In general, N-nitrosamine levels in the intestinal phase followed the same trend as in the undigested products. The results further indicate that nitrite present in saliva may cause a significant increase in N-nitrosamine levels in the gastrointestinal tract and that bioactive components in spinach may protect against the formation of volatile N-nitrosamines both during roasting and digestion.
Collapse
Affiliation(s)
- Agnieszka A Niklas
- Technical University of Denmark, National Food Institute, DK-2800 Kgs. Lyngby, Denmark.
| | - Grethe Iren A Borge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1433 Ås, Norway
| | - Rune Rødbotten
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1433 Ås, Norway
| | - Ingunn Berget
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1433 Ås, Norway
| | - Mette H B Müller
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, NO-1430 Ås, Norway
| | - Susan S Herrmann
- Technical University of Denmark, National Food Institute, DK-2800 Kgs. Lyngby, Denmark
| | - Kit Granby
- Technical University of Denmark, National Food Institute, DK-2800 Kgs. Lyngby, Denmark
| | - Bente Kirkhus
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1433 Ås, Norway
| |
Collapse
|
4
|
Feng X, Li Z, Guo W, Hu Y. The effects of traditional Chinese medicine and dietary compounds on digestive cancer immunotherapy and gut microbiota modulation: A review. Front Immunol 2023; 14:1087755. [PMID: 36845103 PMCID: PMC9945322 DOI: 10.3389/fimmu.2023.1087755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Digestive tract-related cancers account for four of the top ten high-risk cancers worldwide. In recent years, cancer immunotherapy, which exploits the innate immune system to attack tumors, has led to a paradigm shifts in cancer treatment. Gut microbiota modification has been widely used to regulate cancer immunotherapy. Dietary compounds and traditional Chinese medicine (TCM) can alter the gut microbiota and its influence on toxic metabolite production, such as the effect of iprindole on lipopolysaccharide (LPS), and involvement in various metabolic pathways that are closely associated with immune reactions. Therefore, it is an effective strategy to explore new immunotherapies for gastrointestinal cancer to clarify the immunoregulatory effects of different dietary compounds/TCMs on intestinal microbiota. In this review, we have summarized recent progress regarding the effects of dietary compounds/TCMs on gut microbiota and their metabolites, as well as the relationship between digestive cancer immunotherapy and gut microbiota. We hope that this review will act as reference, providing a theoretical basis for the clinical immunotherapy of digestive cancer via gut microbiota modulation.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhao Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Weihong Guo, ; Yanfeng Hu,
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Weihong Guo, ; Yanfeng Hu,
| |
Collapse
|
5
|
Eisenbrand G, Baum M, Cartus AT, Diel P, Engel KH, Engeli B, Epe B, Grune T, Guth S, Haller D, Heinz V, Hellwig M, Hengstler JG, Henle T, Humpf HU, Jäger H, Joost HG, Kulling S, Lachenmeier DW, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Roth A, Spranger J, Stadler R, Vieths S, Wätjen W, Steinberg P. Salivary nitrate/nitrite and acetaldehyde in humans: potential combination effects in the upper gastrointestinal tract and possible consequences for the in vivo formation of N-nitroso compounds-a hypothesis. Arch Toxicol 2022; 96:1905-1914. [PMID: 35504979 DOI: 10.1007/s00204-022-03296-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Subsequent to the dietary uptake of nitrate/nitrite in combination with acetaldehyde/ethanol, combination effects resulting from the sustained endogenous exposure to nitrite and acetaldehyde may be expected. This may imply locoregional effects in the upper gastrointestinal tract as well as systemic effects, such as a potential influence on endogenous formation of N-nitroso compounds (NOC). Salivary concentrations of the individual components nitrate and nitrite and acetaldehyde are known to rise after ingestion, absorption and systemic distribution, thereby reflecting their respective plasma kinetics and parallel secretion through the salivary glands as well as the microbial/enzymatic metabolism in the oral cavity. Salivary excretion may also occur with certain drug molecules and food constituents and their metabolites. Therefore, putative combination effects in the oral cavity and the upper digestive tract may occur, but this has remained largely unexplored up to now. In this Guest Editorial, published evidence on exposure levels and biokinetics of nitrate/nitrite/NOx, NOC and acetaldehyde in the organism is reviewed and knowledge gaps concerning combination effects are identified. Research is suggested to be initiated to study the related unresolved issues.
Collapse
Affiliation(s)
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805, Krefeld, Germany
| | | | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Karl-Heinz Engel
- Chair of General Food Technology, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - Barbara Engeli
- Risk Assessment Division, Federal Food Safety and Veterinary Office (FSVO), Schwarzenburgstrasse 155, 3003, Bern, Switzerland
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | - Dirk Haller
- ZIEL, Institute for Food and Health, Technical University of Munich, 85354, Freising, Germany.,Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany
| | - Michael Hellwig
- Institute of Food Chemistry, Technical University of Braunschweig, Schleinitzstr. 20, 38106, Braunschweig, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Straße 3, 76187, Karlsruhe, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Straße 8-10, Berlin, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Box 657, 78457, Konstanz, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Elke Röhrdanz
- Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Richard Stadler
- Institute of Food Safety and Analytic Sciences, Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne 26, Switzerland
| | - Stefan Vieths
- Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Pablo Steinberg
- Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
6
|
Yu L, Zongxin L, Qiang L. A sensitive N-nitroso- N-methylurea sensor based on graphene-like BC3 and NC3 layers. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1790682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Liao Yu
- Business School, Sichuan University, Chengdu, People’s Republic of China
| | - Liu Zongxin
- West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Li Qiang
- The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
7
|
Loke YL, Chew MT, Ngeow YF, Lim WWD, Peh SC. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front Cell Infect Microbiol 2020; 10:603086. [PMID: 33364203 PMCID: PMC7753026 DOI: 10.3389/fcimb.2020.603086] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) incidence increases yearly, and is three to four times higher in developed countries compared to developing countries. The well-known risk factors have been attributed to low physical activity, overweight, obesity, dietary consumption including excessive consumption of red processed meats, alcohol, and low dietary fiber content. There is growing evidence of the interplay between diet and gut microbiota in CRC carcinogenesis. Although there appears to be a direct causal role for gut microbes in the development of CRC in some animal models, the link between diet, gut microbes, and colonic carcinogenesis has been established largely as an association rather than as a cause-and-effect relationship. This is especially true for human studies. As essential dietary factors influence CRC risk, the role of proteins, carbohydrates, fat, and their end products are considered as part of the interplay between diet and gut microbiota. The underlying molecular mechanisms of colon carcinogenesis mediated by gut microbiota are also discussed. Human biological responses such as inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage can all influence dysbiosis and consequently CRC carcinogenesis. Dysbiosis could add to CRC risk by shifting the effect of dietary components toward promoting a colonic neoplasm together with interacting with gut microbiota. It follows that dietary intervention and gut microbiota modulation may play a vital role in reducing CRC risk.
Collapse
Affiliation(s)
- Yean Leng Loke
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Ming Tsuey Chew
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Centre for Research on Communicable Diseases, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wendy Wan Dee Lim
- Department of Gastroenterology, Sunway Medical Centre, Petaling Jaya, Malaysia
| | - Suat Cheng Peh
- Ageing Health and Well-Being Research Centre, Sunway University, Petaling Jaya, Malaysia.,Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
8
|
González-Soltero R, Bailén M, de Lucas B, Ramírez-Goercke MI, Pareja-Galeano H, Larrosa M. Role of Oral and Gut Microbiota in Dietary Nitrate Metabolism and Its Impact on Sports Performance. Nutrients 2020; 12:E3611. [PMID: 33255362 PMCID: PMC7760746 DOI: 10.3390/nu12123611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Nitrate supplementation is an effective, evidence-based dietary strategy for enhancing sports performance. The effects of dietary nitrate seem to be mediated by the ability of oral bacteria to reduce nitrate to nitrite, thus increasing the levels of nitrite in circulation that may be further reduced to nitric oxide in the body. The gut microbiota has been recently implicated in sports performance by improving muscle function through the supply of certain metabolites. In this line, skeletal muscle can also serve as a reservoir of nitrate. Here we review the bacteria of the oral cavity involved in the reduction of nitrate to nitrite and the possible changes induced by nitrite and their effect on gastrointestinal balance and gut microbiota homeostasis. The potential role of gut bacteria in the reduction of nitrate to nitrite and as a supplier of the signaling molecule nitric oxide to the blood circulation and muscles has not been explored in any great detail.
Collapse
Affiliation(s)
- Rocío González-Soltero
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - María Bailén
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - Beatriz de Lucas
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| | - Maria Isabel Ramírez-Goercke
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - Helios Pareja-Galeano
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| | - Mar Larrosa
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| |
Collapse
|
9
|
Inami K, Asada Y, Harada T, Okayama Y, Usui N, Mochizuki M. Antimutagenic components in Spatholobus suberectus Dunn against N-methyl- N-nitrosourea. Genes Environ 2019; 41:22. [PMID: 31890055 PMCID: PMC6907206 DOI: 10.1186/s41021-019-0137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND An extract from Spatholobus suberectus (S. suberectus) Dunn has been reported to show potent antimutagenic effects against N-alkyl-N-nitrosoureas in umu screening. The aim of this study was to identify the antimutagenic components from extracts of S. suberectus against N-methyl-N-nitrosourea (MNU) in the Ames assay with Salmonella typhimurium strain TA1535 and to elucidate the antimutagenic mechanism of the flavonoids. RESULTS From the ethyl acetate fraction obtained from fractionation of the methanol extract of S. suberectus Dunn, medicarpin, formononetin and isoliquiritigenin were successfully isolated through a combination of normal- and reversed-phase chromatography. Genistein and naringenin, which were already reported to be contained in S. suberectus Dunn, were also tested for their antimutagenicity towards MNU, along with formononetin, isoliquiritigenin and medicarpin. Our results demonstrated that genistein, isoliquiritigenin, medicarpin and naringenin were antimutagenic against MNU without showing cytotoxicity. MNU is reported to cause not only DNA alkylation but also induce reactive oxygen species. The hydroxyl radical scavenging capacity of the flavonoids was correlated with the antimutagenic capacity, indicating that the hydroxyl radical scavenging activity was involved in their antimutagenicity towards MNU. CONCLUSIONS It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention. Genistein, isoliquiritigenin, medicarpin and naringenin were demonstrated to possess an antigenotoxic effects against carcinogenic MNU due to their radical scavenging activity.
Collapse
Affiliation(s)
- Keiko Inami
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Takumi Harada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Yuta Okayama
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
| | - Noriko Usui
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
| | - Masataka Mochizuki
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| |
Collapse
|
10
|
Glover CM, Verdugo EM, Trenholm RA, Dickenson ERV. N-nitrosomorpholine in potable reuse. WATER RESEARCH 2019; 148:306-313. [PMID: 30390511 DOI: 10.1016/j.watres.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
As potable reuse guidelines and regulations continue to develop, the presence of N-nitrosamines is a primary concern because of their associated health concerns. In this study, bench-, pilot-, and full-scale tests were conducted to focus on the occurrence and treatment of N-nitrosomorpholine (NMOR) in United States (U.S.) potable reuse systems. Out of twelve U.S. wastewater effluents collected, ambient NMOR was detected in eleven (average = 20 ± 18 ng/L); in contrast, only two of the thirteen surface water and stormwater samples had NMOR. Across all of these samples maximum formation potential by chloramination produced an average increase of 3.6 ± 1.8 ng/L. This result underscores the need to understand the sources of NMOR as it is not likely a disinfection byproduct and it is not known to be commercially produced within the U.S. At the pilot-scale, three potable reuse systems were evaluated for ambient NMOR with oxidation (i.e., chlorination and ozonation), biofiltration, and granular activated carbon (GAC). Both pre-oxidation and biofiltration were ineffective at mitigating NMOR during long-term pilot plant operation (at least eight-months). GAC adsorbers were the only pilot-scale treatment to remove NMOR; however, complete breakthrough occurred rapidly from <2000 to 10,000 bed volumes. For comparison, a full-scale reverse osmosis (RO) potable reuse system was monitored for a year and confirmed that RO effectively removes NMOR. Systematic bench-scale UV-advanced oxidation experiments were undertaken to assess the mitigation potential for NMOR. At a fluence dose of 325 ± 10 mJ/cm2, UV alone degraded 90% of the NMOR present. The addition of 5 mg/L hydrogen peroxide did not significantly decrease the UV dose required for one-log removal. These data illustrate that efficient NMOR removal from potable reuse systems is limited to RO or UV treatment.
Collapse
Affiliation(s)
- Caitlin M Glover
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| | - Edgard M Verdugo
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA
| | - Rebecca A Trenholm
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA
| | - Eric R V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| |
Collapse
|
11
|
Gilbert MS, Ijssennagger N, Kies AK, van Mil SWC. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. Am J Physiol Gastrointest Liver Physiol 2018; 315:G159-G170. [PMID: 29597354 DOI: 10.1152/ajpgi.00319.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The amount of dietary protein is associated with intestinal disease in different vertebrate species. In humans, this is exemplified by the association between high-protein intake and fermentation metabolite concentrations in patients with inflammatory bowel disease. In production animals, dietary protein intake is associated with postweaning diarrhea in piglets and with the occurrence of wet litter in poultry. The underlying mechanisms by which dietary protein contributes to intestinal problems remain largely unknown. Fermentation of undigested protein in the hindgut results in formation of fermentation products including short-chain fatty acids, branched-chain fatty acids, ammonia, phenolic and indolic compounds, biogenic amines, hydrogen sulfide, and nitric oxide. Here, we review the mechanisms by which these metabolites may cause intestinal disease. Studies addressing how different metabolites induce epithelial damage rely mainly on cell culture studies and occasionally on mice or rat models. Often, contrasting results were reported. The direct relevance of such studies for human, pig, and poultry gut health is therefore questionable and does not suffice for the development of interventions to improve gut health. We discuss a roadmap to improve our understanding of gut metabolites and microbial species associated with intestinal health in humans and production animals and to determine whether these metabolite/bacterial networks cause epithelial damage. The outcomes of these studies will dictate proof-of-principle studies to eliminate specific metabolites and or bacterial strains and will provide the basis for interventions aiming to improve gut health.
Collapse
Affiliation(s)
- Myrthe S Gilbert
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research , Wageningen , The Netherlands
| | - Noortje Ijssennagger
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - Arie K Kies
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research , Wageningen , The Netherlands.,DSM Nutritional Products, Animal Nutrition and Health, Kaiseraugst, Switzerland
| | - Saskia W C van Mil
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| |
Collapse
|
12
|
Kobayashi J. Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: A review. Nitric Oxide 2017; 73:66-73. [PMID: 28587887 DOI: 10.1016/j.niox.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 02/08/2023]
Abstract
Diet is associated with the development of cancer in the gastrointestinal (GI) tract, because dietary nitrate and nitrite are the main nitrosating agents that are responsible for the formation of carcinogenic N-nitroso compounds (NOCs) when nitrosatable substrates, such as amine and amide, are present in the GI tract. However, whether the nitroso compounds become beneficial S-nitroso compounds or carcinogenic NOCs might depend on dietary and environmental factors including food stuffs, gastric acidity, microbial flora, and the mean transit time of digesta. This review focused on GI NOC formation and environmental risk factors affecting its formation to provide appropriate nutritional strategies to prevent the development of GI cancer.
Collapse
Affiliation(s)
- Jun Kobayashi
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
13
|
Demeyer D, Mertens B, De Smet S, Ulens M. Mechanisms Linking Colorectal Cancer to the Consumption of (Processed) Red Meat: A Review. Crit Rev Food Sci Nutr 2017; 56:2747-66. [PMID: 25975275 DOI: 10.1080/10408398.2013.873886] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. The vast majority of CRC cases have been linked to environmental causes rather than to heritable genetic changes. Over the last decades, epidemiological evidence linking the consumption of red and, more convincingly, of processed red meat to CRC has accumulated. In parallel, hypotheses on carcinogenic mechanisms underlying an association between CRC and the intake of red and processed red meat have been proposed and investigated in biological studies. The hypotheses that have received most attention until now include (1) the presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines, two groups of compounds recognized as carcinogenic, (2) the enhancing effect of (nitrosyl)heme on the formation of carcinogenic N-nitroso compounds and lipid peroxidation. However, none of these hypotheses completely explains the link between red and processed red meat intake and the CRC risk. Consequently, scientists have proposed additional mechanisms or refined their hypotheses. This review first briefly summarizes the development of CRC followed by an in-depth overview and critical discussion of the different potential carcinogenic mechanisms underlying the increased CRC risk associated with the consumption of red and processed red meat.
Collapse
Affiliation(s)
- Daniel Demeyer
- a Superior Health Council , Brussels , Belgium.,b Laboratory for Animal Nutrition and Animal Product Quality , Faculty of Bioscience Engineering, Ghent University , Melle , Belgium
| | - Birgit Mertens
- a Superior Health Council , Brussels , Belgium.,c Program Toxicology, Department of Food , Medicines and Consumer Safety, Scientific Institute of Public Health (Site Elsene) , Brussels , Belgium
| | - Stefaan De Smet
- a Superior Health Council , Brussels , Belgium.,b Laboratory for Animal Nutrition and Animal Product Quality , Faculty of Bioscience Engineering, Ghent University , Melle , Belgium
| | | |
Collapse
|
14
|
Van Hecke T, Van Camp J, De Smet S. Oxidation During Digestion of Meat: Interactions with the Diet andHelicobacter pyloriGastritis, and Implications on Human Health. Compr Rev Food Sci Food Saf 2017; 16:214-233. [DOI: 10.1111/1541-4337.12248] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Van Hecke
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| | - John Van Camp
- the Unit of Food Chemistry and Human Nutrition; Ghent Univ.; Ghent Belgium
| | - Stefaan De Smet
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| |
Collapse
|
15
|
Inami K, Mine Y, Tatsuzaki J, Mori C, Mochizuki M. Isolation and characterization of antimutagenic components of Glycyrrhiza aspera against N-methyl- N-nitrosourea. Genes Environ 2017; 39:5. [PMID: 28074112 PMCID: PMC5217204 DOI: 10.1186/s41021-016-0068-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/08/2016] [Indexed: 01/13/2023] Open
Abstract
Background A powdered ethanolic extract of Glycyrrhiza aspera root exhibits antimutagenic activity against N-methyl-N-nitrosourea (MNU) based on the Ames assay with Salmonella typhimurium TA1535. The aim of this study was to identify the antimutagenic components of the powdered ethanolic extract of G. aspera root. Results The powdered ethanolic extract of G. aspera root was sequentially suspended in n-hexane, carbon tetrachloride, dichloromethane, ethyl acetate, and ethanol, and each solvent soluble fraction and the residue were assayed for antimutagenic activity against MNU in S. typhimurium TA1535. The dichloromethane soluble fraction exhibited the highest antimutagenicity and was fractionated several times by silica gel chromatography. The fraction with the highest antimutagenic activity was further purified using HPLC, and the fractions were assayed for antimutagenicity against MNU in S. typhimurium TA1535. Finally, five components with antimutagenic activity against MNU were identified as glyurallin A, glyasperin B, licoricidin, 1-methoxyphaseollin, and licoisoflavone B. Conclusions The five components were demonstrated to possess an antigenotoxic effect against carcinogenic MNU for the first time. It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention. Electronic supplementary material The online version of this article (doi:10.1186/s41021-016-0068-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiko Inami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 Japan
| | - Yusuke Mine
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 Japan
| | | | | | - Masataka Mochizuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 Japan
| |
Collapse
|
16
|
Abstract
The physiological role of the gastrointestinal microbiota has become an important subject of nutrition research in pigs in the past years, and the importance of intestinal microbial activity in the etiology of disease is doubtless. This review summarizes the recent knowledge related to the microbial ecology of protein fermentation and the appearance of protein-derived metabolites along the pig intestine. The amount of fermentable protein depends on factors such as dietary protein concentration, protein digestibility due to secondary or tertiary structure, the interaction with dietary compounds or anti-nutritional factors, and the secretion of endogenous proteins into the gut lumen. High protein diets increase the luminal concentrations and epithelial exposure to putatively toxic metabolites and increase the risk for post-weaning diarrhea, but the mechanisms are not yet clarified. Although the use of fermentable carbohydrates to reduce harmful protein-derived metabolites in pigs is well-established, recent studies suggest that the inclusion of fermentable carbohydrates into diets with low protein digestibility or high dietary protein level may not ameliorate all negative effects with regard to epithelial response. Based on the current knowledge, the use of diets with low levels of high-quality protein may help to reduce the risk for intestinal disease in young pigs.
Collapse
|
17
|
Inami K, Mine Y, Kojo Y, Tanaka S, Ishikawa S, Mochizuki M. Antimutagenic components in Glycyrrhiza against N-methyl-N-nitrosourea in the Ames assay. Nat Prod Res 2016; 31:691-695. [DOI: 10.1080/14786419.2016.1212031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Keiko Inami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan
- Kyoritsu University of Pharmacy, Tokyo, Japan
| | - Yusuke Mine
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan
| | - Yukiko Kojo
- Kyoritsu University of Pharmacy, Tokyo, Japan
| | - Satomi Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan
| | - Satoko Ishikawa
- Kyoritsu University of Pharmacy, Tokyo, Japan
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masataka Mochizuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan
- Kyoritsu University of Pharmacy, Tokyo, Japan
| |
Collapse
|
18
|
Zhang O, Zou X, Li QH, Sun Z, Liu YD, Zhong RG. Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid. J Phys Chem A 2016; 120:4505-13. [DOI: 10.1021/acs.jpca.6b02582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ou Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xuan Zou
- Department
of Stomatology, Chinese PLA 307 Hospital, Academy of Military Medical Sciences, Beijing, 100071, P. R. China
| | - Qi-Hong Li
- Department
of Stomatology, Chinese PLA 307 Hospital, Academy of Military Medical Sciences, Beijing, 100071, P. R. China
| | - Zhi Sun
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yong Dong Liu
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Ru Gang Zhong
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
19
|
Hemeryck LY, Rombouts C, Hecke TV, Van Meulebroek L, Bussche JV, De Smet S, Vanhaecke L. In vitro DNA adduct profiling to mechanistically link red meat consumption to colon cancer promotion. Toxicol Res (Camb) 2016; 5:1346-1358. [PMID: 30090439 DOI: 10.1039/c6tx00079g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/19/2016] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type in the world. Epidemiological research has demonstrated that both red and processed meat consumption significantly contribute to CRC risk. In this study, red meat toxicity was investigated by means of simulated gastrointestinal conditions, malondialdehyde (MDA) analysis and UHPLC-(HR)MS(/MS) based DNA adductomics. Since dairy products with high calcium content are associated with a decreased CRC-risk, the possible CRC-protective effects of calcium were assessed as well. The obtained results confirmed the earlier reported finding that heme-rich meat stimulates lipid peroxidation and O6-carboxymethylguanine (O6-CMG) DNA adduct formation during digestion. Calcium carbonate (CaCO3) supplementation resulted in both toxic and anti-toxic effects; i.e. stimulation of O6-CMG production, but reduction of MDA formation. DNA adductome mapping of meat digests revealed a significant interindividual variability. The observed DNA adduct profile also differed according to the digested meat type, uncovering different putative DNA adducts that seem to be associated with digestion of beef or chicken with or without supplemented CaCO3. Formamidopyrimidine-adenine was found to be discriminative for meat digests without added CaCO3, carboxyethylcytosine was significantly higher in beef digests and methoxymethylcytosine (or its hydroxyethylcytosine isomer) was found to be lower in meat digests supplemented with CaCO3. These results demonstrate that DNA adduct formation may be involved in the pathway that links red meat digestion to CRC promotion. In addition, the possible CRC-protective attributes of calcium through anti-oxidant actions could be documented.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| | - Caroline Rombouts
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| | - Thomas Van Hecke
- Laboratory of Animal Nutrition and Animal Product Quality , Department of Animal Production , Faculty of Bioscience Engineering , Ghent University , Proefhoevestraat 10 , B-9090 Melle , Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| | - Julie Vanden Bussche
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality , Department of Animal Production , Faculty of Bioscience Engineering , Ghent University , Proefhoevestraat 10 , B-9090 Melle , Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| |
Collapse
|
20
|
Inami K, Shiino J, Hagiwara S, Takeda K, Mochizuki M. Transnitrosation of non-mutagenic N-nitrosoproline forms mutagenic N-nitroso-N-methylurea. Bioorg Med Chem 2015; 23:3297-302. [PMID: 25975641 DOI: 10.1016/j.bmc.2015.04.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
N-Nitroso-N-methylurea (NMU) is a potent carcinogen and suspected as a cause of human cancer. In this study, mutagenic NMU was detected by HPLC after the transnitrosation of non-mutagenic N-nitrosoproline (NP) to N-methylurea in the presence of thiourea (TU) under acidic conditions. The structure of NMU was confirmed by comparing (1)H NMR and IR spectra with that of authentic NMU after fractionation by column chromatography. Furthermore, a fraction containing NMU formed by transnitrosation was mutagenic in Salmonella typhimurium TA1535. NMU was formed in the reaction of NP and N-methylurea in the presence of 1,1,3,3-tetramethylthiourea (TTU) or 1,3-dimethylthiourea in place of TU as an accelerator. The reaction rate constants (k) for NMU formation were correlated with their nucleophilicity of sulfur atom in thioureas. The N-methylurea concentration did not affect the NMU formation, whereas the rate of NMU formation correlated linearly with concentrations of NP, TTU and oxonium ion. The observed kinetics suggests a mechanism by which the nitroso group was transferred directly from the protonated NP to the thiourea then to N-methylurea to form NMU. The rate-determining step was the formation of the complex with the protonated NP and thiourea.
Collapse
Affiliation(s)
- Keiko Inami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda-shi, Chiba 278-8510, Japan; Kyoritsu University of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan.
| | - Junko Shiino
- Kyoritsu University of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan
| | - Shin Hagiwara
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda-shi, Chiba 278-8510, Japan
| | - Kei Takeda
- Kyoritsu University of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan
| | - Masataka Mochizuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda-shi, Chiba 278-8510, Japan; Kyoritsu University of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
21
|
Habermeyer M, Roth A, Guth S, Diel P, Engel KH, Epe B, Fürst P, Heinz V, Humpf HU, Joost HG, Knorr D, de Kok T, Kulling S, Lampen A, Marko D, Rechkemmer G, Rietjens I, Stadler RH, Vieths S, Vogel R, Steinberg P, Eisenbrand G. Nitrate and nitrite in the diet: how to assess their benefit and risk for human health. Mol Nutr Food Res 2014; 59:106-28. [PMID: 25164923 DOI: 10.1002/mnfr.201400286] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/15/2022]
Abstract
Nitrate is a natural constituent of the human diet and an approved food additive. It can be partially converted to nitrogen monoxide, which induces vasodilation and thereby decreases blood pressure. This effect is associated with a reduced risk regarding cardiovascular disease, myocardial infarction, and stroke. Moreover, dietary nitrate has been associated with beneficial effects in patients with gastric ulcer, renal failure, or metabolic syndrome. Recent studies indicate that such beneficial health effects due to dietary nitrate may be achievable at intake levels resulting from the daily consumption of nitrate-rich vegetables. N-nitroso compounds are endogenously formed in humans. However, their relevance for human health has not been adequately explored up to now. Nitrate and nitrite are per se not carcinogenic, but under conditions that result in endogenous nitrosation, it cannot be excluded that ingested nitrate and nitrite may lead to an increased cancer risk and may probably be carcinogenic to humans. In this review, the known beneficial and detrimental health effects related to dietary nitrate/nitrite intake are described and the identified gaps in knowledge as well as the research needs required to perform a reliable benefit/risk assessment in terms of long-term human health consequences due to dietary nitrate/nitrite intake are presented.
Collapse
Affiliation(s)
- Michael Habermeyer
- Department of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany**
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bussche JV, Hemeryck LY, Van Hecke T, Kuhnle GGC, Pasmans F, Moore SA, Van de Wiele T, De Smet S, Vanhaecke L. O6-carboxymethylguanine DNA adduct formation and lipid peroxidation upon in vitro gastrointestinal digestion of haem-rich meat. Mol Nutr Food Res 2014; 58:1883-96. [DOI: 10.1002/mnfr.201400078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Julie Vanden Bussche
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Thomas Van Hecke
- Laboratory of Animal Nutrition and Animal Product Quality; Department of Animal Production; Faculty of Bioscience Engineering, Ghent University; Melle Belgium
| | - Gunter G. C. Kuhnle
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
- Department of Public Health and Primary Care; MRC Centre for Nutritional Epidemiology in Cancer Prevention & Survival; University of Cambridge; Cambridge UK
| | - Frank Pasmans
- Faculty of Veterinary Medicine; Department of Pathology, Bacteriology and Poultry Diseases; Ghent University; Merelbeke Belgium
| | - Sharon A. Moore
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool UK
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology; Department of Biochemical and Microbial Technology; Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality; Department of Animal Production; Faculty of Bioscience Engineering, Ghent University; Melle Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| |
Collapse
|
23
|
Nielsen DS, Krych Ł, Buschard K, Hansen CHF, Hansen AK. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett 2014; 588:4234-43. [PMID: 24746688 DOI: 10.1016/j.febslet.2014.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease ultimately leading to destruction of insulin secreting β-cells in the pancreas. Genetic susceptibility plays an important role in T1D etiology, but even mono-zygotic twins only have a concordance rate of around 50%, underlining that other factors than purely genetic are involved in disease development. Here we review the influence of dietary and environmental factors on T1D development in humans as well as animal models. Even though data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an important role in T1D development and evidence from animal models suggests that gut microbiota manipulation might prove valuable in future prevention of T1D in genetically susceptible individuals.
Collapse
Affiliation(s)
- Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | - Łukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | | - Camilla H F Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Axel K Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
24
|
Inami K, Takada M, Itoh K, Ishikawa S, Mochizuki M. Assessment of the Antimutagenic Effects of Aqueous Extracts from Herbal Medicines against N-Alkyl-N-nitrosoureas-induced Mutagenicity Using the umu Test. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Tatsuzaki J, Jinwei Y, Kojo Y, Mine Y, Ishikawa S, Mochizuki M, Inami K. Antimutagenicity Screening of Extracts from Medicinal and Edible Plants against N-Methyl-N-nitrosourea by the Ames Assay. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|