1
|
Xu Q, Daly M, Nitride C, Tranquet O, Rogers A, Bartra-Tomas J, Simpson A, Shewry PR, Gethings LA, Mills ENC. From Peptide to Protein: Development of Conversion Factors for the Quantification of Gluten Using Targeted Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40401702 DOI: 10.1021/acs.jafc.4c12344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Immuno- and mass spectrometry (MS) test methods have been used to ensure "gluten-free" food products contain less than 20 ppm of gluten. However, comparison of test method performance is difficult due to differences in reporting units. A set of wheat flour fractions was prepared and characterized regarding immunoglobulin E (IgE)-reactivity and protein profile, which were then used to screen a panel of gluten peptides to identify reporters suitable for use in an MS test method for gluten determination. Four peptide markers were selected and synthesized as heavy isotopically labeled versions for further evaluation. Two were derived from α-gliadin (RPQQPYPQPQPQY and QPFPQPQLPY [spanning a celiac toxic motif]), one each from γ-gliadin (GIIQPQQPAQL [spanning a celiac toxic motif and IgE epitope]), and a low-molecular-weight subunit of glutenin (VQQQIPVVQPSIL). Analysis of the wheat flour fractions was achieved with peptides RPQQPYPQPQPQY, GIIQPQQPAQL, and VQQQIPVVQPSIL. Two methods were used to derive a set of factors for converting from peptide marker to gluten protein: one based on calculation and a second on experimental analysis using either the gliadin or glutenin protein fractions. Experimentally derived conversion factors performed better when used in an MS test method to quantify gluten in a set of wheat flour samples. Peptide VQQIPVVQPSIL showed the greatest sensitivity and, when employing a glutenin fraction-based conversion factor, gave comparable results to protein levels determined using Dumas total nitrogen analysis. This peptide marker demonstrated the potential to determine gluten at a level around the 10 mg gluten/kg food product level, showing that the prototype method and approaches described have the potential to deliver a complementary method for determination of gluten in food.
Collapse
Affiliation(s)
- Qianying Xu
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Matthew Daly
- Waters Corporation, Wilmslow SK9 4AX, United Kingdom
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Olivier Tranquet
- INRAE, UMR1163 Biodiversité Et Biotechnologie Fongiques, (BBF), UMR1163, Aix Marseille University, 13009 Marseille, France
| | - Adrian Rogers
- Bio-Check, St. Asaph, Denbighshire LL17 0JA, United Kingdom
| | - Joan Bartra-Tomas
- Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy, Institut Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Angela Simpson
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Manchester University NHS Foundation Trust, University of Manchester, Manchester M23 9LT, United Kingdom
| | | | - Lee A Gethings
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- Waters Corporation, Wilmslow SK9 4AX, United Kingdom
- School of Biosciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - E N Clare Mills
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Biosciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
2
|
Lama S, Muneer F, America AH, Kuktaite R. Polymeric Gluten Proteins as Climate-Resilient Markers of Quality: Can LC-MS/MS Provide Valuable Information about Spring Wheat Grown in Diverse Climates? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1844-1854. [PMID: 39786935 PMCID: PMC11760153 DOI: 10.1021/acs.jafc.4c10789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
In this study, the impact of the varying environments, wet-cool (2017), dry-hot (2018), and fluctuating (2019), on two spring wheat genotypes, Diskett and Bumble, grown in field conditions in southern Sweden was studied. From harvested grains, polymeric gluten proteins were fractionated and collected using SE-HPLC and then analyzed with LC-MS/MS. Proteins and peptides identified through searches against the protein sequences ofTriticum aestivum (taxon 4565) from the UniProtKB database showed 7 high molecular weight glutenin subunits (HMW-GS) and 24 low molecular weight glutenin subunits (LMW-GS) with different enrichment levels for both genotypes. Glu-B1 for HMW-GS and Glu D3 and m- and s-types for LMW-GS were dominated in both genotypes, and a small proportion of α-, γ-, and ω-gliadins were also present. A minor variation in HMW-GS and LMW-GS compositions was observed between the years, while small amounts of heat shock proteins were identified under the "dry-hot" period for Diskett. In conclusion, Diskett showed more stable and climate-resistant protein patterns in the studied varying climate as compared to Bumble. The study highlights the use of proteomics and LC-MS/MS for differentiation of wheat genotypes, although it shows low sensitivity in measuring the diverse environment impact on the polymeric proteins.
Collapse
Affiliation(s)
- Sbatie Lama
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, Box 190, Lomma SE-23422, Sweden
- Agricultural
University of Iceland, H66H+9R9, Hvanneyrabraut, Hvanneyri 311, Iceland
| | - Faraz Muneer
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, Box 190, Lomma SE-23422, Sweden
| | - Antoine H.P. America
- Wageningen
Plant Research, Wageningen University and
Research, Wageningen 6708 PB, The Netherlands
| | - Ramune Kuktaite
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, Box 190, Lomma SE-23422, Sweden
| |
Collapse
|
3
|
Cubero-Leon E, Madsen CB, Scherf KA, Colgrave ML, Nørgaard JV, Anthoni M, Rizou K, Walker MJ, Sollid LM. Barley based gluten free beer - A blessing or an uncontrollable risk? Food Chem Toxicol 2024; 193:115019. [PMID: 39307344 PMCID: PMC11581983 DOI: 10.1016/j.fct.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Recent reports have highlighted that beer labelled "gluten-free", crafted with enzymatic treatments to remove gluten, may contain polypeptides that could be immunotoxic to individuals with coeliac disease. As strict adherence to a gluten-free diet is the only way to manage this condition, accurate labelling is crucial to those with coeliac disease. This paper aims to discuss the presence, levels and immunogenicity of gluten peptides found in gluten-reduced barley beers. While advances have been made in the detection and quantification of gluten peptides in beer, there are still challenges to the interpretation of gluten measurements as well as to assess whether peptides are immunotoxic in vivo. To make progress, future efforts should involve a combination of in vivo toxicity assessment of the degraded proteins, development of standardised gluten-free production strategies to minimise variability in gluten fragment presence, guidance on how to control the outcome as well as to develop appropriate reference materials and calibrators.
Collapse
Affiliation(s)
| | - Charlotte B Madsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Katharina A Scherf
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany; Technical University of Munich, TUM School of Life Sciences, Professorship of Food Biopolymer Systems, Freising, Germany
| | | | | | - Minna Anthoni
- Finnish Food Authority, Mustialankatu 3, 00790, Helsinki, Finland
| | - Katerina Rizou
- General Chemical State Laboratory (GCSL), Athens, Greece
| | - Michael J Walker
- Institute for Global Food Security, The Queen's University of Belfast, Belfast, BT9 5HN, Northern Ireland, UK
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Norway and Department of Immunology, Oslo, University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
4
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
5
|
Salman F, Zengin A, Çelik Kazici H. Simple detection of gluten in commercial gluten-containing samples with a novel nanoflower electrosensor made of molybdenum disulfide with comparison of the ELISA method. J Food Sci 2024; 89:2747-2760. [PMID: 38563096 DOI: 10.1111/1750-3841.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In this study, a new electrochemical sensor based on molybdenum disulfide (MoS2) nanoflowers/glassy carbon electrode (GCE was created for the sensitive detection of gluten. The prepared nanocatalysts were characterized using scanning electron microscopy with energy dispersive spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. The effects of the prepared nanocatalysts, pH value, and dropping amounts on the results were examined in detail. The electrochemical performance of the developed sensor (MoS2 nanoflowers/GCE) was then evaluated using differential pulse voltammetry, and the sensor was found to have significant electrochemical activity against gluten. A substantial linear connection was observed in the range of 0.5-100 ppm of gluten concentration under optimum experimental circumstances, and the detection limit between peak current and gluten concentration was determined as 1.16 ppm. The findings showed that the MoS2 nanoflowers/GCE gluten sensor has exceptional selectivity and stability. Finally, the generated electrochemical sensor was effectively utilized for gluten detection in commercial gluten-containing materials with a detection limit of 0.1652 ppm. Thus, the developed MoS2 nanoflowers/GCE sensor offers a potential method for the detection of other molecules and is a promising candidate for gluten detection in commercial samples.
Collapse
Affiliation(s)
- Fırat Salman
- Department of Chemical Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Adem Zengin
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Hilal Çelik Kazici
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
6
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
7
|
Mamone G, Di Stasio L, Vitale S, Picascia S, Gianfrani C. Analytical and functional approaches to assess the immunogenicity of gluten proteins. Front Nutr 2023; 9:1049623. [PMID: 36741992 PMCID: PMC9890883 DOI: 10.3389/fnut.2022.1049623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy,*Correspondence: Carmen Gianfrani,
| |
Collapse
|
8
|
Zhu X, Zhao XH, Zhang Q, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. How does a celiac iceberg really float? The relationship between celiac disease and gluten. Crit Rev Food Sci Nutr 2022; 63:9233-9261. [PMID: 35435771 DOI: 10.1080/10408398.2022.2064811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Qiang Zhang
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Vincent D, Bui A, Ram D, Ezernieks V, Bedon F, Panozzo J, Maharjan P, Rochfort S, Daetwyler H, Hayden M. Mining the Wheat Grain Proteome. Int J Mol Sci 2022; 23:ijms23020713. [PMID: 35054899 PMCID: PMC8775872 DOI: 10.3390/ijms23020713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022] Open
Abstract
Bread wheat is the most widely cultivated crop worldwide, used in the production of food products and a feed source for animals. Selection tools that can be applied early in the breeding cycle are needed to accelerate genetic gain for increased wheat production while maintaining or improving grain quality if demand from human population growth is to be fulfilled. Proteomics screening assays of wheat flour can assist breeders to select the best performing breeding lines and discard the worst lines. In this study, we optimised a robust LC–MS shotgun quantitative proteomics method to screen thousands of wheat genotypes. Using 6 cultivars and 4 replicates, we tested 3 resuspension ratios (50, 25, and 17 µL/mg), 2 extraction buffers (with urea or guanidine-hydrochloride), 3 sets of proteases (chymotrypsin, Glu-C, and trypsin/Lys-C), and multiple LC settings. Protein identifications by LC–MS/MS were used to select the best parameters. A total 8738 wheat proteins were identified. The best method was validated on an independent set of 96 cultivars and peptides quantities were normalised using sample weights, an internal standard, and quality controls. Data mining tools found particularly useful to explore the flour proteome are presented (UniProt Retrieve/ID mapping tool, KEGG, AgriGO, REVIGO, and Pathway Tools).
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (A.B.); (D.R.); (V.E.); (S.R.); (H.D.); (M.H.)
- Correspondence:
| | - AnhDuyen Bui
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (A.B.); (D.R.); (V.E.); (S.R.); (H.D.); (M.H.)
| | - Doris Ram
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (A.B.); (D.R.); (V.E.); (S.R.); (H.D.); (M.H.)
| | - Vilnis Ezernieks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (A.B.); (D.R.); (V.E.); (S.R.); (H.D.); (M.H.)
| | - Frank Bedon
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia;
| | - Joe Panozzo
- Agriculture Research Victoria, 110 Natimuk Road, Horsham, VIC 3400, Australia; (J.P.); (P.M.)
- Centre for Agricultural Innovation, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pankaj Maharjan
- Agriculture Research Victoria, 110 Natimuk Road, Horsham, VIC 3400, Australia; (J.P.); (P.M.)
| | - Simone Rochfort
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (A.B.); (D.R.); (V.E.); (S.R.); (H.D.); (M.H.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Hans Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (A.B.); (D.R.); (V.E.); (S.R.); (H.D.); (M.H.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (A.B.); (D.R.); (V.E.); (S.R.); (H.D.); (M.H.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
10
|
Landolfi V, D'Auria G, Nicolai MA, Nitride C, Blandino M, Ferranti P. The effect of nitrogen fertilization on the expression of protein in wheat and tritordeum varieties using a proteomic approach. Food Res Int 2021; 148:110617. [PMID: 34507761 DOI: 10.1016/j.foodres.2021.110617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023]
Abstract
Wheat, an essential ingredient for several bakery preparations, is also responsible for gluten-related diseases in sensitive subjects. The effect of the N fertilization rate (80 vs 160 kg N ha-1) on gluten protein expression profile has been evaluated considering two soft wheats (landrace and modern) and one tritordeum cultivar (cv), grown in the same experimental field in North Italy. The proteins of refined flour were characterized through advanced proteomic approaches, including chromatography (RP-HPLC) and electrophoresis. A static model system was used to simulate in vitro digestion and the digestome peptides were examined by mass spectrometry and in silico approaches, to investigate the celiac and allergenic sequences. The CD-toxic epitopes in the digested samples were quantified by means of a R5 ELISA assay. The N fertilization rate increased the grain protein content, but it did not lead to any difference in gluten composition, with exception of glu/glia ratio in the modern wheat cv. Moreover, the gluten composition and the occurrence of toxic/allergenic epitopes varied to a great extent, according mostly to the genotype. A lower immunoreactivity, determined using R5 ELISA, was detected for the digested tritordeum flours than for the landrace (-51%) or modern (-58%) cvs, while no significant difference was observed for the N rates between each genotype. In silico analysis showed that tritordeum has fewer CD epitopes belonging to the ω-gliadins and a lower LMW-GS than the landrace or modern cv. Tritordeum presented fewer α-gliadin allergenic epitopes than the modern wheat cv. The lower frequency of celiac epitopes in tritordeum, compared to the old and the modern wheat, is probably due to the absence of a D genome.
Collapse
Affiliation(s)
- Viola Landolfi
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari Largo Braccini 2, Grugliasco, TO 10095, Italy
| | - Giovanni D'Auria
- Università di Napoli Federico II, Dipartimento di Agraria, Parco Gussone, Portici, NA 80055, Italy
| | - Maria Adalgisa Nicolai
- Università di Napoli Federico II, Dipartimento di Agraria, Parco Gussone, Portici, NA 80055, Italy
| | - Chiara Nitride
- Università di Napoli Federico II, Dipartimento di Agraria, Parco Gussone, Portici, NA 80055, Italy
| | - Massimo Blandino
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari Largo Braccini 2, Grugliasco, TO 10095, Italy.
| | - Pasquale Ferranti
- Università di Napoli Federico II, Dipartimento di Agraria, Parco Gussone, Portici, NA 80055, Italy
| |
Collapse
|
11
|
Fighting food frauds exploiting chromatography-mass spectrometry technologies: Scenario comparison between solutions in scientific literature and real approaches in place in industrial facilities. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Ribeiro M, de Sousa T, Sabença C, Poeta P, Bagulho AS, Igrejas G. Advances in quantification and analysis of the celiac-related immunogenic potential of gluten. Compr Rev Food Sci Food Saf 2021; 20:4278-4298. [PMID: 34402581 DOI: 10.1111/1541-4337.12828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Gluten-free products have emerged in response to the increasing prevalence of gluten-related disorders, namely celiac disease. Therefore, the quantification of gluten in products intended for consumption by individuals who may suffer from these pathologies must be accurate and reproducible, in a way that allows their proper labeling and protects the health of consumers. Immunochemical methods have been the methods of choice for quantifying gluten, and several kits are commercially available. Nevertheless, they still face problems such as the initial extraction of gluten in complex matrices or the use of a standardized reference material to validate the results. Lately, other methodologies relying mostly on mass spectrometry-based techniques have been explored, and that may allow, in addition to quantitative analysis, the characterizationof gluten proteins. On the other hand, although the level of 20 mg/kg of gluten detected by these methods is sufficient for a product to be considered gluten-free, its immunogenic potential for celiac patients has not been clinically validated. In this sense, in vitro and in vivo models, such as the organoid technology applied in gut-on-chip devices and the transgenic humanized mouse models, respectively, are being developed for investigating both the gluten-induced pathogenesis and the treatment of celiac disease. Due to the ubiquitous nature of gluten in the food industry, as well as the increased prevalence of gluten-related disorders, here we intend to summarize the available methods for gluten quantification in food matrices and for the evaluation of its immunogenic potential concerning the development of novel therapies for celiac disease to highlight active research and discuss knowledge gaps and current challenges in this field.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ana Sofia Bagulho
- National Institute for Agrarian and Veterinarian Research, Elvas, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| |
Collapse
|
13
|
Proteomic Advances in Cereal and Vegetable Crops. Molecules 2021; 26:molecules26164924. [PMID: 34443513 PMCID: PMC8401599 DOI: 10.3390/molecules26164924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023] Open
Abstract
The importance of vegetables in human nutrition, such as cereals, which in many cases represent the main source of daily energy for humans, added to the impact that the incessant increase in demographic pressure has on the demand for these plant foods, entails the search for new technologies that can alleviate this pressure on markets while reducing the carbon footprint of related activities. Plant proteomics arises as a response to these problems, and through research and the application of new technologies, it attempts to enhance areas of food science that are fundamental for the optimization of processes. This review aims to present the different approaches and tools of proteomics in the investigation of new methods for the development of vegetable crops. In the last two decades, different studies in the control of the quality of crops have reported very interesting results that can help us to verify parameters as important as food safety, the authenticity of the products, or the increase in the yield by early detection of diseases. A strategic plan that encourages the incorporation of these new methods into the industry will be essential to promote the use of proteomics and all the advantages it offers in the optimization of processes and the solution of problems.
Collapse
|
14
|
Cao W, Baumert JL, Downs ML. Tracking Gluten throughout Brewing Using N-Terminal Labeling Mass Spectrometry. J Proteome Res 2021; 20:3230-3241. [PMID: 34029081 DOI: 10.1021/acs.jproteome.1c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gluten-containing grains cause adverse health effects in individuals with celiac disease. Fermentation of these grains results in gluten-derived polypeptides with largely uncharacterized sizes and sequences, which may still trigger an immune response. This research used N-terminal labeling mass spectrometry to characterize protein hydrolysates during each stage of bench-scale brewing, including malting, mashing, boiling, fermentation, and aging. Gluten hydrolysates from each brewing step were tracked, and the immunotoxic potential was evaluated by sequence comparison with peptides known to stimulate celiac immune responses. The results indicate that proteolysis and precipitation of gliadins occurring during brewing differ by protein region and brewing stage. The termini of gliadins were hydrolyzed throughout the entire brewing process, but the central regions remained relatively stable. Most hydrolysis occurred during malting, and most precipitation occurred during boiling. The addition of yeast yielded new cleavage sites but did not result in complete hydrolysis. Consistent detection of peptides within the clinically important regions of gliadin corroborated the hydrolytic resistance of this region. N-terminal labeling mass spectrometry served as a novel approach to track the fate of gliadin/gluten throughout bench-scale brewing. Consistently identified fragments could serve as improved targets for the detection of hydrolyzed gluten in fermented products.
Collapse
Affiliation(s)
- Wanying Cao
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| | - Joseph L Baumert
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| | - Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
15
|
Pla L, Martínez-Bisbal MC, Aznar E, Sancenón F, Martínez-Máñez R, Santiago-Felipe S. A fluorogenic capped mesoporous aptasensor for gluten detection. Anal Chim Acta 2021; 1147:178-186. [PMID: 33485577 DOI: 10.1016/j.aca.2020.12.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Celiac disease is a complex and autoimmune disorder caused by the ingestion of gluten affecting almost 1% of global population. Nowadays an effective treatment does not exist, and the only way to manage the disease is the removal of gluten from the diet. Owing the key role played by gluten, clear and regulated labelling of foodstuff and smart methods for gluten detection are needed to fight frauds on food industry and to avoid the involuntary ingestion of this protein by celiac patients. On that scope, the development of a novel detection system of gluten is here presented. The sensor consists of nanoporous anodic alumina films loaded with a fluorescent dye and capped with an aptamer that recognizes gliadin (gluten's soluble proteins). In the presence of gliadin, aptamer sequences displace from the surface of anodic alumina resulting in pore opening and dye delivery. The dispositive shows a limit of detection (LOD) of 100 μg kg-1 of gliadin, good selectivity and a detection time of approximately 60 min. Moreover, the sensor is validated in real food samples. This novel probe allows fast gluten detection through a simple signalling process with potential use for food control.
Collapse
Affiliation(s)
- Luis Pla
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain.
| | - M Carmen Martínez-Bisbal
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain; Departamento de Químiíca Física, Universitat de València, C/ Doctor Moliner, 50, 46100, Burjassot, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| | - Elena Aznar
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain.
| | - Félix Sancenón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - Ramón Martínez-Máñez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - Sara Santiago-Felipe
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain.
| |
Collapse
|
16
|
Daly M, Bromilow SN, Nitride C, Shewry PR, Gethings LA, Mills ENC. Mapping Coeliac Toxic Motifs in the Prolamin Seed Storage Proteins of Barley, Rye, and Oats Using a Curated Sequence Database. Front Nutr 2020; 7:87. [PMID: 32766270 PMCID: PMC7379453 DOI: 10.3389/fnut.2020.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Wheat gluten, and related prolamin proteins in rye, barley and oats cause the immune-mediated gluten intolerance syndrome, coeliac disease. Foods labelled as gluten-free which can be safely consumed by coeliac patients, must not contain gluten above a level of 20 mg/Kg. Current immunoassay methods for detection of gluten can give conflicting results and may underestimate levels of gluten in foods. Mass spectrometry methods have great potential as an orthogonal method, but require curated protein sequence databases to support method development. The GluPro database has been updated to include avenin-like sequences from bread wheat (n = 685; GluPro v1.1) and genes from the sequenced wheat genome (n = 699; GluPro v 1.2) and Triticum turgidum ssp durum (n = 210; GluPro v 2.1). Companion databases have been developed for prolamin sequences from barley (n = 64; GluPro v 3.0), rye (n = 41; GluPro v 4.0), and oats (n = 27; GluPro v 5.0) and combined to provide a complete cereal prolamin database, GluPro v 6.1 comprising 1,041 sequences. Analysis of the coeliac toxic motifs in the curated sequences showed that they were absent from the minor avenin-like proteins in bread and durum wheat and barley, unlike the related avenin proteins from oats. A comparison of prolamin proteins from the different cereal species also showed α- and γ-gliadins in bread and durum wheat, and the sulphur poor prolamins in all cereals had the highest density of coeliac toxic motifs. Analysis of ion-mobility mass spectrometry data for bread wheat (cvs Chinese Spring and Hereward) showed an increased number of identifications when using the GluPro v1.0, 1.1 and 1.2 databases compared to the limited number of verified sequences bread wheat sequences in reviewed UniProt. This family of databases will provide a basis for proteomic profiling of gluten proteins from all the gluten containing cereals and support identification of specific peptide markers for use in development of new methods for gluten quantitation based on coeliac toxic motifs found in all relevant cereal species.
Collapse
Affiliation(s)
- Matthew Daly
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Sophie N Bromilow
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Chiara Nitride
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Peter R Shewry
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, United Kingdom
| | | | - E N Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Wang D, Li F, Cao S, Zhang K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1521-1539. [PMID: 32020238 PMCID: PMC7214497 DOI: 10.1007/s00122-020-03557-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins, which are important determinants of wheat grain quality traits. The new insights obtained and the availability of precise, versatile and high-throughput genome editing technologies will accelerate simultaneous improvement of wheat end-use and health-related traits. Being a major staple food crop in the world, wheat provides an indispensable source of dietary energy and nutrients to the human population. As worldwide population grows and living standards rise in both developed and developing countries, the demand for wheat with high quality attributes increases globally. However, efficient breeding of high-quality wheat depends on critically the knowledge on gluten proteins, which mainly include several families of prolamin proteins specifically accumulated in the endospermic tissues of grains. Although gluten proteins have been studied for many decades, efficient manipulation of these proteins for simultaneous enhancement of end-use and health-related traits has been difficult because of high complexities in their expression, function and genetic variation. However, recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins. Therefore, the main objective of this review is to summarize the genomic and functional genomics information obtained in the last 10 years on gluten protein chromosome loci and genes and the cis- and trans-factors regulating their expression in the grains, as well as the efforts in elucidating the involvement of gluten proteins in several wheat sensitivities affecting genetically susceptible human individuals. The new insights gathered, plus the availability of precise, versatile and high-throughput genome editing technologies, promise to speed up the concurrent improvement of wheat end-use and health-related traits and the development of high-quality cultivars for different consumption needs.
Collapse
Affiliation(s)
- Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, 15 Longzi Lake College Park, Zhengzhou, 450046, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| | - Feng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| |
Collapse
|
18
|
Juhász A, Colgrave ML, Howitt CA. Developing gluten-free cereals and the role of proteomics in product safety. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Evaluation of N-terminal labeling mass spectrometry for characterization of partially hydrolyzed gluten proteins. J Proteomics 2020; 210:103538. [DOI: 10.1016/j.jprot.2019.103538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
|
20
|
Osorio CE, Mejías JH, Rustgi S. Gluten Detection Methods and Their Critical Role in Assuring Safe Diets for Celiac Patients. Nutrients 2019; 11:E2920. [PMID: 31810336 PMCID: PMC6949940 DOI: 10.3390/nu11122920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Celiac disease, wheat sensitivity, and allergy represent three different reactions, which may occur in genetically predisposed individuals on the ingestion of wheat and derived products with various manifestations. Improvements in the disease diagnostics and understanding of disease etiology unveiled that these disorders are widespread around the globe affecting about 7% of the population. The only known treatment so far is a life-long gluten-free diet, which is almost impossible to follow because of the contamination of allegedly "gluten-free" products. Accidental contamination of inherently gluten-free products could take place at any level from field to shelf because of the ubiquity of these proteins/grains. Gluten contamination of allegedly "gluten-free" products is a constant threat to celiac patients and a major health concern. Several detection procedures have been proposed to determine the level of contamination in products for celiac patients. The present article aims to review the advantages and disadvantages of different gluten detection methods, with emphasis on the recent technology that allows identification of the immunogenic-gluten peptides without the use of antibodies. The possibility to detect gluten contamination by different approaches with similar or better detection efficiency in different raw and processed foods will guarantee the safety of the foods for celiac patients.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Agriaquaculture Nutritional Genomic Center, CGNA, Las Heras 350, Temuco 4781158, Chile
| | - Jaime H. Mejías
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Temuco 4880000, Chile
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA
| |
Collapse
|
21
|
Li H, Bose U, Stockwell S, Howitt CA, Colgrave M. Assessing the Utility of Multiplexed Liquid Chromatography-Mass Spectrometry for Gluten Detection in Australian Breakfast Food Products. Molecules 2019; 24:molecules24203665. [PMID: 31614625 PMCID: PMC6832297 DOI: 10.3390/molecules24203665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Coeliac disease (CD) is an autoimmune disorder triggered by the ingestion of gluten that is associated with gastrointestinal issues, including diarrhea, abdominal pain, and malabsorption. Gluten is a general name for a class of cereal storage proteins of wheat, barley, and rye that are notably resistant to gastrointestinal digestion. After ingestion, immunogenic peptides are subsequently recognized by T cells in the gastrointestinal tract. The only treatment for CD is a life-long gluten-free diet. As such, it is critical to detect gluten in diverse food types, including those where one would not expect to find gluten. The utility of liquid chromatography-mass spectrometry (LC-MS) using cereal-specific peptide markers to detect gluten in heavily processed food types was assessed. A range of breakfast products, including breakfast cereals, breakfast bars, milk-based breakfast drinks, powdered drinks, and a savory spread, were tested. No gluten was detected by LC-MS in the food products labeled gluten-free, yet enzyme-linked immunosorbent assay (ELISA) measurement revealed inconsistencies in barley-containing products. In products containing wheat, rye, barley, and oats as labeled ingredients, gluten proteins were readily detected using discovery proteomics. Panels comprising ten cereal-specific peptide markers were analyzed by targeted proteomics, providing evidence that LC-MS could detect and differentiate gluten in complex matrices, including baked goods and milk-based products.
Collapse
Affiliation(s)
- Haili Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China.
| | - Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
| | - Sally Stockwell
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
| | - Crispin A Howitt
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia.
| | - Michelle Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
- Edith Cowan University, School of Science, 270 Joondalup Dr, Joondalup WA 6027, Australia.
| |
Collapse
|
22
|
Pasquali D, Blundell M, Howitt CA, Colgrave ML. Catcher of the Rye: Detection of Rye, a Gluten-Containing Grain, by LC–MS/MS. J Proteome Res 2019; 18:3394-3403. [DOI: 10.1021/acs.jproteome.9b00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Pasquali
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Malcolm Blundell
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Crispin A. Howitt
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | | |
Collapse
|
23
|
Fiedler KL, Cao W, Zhang L, Naziemiec M, Bedford B, Yin L, Smith N, Arbuckle M, Lopez-Hernandez A, Jackson LS. Detection of gluten in a pilot-scale barley-based beer produced with and without a prolyl endopeptidase enzyme. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1151-1162. [DOI: 10.1080/19440049.2019.1616830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Wanying Cao
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Liyun Zhang
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Magdalena Naziemiec
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Binaifer Bedford
- Center for Food Safety and Applied Nutrition, US FDA, Bedford Park, IL, USA
| | - Lanlan Yin
- Center for Food Safety and Applied Nutrition, US FDA, College Park, MD, USA
| | - Nicholas Smith
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| | - Matthew Arbuckle
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| | | | - Lauren S. Jackson
- Center for Food Safety and Applied Nutrition, US FDA, Bedford Park, IL, USA
| |
Collapse
|
24
|
Alves TO, D’Almeida CTS, Scherf KA, Ferreira MSL. Modern Approaches in the Identification and Quantification of Immunogenic Peptides in Cereals by LC-MS/MS. FRONTIERS IN PLANT SCIENCE 2019; 10:1470. [PMID: 31798614 PMCID: PMC6868032 DOI: 10.3389/fpls.2019.01470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/22/2019] [Indexed: 05/17/2023]
Abstract
Celiac disease (CD) is an immunogenic disorder that affects the small intestine. It is caused by the ingestion of gluten, a protein network formed by prolamins and glutelins from cereals such as wheat, barley, rye and, possibly, oats. For predisposed people, gluten presents epitopes able to stimulate T-cells causing symptoms like nausea, vomiting, diarrhea, among others unrelated to the gastrointestinal system. The only treatment for CD is to maintain a gluten-free diet, not exceeding 20 mg/kg of gluten, what is generally considered the safe amount for celiacs. Due to this context, it is very important to identify and quantify the gluten content of food products. ELISA is the most commonly used method to detect gluten traces in food. However, by detecting only prolamins, the results of ELISA tests may be underestimated. For this reason, more reliable and sensitive assays are needed to improve gluten quantification. Because of high sensitivity and the ability to detect even trace amounts of peptides in complex matrices, the most promising approaches to verify the presence of gluten peptides in food are non-immunological techniques, like liquid chromatography coupled to mass spectrometry. Different methodologies using this approach have been developed and described in the last years, ranging from non-targeted and exploratory analysis to targeted and specific methods depending on the purpose of interest. Non-targeted analyses aim to define the proteomic profile of the sample, while targeted analyses allow the search for specific peptides, making it possible to quantify them. This review aims to gather and summarize the main proteomic techniques used in the identification and quantitation of gluten peptides related to CD-activity and gluten-related allergies.
Collapse
Affiliation(s)
- Thais O. Alves
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Carolina T. S. D’Almeida
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mariana S. L. Ferreira
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
- *Correspondence: Mariana S. L. Ferreira,
| |
Collapse
|
25
|
Monaci L, De Angelis E, Montemurro N, Pilolli R. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Huang C, Sheth S, Li M, Ran G, Song Q. Rapid and selective luminescent sensing of allergenic gluten by highly phosphorescent switch-on probe. Talanta 2018; 190:292-297. [PMID: 30172512 DOI: 10.1016/j.talanta.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/20/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
First time the luminescent switch-on probe using novel water-soluble cyclometallated iridium complex (Ir-dc) has been developed for sensitive and selective detection of gluten in the presence of several interfering elements. Linear concentration range of gluten is obtained from 5 to 200 µg/mL with a limit of detection 2.6 µg/mL. The Ir-dc complex responded to the broad pH range which is advantageous for the detection of gluten in various food samples. Additionally, It has been successfully employed for the detection of gluten in commercial food samples of wheat flour and oats with highest recovery values, indicating applicability of Ir-dc for practical usage.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Sujitraj Sheth
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mengyuan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
27
|
Abstract
Among targeted proteomic techniques, AQUA-MRM is considered as one of the most reliable for accurate protein quantitation. This method displays high sensitivity, specificity, and reproducibility compared to many common biochemical techniques by coupling the use of unique, heavy-labeled peptide standards and triple-quadrupole mass spectrometry. However, there are several important steps that are required for successful development and validation of a robust AQUA-MRM assay. The following protocol outlines and details the key steps necessary for plant sample preparation as well as AQUA-MRM development and validation, specifically for absolute quantitation of plant proteins in vivo. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Brown University, Providence, Rhode Island.,Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island
| | - Rashaun S Wilson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri
| |
Collapse
|
28
|
Schalk K, Koehler P, Scherf KA. Quantitation of Specific Barley, Rye, and Oat Marker Peptides by Targeted Liquid Chromatography-Mass Spectrometry To Determine Gluten Concentrations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3581-3592. [PMID: 29392950 DOI: 10.1021/acs.jafc.7b05286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Celiac disease is triggered by the ingestion of gluten from wheat, barley, rye, and possibly oats. Gluten is quantitated by DNA-based methods or enzyme-linked immunosorbent assays (ELISAs). ELISAs mostly detect the prolamin fraction and potentially over- or underestimate gluten contents. Therefore, a new independent method is required to comprehensively detect gluten. A targeted liquid chromatography-tandem mass spectrometry method was developed to quantitate seven barley, seven rye, and three oat marker peptides derived from each gluten protein fraction (prolamin and glutelin) and type (barley, B-, C-, D-, and γ-hordeins; rye, γ-75k-, γ-40k-, ω-, and HMW-secalins). The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference gluten protein type resulted in peptide-specific yields, which enabled the conversion of peptide into protein concentrations. This method was applied to quantitate gluten in samples from the brewing process, in raw materials for sourdough fermentation, and in dried sourdoughs.
Collapse
Affiliation(s)
- Kathrin Schalk
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| | - Peter Koehler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| |
Collapse
|
29
|
Dawson C, Mendoza-Porras O, Byrne K, Hooper T, Howitt C, Colgrave M. Oat of this world: Defining peptide markers for detection of oats in processed food. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Charlotte Dawson
- CSIRO Agriculture and Food; 306 Carmody Road; St Lucia QLD 4067 Australia
| | | | - Keren Byrne
- CSIRO Agriculture and Food; 306 Carmody Road; St Lucia QLD 4067 Australia
| | - Thomas Hooper
- CSIRO Agriculture and Food; 306 Carmody Road; St Lucia QLD 4067 Australia
| | - Crispin Howitt
- CSIRO Agriculture and Food; GPO Box 1700; Canberra ACT 2601 Australia
| | - Michelle Colgrave
- CSIRO Agriculture and Food; 306 Carmody Road; St Lucia QLD 4067 Australia
| |
Collapse
|
30
|
Schalk K, Koehler P, Scherf KA. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins. PLoS One 2018; 13:e0192804. [PMID: 29425234 PMCID: PMC5806900 DOI: 10.1371/journal.pone.0192804] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods.
Collapse
Affiliation(s)
- Kathrin Schalk
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Peter Koehler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- * E-mail:
| |
Collapse
|
31
|
Fiedler KL, Panda R, Croley TR. Analysis of Gluten in a Wheat-Gluten-Incurred Sorghum Beer Brewed in the Presence of Proline Endopeptidase by LC/MS/MS. Anal Chem 2018; 90:2111-2118. [DOI: 10.1021/acs.analchem.7b04371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Katherine L. Fiedler
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Rakhi Panda
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Timothy R. Croley
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| |
Collapse
|
32
|
Bromilow S, Gethings LA, Buckley M, Bromley M, Shewry PR, Langridge JI, Clare Mills EN. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J Proteomics 2017; 163:67-75. [PMID: 28385663 PMCID: PMC5479479 DOI: 10.1016/j.jprot.2017.03.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
Abstract
The unique physiochemical properties of wheat gluten enable a diverse range of food products to be manufactured. However, gluten triggers coeliac disease, a condition which is treated using a gluten-free diet. Analytical methods are required to confirm if foods are gluten-free, but current immunoassay-based methods can unreliable and proteomic methods offer an alternative but require comprehensive and well annotated sequence databases which are lacking for gluten. A manually a curated database (GluPro V1.0) of gluten proteins, comprising 630 discrete unique full length protein sequences has been compiled. It is representative of the different types of gliadin and glutenin components found in gluten. An in silico comparison of their coeliac toxicity was undertaken by analysing the distribution of coeliac toxic motifs. This demonstrated that whilst the α-gliadin proteins contained more toxic motifs, these were distributed across all gluten protein sub-types. Comparison of annotations observed using a discovery proteomics dataset acquired using ion mobility MS/MS showed that more reliable identifications were obtained using the GluPro V1.0 database compared to the complete reviewed Viridiplantae database. This highlights the value of a curated sequence database specifically designed to support the proteomic workflows and the development of methods to detect and quantify gluten. SIGNIFICANCE We have constructed the first manually curated open-source wheat gluten protein sequence database (GluPro V1.0) in a FASTA format to support the application of proteomic methods for gluten protein detection and quantification. We have also analysed the manually verified sequences to give the first comprehensive overview of the distribution of sequences able to elicit a reaction in coeliac disease, the prevalent form of gluten intolerance. Provision of this database will improve the reliability of gluten protein identification by proteomic analysis, and aid the development of targeted mass spectrometry methods in line with Codex Alimentarius Commission requirements for foods designed to meet the needs of gluten intolerant individuals.
Collapse
Affiliation(s)
- Sophie Bromilow
- School of Biological Sciences, Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, University of Manchester, M17DN, UK
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Mike Buckley
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, M17DN, UK
| | - Mike Bromley
- Genon Laboratories Limited, Cragg Vale, Halifax, UK
| | | | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - E N Clare Mills
- School of Biological Sciences, Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, University of Manchester, M17DN, UK.
| |
Collapse
|
33
|
Colgrave ML, Byrne K, Howitt CA. Food for thought: Selecting the right enzyme for the digestion of gluten. Food Chem 2017; 234:389-397. [PMID: 28551252 DOI: 10.1016/j.foodchem.2017.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 12/24/2022]
Abstract
Gluten describes a complex mixture of proteins found in wheat, rye, barley and oats that pose a health risk to people affected by conditions such as coeliac disease and non-coeliac gluten sensitivity. Complete digestion of gluten proteins is of critical importance during quantitative analysis. To this end, chymotrypsin was investigated for its ability to efficiently and reproducibly digest specific classes of gluten in barley. Using proteomics a chymotryptic peptide marker panel was elucidated and subjected to relative quantification using LC-MRM-MS. Thorough investigation of peptide markers revealed robust and reproducible quantification with CVs <15% was possible, however a greater proportion of non-specific cleavage variants were observed relative to trypsin. The selected peptide markers were assessed to ensure their efficient liberation from their parent proteins. While trypsin remains the preferred enzyme for quantification of the avenin-like A proteins, the B-, D- and γ-hordeins, chymotrypsin was the enzyme of choice for the C-hordeins.
Collapse
Affiliation(s)
| | - Keren Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Crispin A Howitt
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
34
|
Fallahbaghery A, Zou W, Byrne K, Howitt CA, Colgrave ML. Comparison of Gluten Extraction Protocols Assessed by LC-MS/MS Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2857-2866. [PMID: 28285530 DOI: 10.1021/acs.jafc.7b00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The efficiency of gluten extraction is of critical importance to the results derived from any analytical method for gluten detection and quantitation, whether it employs reagent-based technology (antibodies) or analytical instrumentation (mass spectrometry). If the target proteins are not efficiently extracted, the end result will be an under-estimation in the gluten content posing a health risk to people affected by conditions such as celiac disease (CD) and nonceliac gluten sensitivity (NCGS). Five different extraction protocols were investigated using LC-MRM-MS for their ability to efficiently and reproducibly extract gluten. The rapid and simple "IPA/DTT" protocol and related "two-step" protocol were enriched for gluten proteins, 55/86% (trypsin/chymotrypsin) and 41/68% of all protein identifications, respectively, with both methods showing high reproducibility (CV < 15%). When using multistep protocols, it was critical to examine all fractions, as coextraction of proteins occurred across fractions, with significant levels of proteins existing in unexpected fractions and not all proteins within a particular gluten class behaving the same.
Collapse
Affiliation(s)
- Azadeh Fallahbaghery
- CSIRO Agriculture and Food , 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Wei Zou
- CSIRO Agriculture and Food , 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture and Food , 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Crispin A Howitt
- CSIRO Agriculture and Food , GPO Box 1700, Canberra, ACT 2601, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food , 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| |
Collapse
|
35
|
Schalk K, Lang C, Wieser H, Koehler P, Scherf KA. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Sci Rep 2017; 7:45092. [PMID: 28327674 PMCID: PMC5361186 DOI: 10.1038/srep45092] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/17/2017] [Indexed: 12/30/2022] Open
Abstract
Coeliac disease (CD) is triggered by the ingestion of gluten proteins from wheat, rye, and barley. The 33-mer peptide from α2-gliadin has frequently been described as the most important CD-immunogenic sequence within gluten. However, from more than 890 published amino acid sequences of α-gliadins, only 19 sequences contain the 33-mer. In order to make a precise assessment of the importance of the 33-mer, it is necessary to elucidate which wheat species and cultivars contain the peptide and at which concentrations. This paper presents the development of a stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry to quantitate the 33-mer in flours of 23 hexaploid modern and 15 old common (bread) wheat as well as two spelt cultivars. All flours contained the 33-mer peptide at levels ranging from 91–603 μg/g flour. In contrast, the 33-mer was absent (<limit of detection) from tetra- and diploid species (durum wheat, emmer, einkorn), most likely because of the absence of the D-genome, which encodes α2-gliadins. Due to the presence of the 33-mer in all common wheat and spelt flours analysed here, the special focus in the literature on this most immunodominant peptide seems to be justified.
Collapse
Affiliation(s)
- Kathrin Schalk
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Christina Lang
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Herbert Wieser
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Katharina Anne Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
36
|
Development and Validation of the Detection Method for Wheat and Barley Glutens Using Mass Spectrometry in Processed Foods. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0827-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Fritz RD, Chen Y, Contreras V. Gluten-containing grains skew gluten assessment in oats due to sample grind non-homogeneity. Food Chem 2017; 216:170-5. [DOI: 10.1016/j.foodchem.2016.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
|
38
|
Bromilow SNL, Gethings LA, Langridge JI, Shewry PR, Buckley M, Bromley MJ, Mills ENC. Comprehensive Proteomic Profiling of Wheat Gluten Using a Combination of Data-Independent and Data-Dependent Acquisition. FRONTIERS IN PLANT SCIENCE 2017; 7:2020. [PMID: 28119711 PMCID: PMC5223596 DOI: 10.3389/fpls.2016.02020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/19/2016] [Indexed: 05/24/2023]
Abstract
Wheat is the most important food crop in the world, the unique physiochemical properties of wheat gluten enabling a diverse range of food products to be manufactured. However, genetic and environmental factors affect the technological properties of gluten in unpredictable ways. Although newer proteomic methods have the potential to offer much greater levels of information, it is the older gel-based methods that remain most commonly used to identify compositional differences responsible for the variation in gluten functionality, in part due to the nature of their primary sequences. A combination of platforms were investigated for comprehensive gluten profiling: a QTOF with a data independent schema, which incorporated ion mobility (DIA-IM-MS) and a data dependent acquisition (DDA) workflow using a linear ion trap quadrupole (LTQ) instrument. In conjunction with a manually curated gluten sequence database a total of 2736 gluten peptides were identified with only 157 peptides identified by both platforms. These data showed 127 and 63 gluten protein accessions to be inferred with a minimum of one and three unique peptides respectively. Of the 63 rigorously identified proteins, 26 were gliadin species (4 ω-, 14 α-, and 8 γ-gliadins) and 37 glutenins (including 29 LMW glutenin and 8 HMW glutenins). Of the HMW glutenins, three were 1Dx type and five were 1Bx type illustrating the challenge of unambiguous identification of highly polymorphic proteins without cultivar specific gene sequences. The capacity of the platforms to sequence longer peptides was crucial to achieving the number of identifications, the combination of QTOF-LTQ technology being more important than extraction method to obtain a comprehensive profile. Widespread glutamine deamidation, a post-translational modification, was observed adding complexity to an already highly polymorphic mixture of proteins, with numerous insertions, deletions and substitutions. The data shown is the most comprehensive and detailed proteomic profile of gluten to date.
Collapse
Affiliation(s)
- Sophie N. L. Bromilow
- Faculty of Biology, Medicine and Health, Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | | | | | | | - Michael Buckley
- School of Chemistry, Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | | | - E. N. Clare Mills
- Faculty of Biology, Medicine and Health, Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| |
Collapse
|
39
|
Sharma GM, Khuda SE, Parker CH, Eischeid AC, Pereira M. Detection of Allergen Markers in Food: Analytical Methods. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
40
|
Scherf KA, Wieser H, Koehler P. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7622-7631. [PMID: 27633005 DOI: 10.1021/acs.jafc.6b02512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Purified wheat starch (WSt) is commonly used in gluten-free products for celiac disease (CD) patients. It is mostly well-tolerated, but doubts about its safety for CD patients persist. One reason may be that most ELISA kits primarily recognize the alcohol-soluble gliadin fraction of gluten, but insufficiently target the alcohol-insoluble glutenin fraction. To address this problem, a new sensitive method based on the sequential extraction of gliadins, glutenins, and gluten from WSt followed by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD) was developed. It revealed that considerable amounts of glutenins were present in most WSt. The gluten contents quantitated by GP-HPLC-FLD as sum of gliadins and glutenins were higher than those by R5 ELISA (gluten as gliadin content multiplied by a factor of 2) in 19 out of 26 WSt. Despite its limited selectivity, GP-HPLC-FLD may be applied as confirmatory method to ELISA to quantitate gluten in WSt.
Collapse
Affiliation(s)
- Katharina Anne Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut , Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Herbert Wieser
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut , Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut , Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
41
|
Colgrave ML, Byrne K, Blundell M, Heidelberger S, Lane CS, Tanner GJ, Howitt CA. Comparing Multiple Reaction Monitoring and Sequential Window Acquisition of All Theoretical Mass Spectra for the Relative Quantification of Barley Gluten in Selectively Bred Barley Lines. Anal Chem 2016; 88:9127-35. [PMID: 27533879 DOI: 10.1021/acs.analchem.6b02108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celiac disease (CD) is a disease of the small intestine that occurs in genetically susceptible subjects triggered by the ingestion of cereal gluten proteins for which the only treatment is strict adherence to a life-long gluten-free diet. Barley contains four gluten protein families, and the existence of barley genotypes that do not accumulate the B-, C-, and D-hordeins paved the way for the development of an ultralow gluten phenotype. Using conventional breeding strategies, three null mutations behaving as recessive alleles were combined to create a hordein triple-null barley variety. Proteomics has become an invaluable tool for characterization and quantification of the protein complement of cereal grains. In this study multiple reaction monitoring (MRM) mass spectrometry, viewed as the gold standard for peptide quantification, was compared to the data-independent acquisition strategy known as SWATH-MS (sequential window acquisition of all theoretical mass spectra). SWATH-MS was comparable (p < 0.001) to MRM-MS for 32/33 peptides assessed across the four families of hordeins (gluten) in eight barley lines. The results of SWATH-MS analysis further confirmed the absence of the B-, C-, and D-hordeins in the triple-null barley line and showed significantly reduced levels ranging from <1% to 16% relative to wild-type (WT) cv Sloop for the minor γ-hordein class. SWATH-MS represents a valuable tool for quantitative proteomics based on its ability to generate reproducible data comparable with MRM-MS, but has the added benefits of allowing reinterrogation of data to improve analytical performance, ask new questions, and in this case perform quantification of trypsin-resistant proteins (C-hordeins) through analysis of their semi- or nontryptic fragments.
Collapse
Affiliation(s)
| | - Keren Byrne
- CSIRO Agriculture, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Malcolm Blundell
- CSIRO Agriculture, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | | | - Catherine S Lane
- SCIEX, Phoenix House, Lakeside Drive, Centre Park, Warrington, WA1 1RX, U.K
| | - Gregory J Tanner
- CSIRO Agriculture, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Crispin A Howitt
- CSIRO Agriculture, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
42
|
Colgrave ML, Byrne K, Blundell M, Howitt CA. Identification of barley-specific peptide markers that persist in processed foods and are capable of detecting barley contamination by LC-MS/MS. J Proteomics 2016; 147:169-176. [PMID: 27068799 DOI: 10.1016/j.jprot.2016.03.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/26/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Consumers, especially those with allergies and/or intolerances, should have confidence in two critical areas of food safety: foods should be correctly labelled and free from contamination. To this end, global proteomic analysis employing LC-MS/MS of gluten-enriched extracts derived from 12 barley cultivars was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of barley contamination in foods. Subsequently, a number of candidate barley-specific peptide markers were evaluated by multiple-reaction monitoring MS. From an initial panel of 26, 9 peptide markers were unique to barley, yet present in a wide range of barley varieties. The analytical method was then used to examine a range of breakfast cereals and was able to detect barley in a barley-based breakfast cereal and a muesli, but additionally allowed detection of contamination of cereals that were comprised of ancient grains and in commercially-sourced flours, including amaranth, chia, buckwheat, millet, rice, corn, oats, rye, spelt and green wheat (0.01-0.08%). LC-MS/MS provides an alternative to ELISA approaches to monitor food safety and the identification of robust and sensitive cereal-specific peptide markers is the first step toward the adoption of this technology. SIGNIFICANCE Coeliac disease is a serious health issue affecting up to 70million people globally for which there is no cure. The only treatment is a life-long gluten-free diet. Contamination of foods can occur at many stages of food production from farm to fork. As such, accurate quantification and identification of the source (i.e. cereal) and type (e.g. gluten) of contamination is critical to the health and well-being of a subset of the population, including those affected by coeliac disease and non-coeliac gluten sensitivity.
Collapse
Affiliation(s)
| | - Keren Byrne
- CSIRO Agriculture, 306 Carmody Rd., St. Lucia, QLD 4067, Australia
| | | | | |
Collapse
|
43
|
Manfredi A, Giannetto M, Mattarozzi M, Costantini M, Mucchino C, Careri M. Competitive immunosensor based on gliadin immobilization on disposable carbon-nanogold screen-printed electrodes for rapid determination of celiotoxic prolamins. Anal Bioanal Chem 2016; 408:7289-98. [PMID: 27023219 DOI: 10.1007/s00216-016-9494-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
The first competitive disposable amperometric immunosensor based on gliadin-functionalized carbon/nanogold screen-printed electrodes was developed for rapid determination of celiotoxic prolamins. To date, no competitive spectrophotometric or electrochemical immunoassays have yet been successfully applied to gluten detection in processed food samples, which require the use of complex prolamin extraction solutions containing additives with denaturing, reducing and disaggregating functions. Thus, in this work, great effort was put into the optimization and performance evaluation of the immunosensor in terms of suitability as a screening tool for analysis of cereal-based food samples. For this purpose, aqueous ethanol or complex extraction mixtures, as the patented Cocktail Solution®, were proved effective in the extraction of gliadin. Good sensitivity was achieved after optimization of the immunocompetitive assay, giving limit of detection and limit of quantitation of 8 and 22 ng/ml of gliadin, respectively, for ethanol extracts. The immunosensor was proved to be suitable also for samples extracted with Cocktail Solution® after a proper dilution. Analysis of real samples of different flours proved the suitability of the immunosensing device as a powerful tool for safety assessment of raw materials used for the formulation of dietary products for celiac disease patients. This immunosensor combines good analytical performance using a very simplified set-up protocol with suitability for rapid screening analysis performed using inexpensive and portable instrumentation. Graphical abstract Depiction of the development and working principle of the competitive immunosensor.
Collapse
Affiliation(s)
- Anita Manfredi
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Marco Giannetto
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - Monica Mattarozzi
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Monica Costantini
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Claudio Mucchino
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maria Careri
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
44
|
Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach. J Proteomics 2016; 147:156-168. [PMID: 26994601 DOI: 10.1016/j.jprot.2016.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 11/24/2022]
Abstract
UNLABELLED Accurate, reliable and sensitive detection methods for gluten are required to support current EU regulations. The enforcement of legislative levels requires that measurement results are comparable over time and between methods. This is not a trivial task for gluten which comprises a large number of protein targets. This paper describes a strategy for defining a set of specific analytical targets for wheat gluten. A comprehensive proteomic approach was applied by fractionating wheat gluten using RP-HPLC (reversed phase high performance liquid chromatography) followed by a multi-enzymatic digestion (LysC, trypsin and chymotrypsin) with subsequent mass spectrometric analysis. This approach identified 434 peptide sequences from gluten. Peptides were grouped based on two criteria: unique to a single gluten protein sequence; contained known immunogenic and toxic sequences in the context of coeliac disease. An LC-MS/MS method based on selected reaction monitoring (SRM) was developed on a triple quadrupole mass spectrometer for the specific detection of the target peptides. The SRM based screening approach was applied to gluten containing cereals (wheat, rye, barley and oats) and non-gluten containing flours (corn, soy and rice). A unique set of wheat gluten marker peptides were identified and are proposed as wheat specific markers. SIGNIFICANCE The measurement of gluten in processed food products in support of regulatory limits is performed routinely. Mass spectrometry is emerging as a viable alternative to ELISA based methods. Here we outline a set of peptide markers that are representative of gluten and consider the end user's needs in protecting those with coeliac disease. The approach taken has been applied to wheat but can be easily extended to include other species potentially enabling the MS quantification of different gluten containing species from the identified markers.
Collapse
|
45
|
Rogniaux H, Pavlovic M, Lupi R, Lollier V, Joint M, Mameri H, Denery S, Larré C. Allergen relative abundance in several wheat varieties as revealed via a targeted quantitative approach using MS. Proteomics 2016; 15:1736-45. [PMID: 25764008 DOI: 10.1002/pmic.201400416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
Food allergy has become a major health issue in developed countries, therefore there is an urgent need to develop analytical methods able to detect and quantify with a good sensitivity and reliability some specific allergens in complex food matrices. In this paper, we present a targeted MS/MS approach to compare the relative abundance of the major recognized wheat allergens in the salt-soluble (albumin/globulin) fraction of wheat grains. Twelve allergens were quantified in seven wheat varieties, selected from three Triticum species: T. aestivum (bread wheat), T. durum (durum wheat), and T. monococcum. The allergens were monitored from one or two proteotypic peptides and their relative abundance was deduced from the intensity of one fragment measured in MS/MS. Whereas the abundance of some of the targeted allergens was quite stable across the genotypes, others like alpha-amylase inhibitors showed clear differences according to the wheat species, in accordance with the results of earlier functional studies. This study enriches the scarce knowledge available on allergens content in wheat genotypes, and brings new perspectives for food safety and plant breeding.
Collapse
Affiliation(s)
- Hélène Rogniaux
- INRA UR1268 Biopolymers Interactions Assemblies, Nantes, France
| | - Marija Pavlovic
- INRA UR1268 Biopolymers Interactions Assemblies, Nantes, France
| | - Roberta Lupi
- INRA UR1268 Biopolymers Interactions Assemblies, Nantes, France
| | | | - Mathilde Joint
- INRA UR1268 Biopolymers Interactions Assemblies, Nantes, France
| | - Hamza Mameri
- INRA UR1268 Biopolymers Interactions Assemblies, Nantes, France
| | - Sandra Denery
- INRA UR1268 Biopolymers Interactions Assemblies, Nantes, France
| | - Colette Larré
- INRA UR1268 Biopolymers Interactions Assemblies, Nantes, France
| |
Collapse
|
46
|
|
47
|
Panda R, Fiedler KL, Cho CY, Cheng R, Stutts WL, Jackson LS, Garber EAE. Effects of a Proline Endopeptidase on the Detection and Quantitation of Gluten by Antibody-Based Methods during the Fermentation of a Model Sorghum Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10525-10535. [PMID: 26548701 DOI: 10.1021/acs.jafc.5b04205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effectiveness of a proline endopeptidase (PEP) in hydrolyzing gluten and its putative immunopathogenic sequences was examined using antibody-based methods and mass spectrometry (MS). Based on the results of the antibody-based methods, fermentation of wheat gluten containing sorghum beer resulted in a reduction in the detectable gluten concentration. The addition of PEP further reduced the gluten concentration. Only one sandwich ELISA was able to detect the apparent low levels of gluten present in the beers. A competitive ELISA using a pepsin-trypsin hydrolysate calibrant was unreliable because the peptide profiles of the beers were inconsistent with that of the hydrolysate calibrant. Analysis by MS indicated that PEP enhanced the loss of a fragment of an immunopathogenic 33-mer peptide in the beer. However, Western blot results indicated partial resistance of the high molecular weight (HMW) glutenins to the action of PEP, questioning the ability of PEP in digesting all immunopathogenic sequences present in gluten.
Collapse
Affiliation(s)
- Rakhi Panda
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition (CFSAN), FDA , College Park, Maryland 20740, United States
| | - Katherine L Fiedler
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition (CFSAN), FDA , College Park, Maryland 20740, United States
| | - Chung Y Cho
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition (CFSAN), FDA , College Park, Maryland 20740, United States
| | - Raymond Cheng
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland , College Park, Maryland 20740, United States
| | - Whitney L Stutts
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition (CFSAN), FDA , College Park, Maryland 20740, United States
| | - Lauren S Jackson
- Division of Food Processing Science and Technology, Office of Food Safety, CFSAN, FDA , Bedford Park, Illinois 60501, United States
| | - Eric A E Garber
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition (CFSAN), FDA , College Park, Maryland 20740, United States
| |
Collapse
|
48
|
Electrochemical assay for determination of gluten in flour samples. Food Chem 2015; 184:183-7. [DOI: 10.1016/j.foodchem.2015.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/18/2022]
|
49
|
Manfredi A, Mattarozzi M, Giannetto M, Careri M. Multiplex liquid chromatography-tandem mass spectrometry for the detection of wheat, oat, barley and rye prolamins towards the assessment of gluten-free product safety. Anal Chim Acta 2015; 895:62-70. [PMID: 26454460 DOI: 10.1016/j.aca.2015.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
Abstract
Celiac patients should feel confident in the safety of foods labelled or expected to be gluten-free. In this context, a targeted proteomic approach based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) technique was proposed to assess the presence of celiotoxic cereals, namely wheat, oats, barley and rye, in raw and processed food products. To this aim, unique marker peptides were properly selected in order to distinguish between the different cereal types. A revised cocktail solution based on reducing and denaturing agents was exploited for prolamin extraction from raw and processed food; in addition, defatting with hexane was carried out for sample clean-up, allowing to largely reduce problems related to matrix effect. Method validation on fortified rice flour showed good analytical performance in terms of sensitivity (limits of detection in the 2-18 mg kg(-1) range). However, poor trueness was calculated for self-made incurred bread (between 3 and 30% depending on the peptide), probably due to baking processes, which reduce gluten extractability. Thus, it is evident that in the case of processed foods further insights into sample treatment efficiency and reference materials for protein calibration are required to obtain accurate gluten determination. Finally, the developed method was applied for the analysis of market food products, offering the possibility to discriminate among cereals, with good agreement with labelled ingredients for gluten-containing foodstuffs.
Collapse
Affiliation(s)
- Anita Manfredi
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Monica Mattarozzi
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - Marco Giannetto
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy; Centro Interdipartimentale SITEIA.PR, Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Maria Careri
- Dipartimento di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy; Centro Interdipartimentale SITEIA.PR, Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
50
|
Colgrave ML, Goswami H, Byrne K, Blundell M, Howitt CA, Tanner GJ. Proteomic Profiling of 16 Cereal Grains and the Application of Targeted Proteomics To Detect Wheat Contamination. J Proteome Res 2015; 14:2659-68. [DOI: 10.1021/acs.jproteome.5b00187] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michelle L. Colgrave
- CSIRO Agriculture Flagship, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Hareshwar Goswami
- CSIRO Agriculture Flagship, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture Flagship, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Malcolm Blundell
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Crispin A. Howitt
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Gregory J. Tanner
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|