1
|
Production of a Fungal Punicalagin-Degrading Enzyme by Solid-State Fermentation: Studies of Purification and Characterization. Foods 2023; 12:foods12040903. [PMID: 36832976 PMCID: PMC9956360 DOI: 10.3390/foods12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The present work describes the purification of an enzyme capable of degrading punicalagin. The enzyme was produced by Aspergillus niger GH1 by solid-state fermentation, and the enzyme production was induced by using ellagitannins as the sole carbon source. The purification steps included the concentration by lyophilization, desalting, anionic exchange, and gel filtration chromatography. The enzyme kinetic constants were calculated by using punicalagin, methyl gallate, and sugar beet arabinans. The molecular mass of the protein was estimated by SDS-PAGE. The identified bands were excised and digested using trypsin, and the peptides were submitted to HPLC-MS/MS analysis. The docking analysis was conducted, and a 3D model was created. The purification fold increases 75 times compared with the cell-free extract. The obtained Km values were 0.053 mM, 0.53% and 6.66 mM for punicalagin, sugar beet arabinans and methyl gallate, respectively. The optimal pH and temperature for the reaction were 5 and 40 °C, respectively. The SDS-PAGE and native PAGE analysis revealed the presence of two bands identified as α-l-arabinofuranosidase. Both enzymes were capable of degrading punicalagin and releasing ellagic acid.
Collapse
|
2
|
The In Silico Characterization of Monocotyledonous α-l-Arabinofuranosidases on the Example of Maize. Life (Basel) 2023; 13:life13020266. [PMID: 36836625 PMCID: PMC9964162 DOI: 10.3390/life13020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/26/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Plant α-l-arabinofuranosidases remove terminal arabinose from arabinose-containing substrates such as plant cell wall polysaccharides, including arabinoxylans, arabinogalactans, and arabinans. In plants, de-arabinosylation of cell wall polysaccharides accompanies different physiological processes such as fruit ripening and elongation growth. In this report, we address the diversity of plant α-l-arabinofuranosidases of the glycoside hydrolase (GH) family 51 through their phylogenetic analysis as well as their structural features. The CBM4-like domain at N-terminus was found to exist only in GH51 family proteins and was detected in almost 90% of plant sequences. This domain is similar to bacterial CBM4, but due to substitutions of key amino acid residues, it does not appear to be able to bind carbohydrates. Despite isoenzymes of GH51 being abundant, in particular in cereals, almost half of the GH51 proteins in Poales have a mutation of the acid/base residue in the catalytic site, making them potentially inactive. Open-source data on the transcription and translation of GH51 isoforms in maize were analyzed to discuss possible functions of individual isoenzymes. The results of homology modeling and molecular docking showed that the substrate binding site can accurately accommodate terminal arabinofuranose and that arabinoxylan is a more favorable ligand for all maize GH51 enzymes than arabinan.
Collapse
|
3
|
Saleh MA, Mahmud S, Albogami S, El-Shehawi AM, Paul GK, Islam S, Dutta AK, Uddin MS, Zaman S. Biochemical and Molecular Dynamics Study of a Novel GH 43 α-l-Arabinofuranosidase/β-Xylosidase From Caldicellulosiruptor saccharolyticus DSM8903. Front Bioeng Biotechnol 2022; 10:810542. [PMID: 35223784 PMCID: PMC8881100 DOI: 10.3389/fbioe.2022.810542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The complete hydrolysis of xylan can be facilitated by the coordinated action of xylanase and other de-branching enzymes. Here, a GH43 α-l-arabinofuranosidase/β-xylosidase (CAX43) from Caldicellulosiruptor saccharolyticus was cloned, sequenced, and biochemically investigated. The interaction of the enzyme with various substrates was also studied. With a half-life of 120 h at 70°C, the produced protein performed maximum activity at pH 6.0 and 70°C. The enzyme demonstrated a higher activity (271.062 ± 4.83 U/mg) against para nitrophenol (pNP) α-L-arabinofuranosides. With xylanase (XynA), the enzyme had a higher degree of synergy (2.30) in a molar ratio of 10:10 (nM). The interaction of the enzyme with three substrates, pNP α-L-arabinofuranosides, pNP β-D-xylopyranosides, and sugar beet arabinan, was investigated using protein modeling, molecular docking, and molecular dynamics (MD) simulation. During the simulation time, the root mean square deviation (RMSD) of the enzyme was below 2.5 Å, demonstrating structural stability. Six, five, and seven binding-interacting residues were confirmed against pNP α-L-arabinofuranosides, pNP β-D-xylopyranosides, and arabinan, respectively, in molecular docking experiments. This biochemical and in silico study gives a new window for understanding the GH43 family’s structural stability and substrate recognition, potentially leading to biological insights and rational enzyme engineering for a new generation of enzymes that perform better and have greater biorefinery utilization.
Collapse
Affiliation(s)
- Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
- *Correspondence: Md. Abu Saleh,
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Amit Kumar Dutta
- Department of Microbiology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
4
|
Characterisation of novel biomass degradation enzymes from the genome of Cellulomonas fimi. Enzyme Microb Technol 2018; 113:9-17. [PMID: 29602392 PMCID: PMC5892457 DOI: 10.1016/j.enzmictec.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/11/2017] [Accepted: 02/12/2018] [Indexed: 01/06/2023]
Abstract
Identified over 90 putative polysaccharide degrading ORFs in C. fimi genome. Cloned 14 putative cellulolytic ORFs as BioBricks, screened them for activity. Partially purified AfsB, BxyF, BxyH and XynF and characterised them further. BxyH proved highly temperature and alkaline pH tolerant. BioBricks are an easy method for screening genes for specific activities.
Recent analyses of genome sequences belonging to cellulolytic bacteria have revealed many genes potentially coding for cellulosic biomass degradation enzymes. Annotation of these genes however, is based on few biochemically characterised examples. Here we present a simple strategy based on BioBricks for the rapid screening of candidate genes expressed in Escherichia coli. As proof of principle we identified over 70 putative biomass degrading genes from bacterium Cellulomonas fimi, expressing a subset of these in BioBrick format. Six novel genes showed activity in E. coli. Four interesting enzymes were characterised further. α-l-arabinofuranosidase AfsB, β-xylosidases BxyF and BxyH and multi-functional β-cellobiosidase/xylosidase XynF were partially purified to determine their optimum pH, temperature and kinetic parameters. One of these enzymes, BxyH, was unexpectedly found to be highly active at strong alkaline pH and at temperatures as high as 100 °C. This report demonstrates a simple method of quickly screening and characterising putative genes as BioBricks.
Collapse
|
5
|
Autotransporter-Based Surface Display of Hemicellulases onPseudomonas putida: Whole-Cell Biocatalysts for the Degradation of Biomass. ChemCatChem 2017. [DOI: 10.1002/cctc.201700577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Functional analysis of arabinofuranosidases and a xylanase of Corynebacterium alkanolyticum for arabinoxylan utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2017; 101:5019-5032. [DOI: 10.1007/s00253-017-8280-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 11/27/2022]
|
7
|
Yang Y, Sun J, Wu J, Zhang L, Du L, Matsukawa S, Xie J, Wei D. Characterization of a Novel α-l-Arabinofuranosidase from Ruminococcus albus 7 and Rational Design for Its Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7546-7554. [PMID: 27633043 DOI: 10.1021/acs.jafc.6b02482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An α-l-arabinofuranosidase (Abf) encoding gene was obtained via genomic mining from a Ruminococcus albus strain. The specific activity of this GH 51 Abf was 73.3 U/mg at pH 6.0 and 50 °C. The modification of Abf, aimed at improving thermostability, was performed through different strategies. Structure-based rational design using the PoPMuSiC and the Enzyme Thermal Stability System (ETSS) predicted thermal stability of Abf and enhanced the half-life of thermal inactivation (t1/2) at 50 °C for K208W more than 11.1 times versus the wild-type (WT). Sequence-based rational design was also conducted by substituting histidine with lysine at various sites. Among eight mutants, the t1/2 at 50 °C of H337K was prolonged by 5.0-fold, and the specific activity of this mutant was increased to 121.8 U/mg. In addition, the mutant H337K was utilized with some enzymes to extract pectin from apple pomace. The enzymatically produced pectin got less moisture and ash, milder pH, and higher viscosity than its acid-extracted counterpart, indicating that Abf has an application prospect in pectin production.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Jiaqi Sun
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Junjie Wu
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Lujia Zhang
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Lei Du
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology , Tokyo 108-8477, Japan
| | - Shingo Matsukawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology , Tokyo 108-8477, Japan
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) , Shanghai 200237, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) , Shanghai 200237, People's Republic of China
| |
Collapse
|
8
|
Álvarez-Cervantes J, Díaz-Godínez G, Mercado-Flores Y, Gupta VK, Anducho-Reyes MA. Phylogenetic analysis of β-xylanase SRXL1 of Sporisorium reilianum and its relationship with families (GH10 and GH11) of Ascomycetes and Basidiomycetes. Sci Rep 2016; 6:24010. [PMID: 27040368 PMCID: PMC4819176 DOI: 10.1038/srep24010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
In this paper, the amino acid sequence of the β-xylanase SRXL1 of Sporisorium reilianum, which is a pathogenic fungus of maize was used as a model protein to find its phylogenetic relationship with other xylanases of Ascomycetes and Basidiomycetes and the information obtained allowed to establish a hypothesis of monophyly and of biological role. 84 amino acid sequences of β-xylanase obtained from the GenBank database was used. Groupings analysis of higher-level in the Pfam database allowed to determine that the proteins under study were classified into the GH10 and GH11 families, based on the regions of highly conserved amino acids, 233-318 and 180-193 respectively, where glutamate residues are responsible for the catalysis.
Collapse
Affiliation(s)
| | - Gerardo Díaz-Godínez
- Laboratory of Biotechnology, Research Center for Biological Sciences, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Vijai Kumar Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
9
|
Bouraoui H, Desrousseaux ML, Ioannou E, Alvira P, Manaï M, Rémond C, Dumon C, Fernandez-Fuentes N, O’Donohue MJ. The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:140. [PMID: 27398094 PMCID: PMC4939007 DOI: 10.1186/s13068-016-0550-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Conceptually, multi-functional enzymes are attractive because in the case of complex polymer hydrolysis having two or more activities defined by a single enzyme offers the possibility of synergy and reduced enzyme cocktail complexity. Nevertheless, multi-functional enzymes are quite rare and are generally multi-domain assemblies with each activity being defined by a separate protein module. However, a recent report described a GH51 arabinofuranosidase from Alicyclobacillus sp. A4 that displays both α-l-arabinofuranosidase and β-d-xylanase activities, which are defined by a single active site. Following on from this, we describe in detail another multi-functional GH51 arabinofuranosidase and discuss the molecular basis of multifunctionality. RESULTS THSAbf is a GH51 α-l-arabinofuranosidase. Characterization revealed that THSAbf is active up to 75 °C, stable at 60 °C and active over a broad pH range (4-7). THSAbf preferentially releases para-nitrophenyl from the l-arabinofuranoside (k cat/K M = 1050 s(-1) mM(-1)) and to some extent from d-galactofuranoside and d-xyloside. THSAbf is active on 4-O-methylglucuronoxylans from birch and beechwood (10.8 and 14.4 U mg(-1), respectively) and on sugar beet branched and linear arabinans (1.1 ± 0.24 and 1.8 ± 0.1 U mg(-1)). Further investigation revealed that like the Alicyclobacillus sp. A4 α-l-arabinofuranosidase, THSAbf also displays endo-xylanase activity, cleaving β-1,4 bonds in heteroxylans. The optimum pH for THASAbf activity is substrate dependent, but ablation of the catalytic nucleophile caused a general loss of activity, indicating the involvement of a single active center. Combining the α-l-arabinofuranosidase with a GH11 endoxylanase did not procure synergy. The molecular modeling of THSAbf revealed a wide active site cleft and clues to explain multi-functionality. CONCLUSION The discovery of single active site, multifunctional enzymes such as THSAbf opens up exciting avenues for enzyme engineering and the development of new biomass-degrading cocktails that could considerably reduce enzyme production costs.
Collapse
Affiliation(s)
- Hanen Bouraoui
- />UBMB, Université de Tunis El Manar, BP 94, 1068 Rommana, Tunisia
- />Laboratoire des Ressources Sylvo-Pastorales, Institut Sylvo-Pastoral de Tabarka, Institution de la Recherche et de l’Enseignement Supérieur Agricoles, Université de Jendouba, Jendouba, Tunisia
| | | | - Eleni Ioannou
- />CNRS, INRA, INSA, LISBP, Université de Toulouse, Toulouse, France
- />Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA Ceredigion UK
| | - Pablo Alvira
- />CNRS, INRA, INSA, LISBP, Université de Toulouse, Toulouse, France
| | - Mohamed Manaï
- />UBMB, Université de Tunis El Manar, BP 94, 1068 Rommana, Tunisia
| | - Caroline Rémond
- />INRA, FARE, Université de Reims Champagne Ardenne, 2, Esplanade Roland Garros, 51100 Reims, France
| | - Claire Dumon
- />CNRS, INRA, INSA, LISBP, Université de Toulouse, Toulouse, France
| | - Narcis Fernandez-Fuentes
- />Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA Ceredigion UK
| | | |
Collapse
|