1
|
Machado F, Gómez-Domínguez I, Hurtado-Ribeira R, Martin D, Coimbra MA, Del Castillo MD, Coreta-Gomes F. In vitro human colonic fermentation of coffee arabinogalactan and melanoidin-rich fractions. Int J Biol Macromol 2024; 275:133740. [PMID: 38986986 DOI: 10.1016/j.ijbiomac.2024.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Coffee beverage is a source of dietary fiber composed by arabinogalactans, which can also be associated to proteins and phenolic compounds, originating melanoidins. Human colonic in vitro fermentations of coffee fractions, one rich in melanoidins (Mel) and the other in its parental polysaccharide arabinogalactans (AG), were performed in order to evaluate the metabolites produced by microbiota, namely short-chain fatty acids (SCFA), phenolic compounds, and bile acids. After 48 h of fermentation, a higher fermentability of the carbohydrate fraction of AG (62 %) than that of Mel (27 %) was observed, resulting in a SCFA content of 63 mM and 22 mM, respectively. Supplementation with AG and Mel fractions decreased the acetate:propionate ratio from 4.7 (in the absence of coffee fractions) to 2.5 and 3.5, respectively, suggesting a potential inhibition of HMG-CoA reductase, a rate-limiting enzyme for cholesterol synthesis. The fermentation of coffee fractions yielded dihydroferulic and dihydrocaffeic acids, known to have antioxidant properties. In the presence of Mel, it was observed a decrease (from 0.25 to 0.16 mg/mL) in the production of secondary bile acids, whose high content is associated to the development of several diseases, such as colorectal cancer, neurodegenerative and cardiovascular.
Collapse
Affiliation(s)
- Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Irene Gómez-Domínguez
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Raul Hurtado-Ribeira
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Diana Martin
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
2
|
Rodriguez-Amaya DB, Amaya-Farfan J. The Maillard reactions: Pathways, consequences, and control. VITAMINS AND HORMONES 2024; 125:149-182. [PMID: 38997163 DOI: 10.1016/bs.vh.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The century old Maillard reactions continue to draw the interest of researchers in the fields of Food Science and Technology, and Health and Medical Sciences. This chapter seeks to simplify and update this highly complicated, multifaceted topic. The simple nucleophilic attack of an amine onto a carbonyl group gives rise to a series of parallel and subsequent reactions, occurring simultaneously, resulting into a vast array of low and high mass compounds. Recent research has focused on: (1) the formation and transformation of α-dicarbonyl compounds, highly reactive intermediates which are essential in the development of the desired color and flavor of foods, but also lead to the production of the detrimental advanced glycation end products (AGEs); (2) elucidation of the structures of melanoidins in different foods and their beneficial effects on human health; and (3) harmful effects of AGEs on human health. Considering that MRs have both positive and negative consequences, their control to accentuate the former and to mitigate the latter, is also being conscientiously investigated with the use of modern techniques and technology.
Collapse
Affiliation(s)
| | - Jaime Amaya-Farfan
- School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
3
|
Makiso MU, Tola YB, Ogah O, Endale FL. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Sci Nutr 2024; 12:734-764. [PMID: 38370073 PMCID: PMC10867520 DOI: 10.1002/fsn3.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
This article addresses the bioactive components in coffee aroma, their metabolism, and the mechanism of action in lowering the risk of various potential health problems. The main bioactive components involved in the perceived aroma of coffee and its related health benefits are caffeine, chlorogenic acid (CGA), trigonelline, diterpenes, and melanoids. These compounds are involved in various physiological activities. Caffeine has been shown to have anticancer properties, as well as the ability to prevent the onset and progression of hepatocellular carcinoma and to be anti-inflammatory. CGA exhibits antioxidant action and is implicated in gut health, neurodegenerative disease protection, type 2 diabetes, and cardiovascular disease prevention. Furthermore, together with diterpenes, CGA has been linked to anticancer activity. Trigonelline, on the other side, has been found to lower oxidative stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species. It also prevents the formation of kidney stones. Diterpenes and melanoids possess anti-inflammatory and antioxidant properties, respectively. Consuming three to four cups of filtered coffee per day, depending on an individual's physiological condition and health status, has been linked to a lower risk of several degenerative diseases. Despite their health benefits, excessive coffee intake above the recommended daily dosage, calcium and vitamin D deficiency, and unfiltered coffee consumption all increase the risk of potential health concerns. In conclusion, moderate coffee consumption lowers the risk of different noncommunicable diseases.
Collapse
Affiliation(s)
- Markos Urugo Makiso
- Department of Food Science and Postharvest TechnologyCollege of Agricultural SciencesWachemo UniversityHossanaEthiopia
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Yetenayet Bekele Tola
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Onwuchekwa Ogah
- Department of Applied BiologyEbonyi State UniversityIsiekeNigeria
| | - Fitsum Liben Endale
- Department of Public HealthCollege of Medicine and Health SciencesWachemo UniversityHossanaEthiopia
| |
Collapse
|
4
|
Lin H, Li J, Sun M, Wang X, Zhao J, Zhang W, Lv G, Wang Y, Lin Z. Effects of hazelnut soluble dietary fiber on lipid-lowering and gut microbiota in high-fat-diet-fed rats. Int J Biol Macromol 2024; 256:128538. [PMID: 38043651 DOI: 10.1016/j.ijbiomac.2023.128538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Hazelnut is one of the most popular nuts in the world, rich in nutrients and various active substances. In this study, soluble dietary fiber (SDF) was extracted from hazelnut kernels, and its physicochemical properties and absorbability were explored. Hazelnut-SDF exhibited ideal water-holding, oil-holding and swelling capacity, and glucose, cholesterol and cholate absorbing ability. Scanning electron microscopy and fourier transform infrared spectroscopy showed that hazelnut-SDF had typical polysaccharide structure of functional groups. The main monosaccharides were identified as arabinose, rhamnose, xylose, ribose, glucuronic acid, mannose and glucose by gas chromatography-mass spectrometry. In high-fat diet rats, hazelnut-SDF could improve serum lipid parameters, inhibit lipid accumulation in liver and adipocytes, and regulate the expression level of liver lipid synthesis-related genes. It also could adjust intestinal short chain fatty acids, promote the composition and structure of intestinal microbiota, and significantly balance the abundance of Alloprevotella, Fusicatenibacter, Lactobacillus, Roseburia, Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-014 and Clostridiales. The results concluded that oral administration of hazelnut-SDF could alleviate hyperlipidemia and obesity, and might serve as a potential functional food ingredient.
Collapse
Affiliation(s)
- He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.
| | - Jun Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinhe Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenjing Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchen Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
5
|
Amaya-Farfan J, Rodriguez-Amaya DB. The Maillard reactions. CHEMICAL CHANGES DURING PROCESSING AND STORAGE OF FOODS 2021:215-263. [DOI: 10.1016/b978-0-12-817380-0.00006-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Tessier FJ, Boulanger E, Howsam M. Metabolic transit of dietary advanced glycation end-products - the case of N Ɛ-carboxymethyllysine. Glycoconj J 2020; 38:311-317. [PMID: 32990827 DOI: 10.1007/s10719-020-09950-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/27/2022]
Abstract
The Maillard reaction, also called glycation, is one of the major chemical reactions responsible for most yellow-to-brown colors and aromas in cooked foods. This reaction between reducing sugars and amino functions on proteins affects not only the flavor of food, but also leads to the formation of an heterogenous group of structurally-modified amino acids. Some of these, known as "advanced glycation end products" (AGEs), have been found in both foods and human biological fluids, tissues and organs. Except for those that are formed over long periods in vivo at 37 °C, AGEs in the body originate from the digestion and absorption of dietary sources. A high or chronic exposure to dietary AGEs (dAGEs) is suspected as potentially detrimental to human health and studies in the field of food safety have begun to focus their attention on the metabolic transit of dAGEs. This review presents some important findings in this field, with a focus on NƐ-carboxymethyllysine, and presents the evidence for and against an association between intake of dAGEs and their presence in the body. New and promising avenues of research are described, and some future directions outlined.
Collapse
Affiliation(s)
- Frederic J Tessier
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, U1167 - RID-AGE, F-59000, Lille, France.
| | - Eric Boulanger
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, U1167 - RID-AGE, F-59000, Lille, France
| | - Michael Howsam
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, U1167 - RID-AGE, F-59000, Lille, France
| |
Collapse
|
7
|
Hu GL, Wang X, Zhang L, Qiu MH. The sources and mechanisms of bioactive ingredients in coffee. Food Funct 2019; 10:3113-3126. [PMID: 31166336 DOI: 10.1039/c9fo00288j] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coffee bioactive components include caffeine, chlorogenic acids (CGAs), trigonelline, tryptophan alkaloids, diterpenes and other secondary metabolites. During roasting, coffee metabolites undergo complex Maillard reactions, producing melanoidins and other degradation products, the most controversial among which is acrylamide, an ingredient widely found in baked food and listed as a second class carcinogen. Green and roasted coffee ingredients have good biological activities for the prevention of cardiovascular disease, and antibacterial, anti-diabetic, neuroprotection, and anti-cancer activities. To better understand the relationship between coffee ingredients and human health, and to effectively use the active ingredients, it is essential to understand the sources of coffee active ingredients and their mechanisms of action in the organism. This paper systematizes the available information and provides a critical overview of the sources of coffee active ingredients and the mechanisms of action in vivo or in vitro, and their combined effects on common human diseases.
Collapse
Affiliation(s)
- G L Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | | | | | | |
Collapse
|
8
|
Hatzakis E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 18:189-220. [PMID: 33337022 DOI: 10.1111/1541-4337.12408] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a robust method, which can rapidly analyze mixtures at the molecular level without requiring separation and/or purification steps, making it ideal for applications in food science. Despite its increasing popularity among food scientists, NMR is still an underutilized methodology in this area, mainly due to its high cost, relatively low sensitivity, and the lack of NMR expertise by many food scientists. The aim of this review is to help bridge the knowledge gap that may exist when attempting to apply NMR methodologies to the field of food science. We begin by covering the basic principles required to apply NMR to the study of foods and nutrients. A description of the discipline of chemometrics is provided, as the combination of NMR with multivariate statistical analysis is a powerful approach for addressing modern challenges in food science. Furthermore, a comprehensive overview of recent and key applications in the areas of compositional analysis, food authentication, quality control, and human nutrition is provided. In addition to standard NMR techniques, more sophisticated NMR applications are also presented, although limitations, gaps, and potentials are discussed. We hope this review will help scientists gain some of the knowledge required to apply the powerful methodology of NMR to the rich and diverse field of food science.
Collapse
Affiliation(s)
- Emmanuel Hatzakis
- Dept. of Food Science and Technology, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A.,Foods for Health Discovery Theme, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A
| |
Collapse
|
9
|
The gastro-intestinal tract as the major site of biological action of dietary melanoidins. Amino Acids 2015; 47:1077-89. [DOI: 10.1007/s00726-015-1951-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/24/2015] [Indexed: 12/11/2022]
|
10
|
Helou C, Denis S, Spatz M, Marier D, Rame V, Alric M, Tessier FJ, Gadonna-Widehem P. Insights into bread melanoidins: fate in the upper digestive tract and impact on the gut microbiota using in vitro systems. Food Funct 2015; 6:3737-45. [DOI: 10.1039/c5fo00836k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bread melanoidins are partially degraded in the small intestine and induce a dramatic decrease of enterobacteria during batch fermentation.
Collapse
Affiliation(s)
- Cynthia Helou
- Institut Polytechnique LaSalle Beauvais
- EGEAL unit
- Beauvais
- France
| | - Sylvain Denis
- Centre de Recherche en Nutrition Humaine Auvergne
- EA 4678
- Conception Ingénierie et Développement de l'Aliment et du Médicament
- Clermont Université – Université d'Auvergne Clermont-Ferrand
- France
| | - Madeleine Spatz
- Institut Polytechnique LaSalle Beauvais
- EGEAL unit
- Beauvais
- France
| | - David Marier
- Institut Polytechnique LaSalle Beauvais
- Beauvais
- France
| | | | - Monique Alric
- Centre de Recherche en Nutrition Humaine Auvergne
- EA 4678
- Conception Ingénierie et Développement de l'Aliment et du Médicament
- Clermont Université – Université d'Auvergne Clermont-Ferrand
- France
| | | | | |
Collapse
|
11
|
Ludwig IA, Clifford MN, Lean MEJ, Ashihara H, Crozier A. Coffee: biochemistry and potential impact on health. Food Funct 2014; 5:1695-717. [DOI: 10.1039/c4fo00042k] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article reviews the diversity of compounds found in coffee beans, the effect of roasting and the potential impact of coffee beverage on health.
Collapse
Affiliation(s)
- Iziar A. Ludwig
- Plant Products and Human Nutrition Group
- North Laboratory
- School of Medicine
- College of Medical
- Veterinary and Life Sciences
| | | | - Michael E. J. Lean
- University of Glasgow College of Medical
- Veterinary and Life Sciences
- Glasgow G31 2ER, UK
| | - Hiroshi Ashihara
- Department of Biological Sciences
- Ochanomizu University
- Tokyo 112-8610, Japan
| | - Alan Crozier
- Plant Products and Human Nutrition Group
- North Laboratory
- School of Medicine
- College of Medical
- Veterinary and Life Sciences
| |
Collapse
|
12
|
Nunes FM, Cruz ACS, Coimbra MA. Insight into the mechanism of coffee melanoidin formation using modified "in bean" models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8710-8719. [PMID: 22880950 DOI: 10.1021/jf301527e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To study the mechanism of coffee melanoidin formation, green coffee beans were prepared by (1) removal of the hot water extractable components (WECoffee); (2) direct incorporation of sucrose (SucCoffee); and (3) direct incorporation of type II arabinogalactan-proteins (AGPCoffee). As a control of sucrose and AGP incorporation, lyophilized green coffee beans were also immersed in water (control). The original coffee and the four modified "in bean" coffee models were roasted and their chemical characteristics compared. The formation of material not identified as carbohydrates or protein, usually referred to as "unknown material" and related to melanoidins, and the development of the brown color during coffee roasting have distinct origins. Therefore, a new parameter for coffee melanoidin evaluation, named the "melanoidin browning index" (MBI), was introduced to handle simultaneously the two concepts. Sucrose is important for the formation of colored structures but not to the formation of "unknown material". Type II AGPs also increase the brown color of the melanoidins, but did not increase the amount of "unknown material". The green coffee hot water extractable components are essential for coffee melanoidin formation during roasting. The cell wall material was able to generate a large amount of "unknown material". The galactomannans modified by the roasting and the melanoidin populations enriched in galactomannans accounted for 47% of the high molecular weight brown color material, showing that these polysaccharides are very relevant for coffee melanoidin formation.
Collapse
Affiliation(s)
- Fernando M Nunes
- CQ-VR, Chemistry Research Centre, Chemistry Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | | | | |
Collapse
|
13
|
Vitaglione P, Fogliano V, Pellegrini N. Coffee, colon function and colorectal cancer. Food Funct 2012; 3:916-22. [PMID: 22627289 DOI: 10.1039/c2fo30037k] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For several years the physiological effects of coffee have been focused on its caffeine content, disregarding the hundreds of bioactive coffee components, such as polyphenols, melanoidins, carbohydrates, diterpenes, etc. These compounds may exert their protection against colorectal cancer (CRC), the third most common cancer worldwide. However, the amount and type of compounds ingested with the beverage may be highly different depending on the variety of coffee used, the roasting degree, the type of brewing method as well as the serving size. In this frame, this paper reviews the mechanisms by which coffee may influence the risk of CRC development focusing on espresso and filtered coffee, as well as on the components that totally or partially reach the colon i.e. polyphenols and dietary fiber, including melanoidins. In particular the effects of coffee on some colon conditions whose deregulation may lead to cancer, namely microbiota composition and lumen reducing environment, were considered. Taken together the discussed studies indicated that, due to their in vivo metabolism and composition, both coffee chlorogenic acids and dietary fiber, including melanoidins, may reduce CRC risk, increasing colon motility and antioxidant status. Further studies should finally assess whether the coffee benefits for colon are driven through a prebiotic effect.
Collapse
Affiliation(s)
- Paola Vitaglione
- Department of Food Science, Federico II University of Naples, Parco Gussone, Portici (Napoli), Italy
| | | | | |
Collapse
|
14
|
Moreira ASP, Nunes FM, Domingues MR, Coimbra MA. Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food Funct 2012; 3:903-15. [PMID: 22584883 DOI: 10.1039/c2fo30048f] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.
Collapse
Affiliation(s)
- Ana S P Moreira
- Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
15
|
van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G. A review on the beneficial aspects of food processing. Mol Nutr Food Res 2011; 54:1215-47. [PMID: 20725924 DOI: 10.1002/mnfr.200900608] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The manuscript reviews beneficial aspects of food processing with main focus on cooking/heat treatment, including other food-processing techniques (e.g. fermentation). Benefits of thermal processing include inactivation of food-borne pathogens, natural toxins or other detrimental constituents, prolongation of shelf-life, improved digestibility and bioavailability of nutrients, improved palatability, taste, texture and flavour and enhanced functional properties, including augmented antioxidants and other defense reactivity or increased antimicrobial effectiveness. Thermal processing can bring some unintentional undesired consequences, such as losses of certain nutrients, formation of toxic compounds (acrylamide, furan or acrolein), or of compounds with negative effects on flavour perception, texture or colour. Heat treatment of foods needs to be optimized in order to promote beneficial effects and to counteract, to the best possible, undesired effects. This may be achieved more effectively/sustainably by consistent fine-tuning of technological processes rather than within ordinary household cooking conditions. The most important identified points for further study are information on processed foods to be considered in epidemiological work, databases should be built to estimate the intake of compounds from processed foods, translation of in-vitro results to in-vivo relevance for human health should be worked on, thermal and non-thermal processes should be optimized by application of kinetic principles.
Collapse
Affiliation(s)
- Martinus van Boekel
- Wageningen University, Product Design & Quality Management Group, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fogliano V, Morales FJ. Estimation of dietary intake of melanoidins from coffee and bread. Food Funct 2011; 2:117-23. [PMID: 21779556 DOI: 10.1039/c0fo00156b] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Melanoidins are defined as polymeric high molecular weight, brown-coloured Maillard reaction end-products, containing nitrogen. They escape digestion and pass through the upper gastrointestinal tract and can interact with the different microbial species present in the colon. Major dietary sources of melanoidins are coffee and bread crust. Both coffee and bread crust melanoidins can be fermented by the human hindgut microflora thus sharing some of the properties attributed to dietary fibre. Despite the emerging positive physiological properties of such dietary constituents their intake has not been estimated yet. To this aim melanoidin content in different type of coffee brews, bread and dry biscuits was determined by sequential ultrafiltration and enzymatic digestion. Despite some drawbacks and limiting steps in the calculation, such as the lack of a reference material, an educated guess on the dietary intake of melanoidins has been put forward. Data indicated that the intake of coffee melanoidins ranged between 0.5 to 2.0 g per day for moderate and heavy consumers, respectively. For bread and dry biscuits an intake in the ranges of 1.8-15.0 and 3.2-8.5 g per day has been calculated. These figures suggest that a realistic estimation of melanoidins dietary intake for general population would be close to 10 g per day considering all the possible alimentary sources.
Collapse
Affiliation(s)
- Vincenzo Fogliano
- Dipartimento di Scienza degli Alimenti University of Napoli "Federico II", via Università 100, 80055 Portici, Italy
| | | |
Collapse
|
17
|
Silván JM, Morales FJ, Saura-Calixto F. Conceptual study on maillardized dietary fiber in coffee. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12244-12249. [PMID: 21067233 DOI: 10.1021/jf102489u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
There is a methodological and conceptual overlap between coffee melanoidins and dietary fiber. Green Uganda coffee beans were roasted in a range from 8.1 to 21.6% of weight loss to evaluate melanoidins and dietary fiber. Samples were characterized by color, moisture, solubility, water activity, carbohydrates, polyphenols, protein, soluble dietary fiber (SDF), and melanoidins content. Hydroxymethylfurfural and chlorogenic acids were also measured as chemical markers of the extent of roasting. Melanoidins rapidly increased from 5.6 (light roasting) to 29.1 mg/100 mg soluble dry matter (dark roasting). A melanoidins-like structure was already present in green coffee that might overestimate up to 21.0% of the melanoidins content as determined by colorimetric methods. However, its contribution is variable and very likely depends on the method of drying applied to green coffee. SDF content (mg/100 mg soluble dry matter) gradually increased from 39.4 in green coffee to 64.9 at severe roasting conditions due to incorporation of neoformed colored structures and polyphenols. Then, SDF progressively turns to a maillardized structure, which increased from 11.0 to 45.0% according to the roasting conditions. It is concluded that the content of coffee melanoidins includes a substantial part of dietary fiber and also that coffee dietary fiber includes melanoidins. A conceptual discussion on a new definition of coffee melanoidins as a type of maillardized dietary fiber is conducted.
Collapse
Affiliation(s)
- José Manuel Silván
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición-ICTAN, José Antonio Novais 10, 28040 Madrid, Spain
| | | | | |
Collapse
|
18
|
Stauder M, Papetti A, Mascherpa D, Schito AM, Gazzani G, Pruzzo C, Daglia M. Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11662-11666. [PMID: 21038921 DOI: 10.1021/jf1031839] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In previous studies we demonstrated that green and roasted coffee contains low molecular weight (LMW) compounds capable of inhibiting the ability of Streptococcus mutans, the major causative agent of human dental caries, to adhere to hydroxyapatite (HA) beads. This study addressed the ability of the whole high molecular weight coffee fraction (cHMW) and of its melanoidin and non-melanoidin components (GFC1-5), applied at concentrations that occur in coffee beverages, to (i) inhibit S. mutans growth; (ii) affect S. mutans sucrose-dependent adhesion to and detachment from saliva-coated HA beads (sHA); and (iii) inhibit biofilm development on microtiter plates. The results indicated that only cHMW is endowed with antimicrobial activity. The cHMW fraction and each of the five GFC components inhibited S. mutans adhesion, the strongest effect being exerted by cHMW (91%) and GFC1 (88%). S. mutans detachment from sHA was four times greater (∼20%) with cHMW and the GFC1 and GFC4 melanoidins than with controls. Finally, biofilm production by S. mutans was completely abolished by cHMW and was reduced by 20% by the melanoidin components GFC2 and GFC4 and by the non-melanoidin component GFC5 compared with controls. Altogether these findings show that coffee beverage contains both LMW compounds and HMW melanoidin and non-melanoidin components with a strong ability to interfere in vitro with the S. mutans traits relevant for cariogenesis.
Collapse
Affiliation(s)
- Monica Stauder
- Department of Biomedical Sciences, Section of Microbiology, Polytechnic University of Marche, Via Tronto 10/A, 60020 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Physiological relevance of dietary melanoidins. Amino Acids 2010; 42:1097-109. [DOI: 10.1007/s00726-010-0774-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/30/2010] [Indexed: 11/25/2022]
|
20
|
Jaquet M, Rochat I, Moulin J, Cavin C, Bibiloni R. Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol 2009; 130:117-21. [PMID: 19217682 DOI: 10.1016/j.ijfoodmicro.2009.01.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 12/14/2022]
Abstract
The impact of a moderate consumption of an instant coffee on the general composition of the human intestinal bacterial population was assessed in this study. Sixteen (16) healthy adult volunteers consumed a daily dose of 3 cups of coffee during 3 weeks. Faecal samples were collected before and after the consumption of coffee, and the impact of the ingestion of the product on the intestinal bacteria as well as the quantification of specific bacterial groups was assessed using nucleic acid-based methods. Although faecal profiles of the dominant microbiota were not significantly affected after the consumption of the coffee (Dice's similarity index=92%, n=16), the population of Bifidobacterium spp. increased after the 3-week test period (P=0.02). Moreover, in some subjects, there was a specific increase in the metabolic activity of Bifidobacterium spp. Our results show that the consumption of the coffee preparation resulting from water co-extraction of green and roasted coffee beans produce an increase in the metabolic activity and/or numbers of the Bifidobacterium spp. population, a bacterial group of reputed beneficial effects, without major impact on the dominant microbiota.
Collapse
Affiliation(s)
- Muriel Jaquet
- Nestlé Research Center, Nutrition and Health Department, Lausanne, Vers-chez-les-Blanc, Switzerland
| | | | | | | | | |
Collapse
|