1
|
Bedini A, Boutin JA, Legros C, Zlotos DP, Spadoni G. Industrial and academic approaches to the search for alternative melatonin receptor ligands: An historical survey. J Pineal Res 2024; 76:e12953. [PMID: 38682544 DOI: 10.1111/jpi.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
The search for melatonin receptor agonists formed the main part of melatonin medicinal chemistry programs for the last three decades. In this short review, we summarize the two main aspects of these programs: the development of all the necessary tools to characterize the newly synthesized ligands at the two melatonin receptors MT1 and MT2, and the medicinal chemist's approaches to find chemically diverse ligands at these receptors. Both strategies are described. It turns out that the main source of tools were industrial laboratories, while the medicinal chemistry was mainly carried out in academia. Such complete accounts are interesting, as they delineate the spirits in which the teams were working demonstrating their strength and innovative character. Most of the programs were focused on nonselective agonists and few of them reached the market. In contrast, discovery of MT1-selective agonists and melatonergic antagonists with proven in vivo activity and MT1 or MT2-selectivity is still in its infancy, despite the considerable interest that subtype selective compounds may bring in the domain, as the physiological respective roles of the two subtypes of melatonin receptors, is still poorly understood. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
MESH Headings
- Ligands
- Humans
- Animals
- Receptor, Melatonin, MT2/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Receptors, Melatonin/agonists
- Melatonin/metabolism
- History, 20th Century
Collapse
Affiliation(s)
- Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, Rouen, France
| | | | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Egypt
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
2
|
Feng Y, Jiang X, Liu W, Lu H. The location, physiology, pathology of hippocampus Melatonin MT 2 receptor and MT 2-selective modulators. Eur J Med Chem 2023; 262:115888. [PMID: 37866336 DOI: 10.1016/j.ejmech.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Melatonin, a neurohormone secreted by the pineal gland and regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus, is synthesized and directly released into the cerebrospinal fluid (CSF) of the third ventricle (3rdv), where it undergoes rapid absorption by surrounding tissues to exert its physiological function. The hippocampus, a vital structure in the limbic system adjacent to the ventricles, plays a pivotal role in emotional response and memory formation. Melatonin MT1 and MT2 receptors are G protein-coupled receptors (GPCRs) that primarily mediate melatonin's receptor-dependent effects. In comparison to the MT1 receptor, the widely expressed MT2 receptor is crucial for mediating melatonin's biological functions within the hippocampus. Specifically, MT2 receptor is implicated in hippocampal synaptic plasticity and memory processes, as well as neurogenesis and axogenesis. Numerous studies have demonstrated the involvement of MT2 receptors in the pathophysiology and pharmacology of Alzheimer's disease, depression, and epilepsy. This review focuses on the anatomical localization of MT2 receptor in the hippocampus, their physiological function in this region, and their signal transduction and pharmacological roles in neurological disorders. Additionally, we conducted a comprehensive review of MT2 receptor ligands used in psychopharmacology and other MT2-selective ligands over recent years. Ultimately, we provide an outlook on future research for selective MT2 receptor drug candidates.
Collapse
Affiliation(s)
- Yueqin Feng
- Department of Ultrasound, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Hongyuan Lu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
3
|
Elisi GM, Scalvini L, Lodola A, Bedini A, Spadoni G, Rivara S. In silico drug discovery of melatonin receptor ligands with therapeutic potential. Expert Opin Drug Discov 2022; 17:343-354. [PMID: 35255751 DOI: 10.1080/17460441.2022.2043846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The neurohormone melatonin (N-acetyl-5-methoxytryptamine) regulates circadian rhythms exerting a variety of effects in the central nervous system and in periphery. These activities are mainly mediated by activation of MT1 and MT2 GPCRs. MT1/MT2 agonist compounds are used clinically for insomnia, depression, and circadian rhythm disturbances. AREA COVERED The following review describes the design strategies that have led to the identification of melatonin receptor ligands, guided by in silico approaches and molecular modeling. Initial ligand-based design, mainly relying on pharmacophore modeling and 3D-QSAR, has been flanked by structure-based virtual screening, given the recent availability of MT1 and MT2 crystal structures. Receptor ligands with different activity profiles, agonist/antagonist and subtype-selective compounds, are available. EXPERT OPINION An insight on the pharmacological characterization and therapeutic perspectives for relevant ligands is provided. In silico drug discovery has been instrumental in the design of novel ligands targeting melatonin receptors. Ligand-based approaches has led to the construction of a solid framework defining structure-activity relationships to obtain compounds with a tailored pharmacological profile. Structure-based techniques could integrate previous knowledge and provide compounds with novel chemotypes and pharmacological activity as drug candidates for disease conditions in which melatonin receptor ligands are currently being investigated, including cancer and pain.
Collapse
Affiliation(s)
- Gian Marco Elisi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
4
|
Oishi A, Gbahou F, Jockers R. Melatonin receptors, brain functions, and therapies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:345-356. [PMID: 34225974 DOI: 10.1016/b978-0-12-819975-6.00022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In mammals, including humans, the neurohormone melatonin is mainly secreted from the pineal gland at night and acts on two high-affinity G protein-coupled receptors, the melatonin MT1 and MT2 receptors. Major functions of melatonin receptors in the brain are the regulation of circadian rhythms and sleep. Correspondingly, the main indications of the currently available drugs for these receptors indicate this as targets. Yet these drugs may not only improve circadian rhythm- and sleep-related disorders but may also be beneficial for complex diseases like major depression, Alzheimer's disease, autism, and attention-deficit/hyperactivity disorders. Here, we will focus on the hypothalamic functions of melatonin receptors by updating our knowledge on their hypothalamic expression pattern at normal, aged, and disease states, by discussing their capacity to regulate circadian rhythms and sleep and by presenting the clinical applications of the melatonin receptor-targeting drugs ramelteon, tasimelteon, and agomelatine or of prolonged-release melatonin formulations. Finally, we speculate about future trends in the field of melatonin receptor drugs.
Collapse
Affiliation(s)
- Atsuro Oishi
- Institut Cochin, Université de Paris, Paris, France
| | | | - Ralf Jockers
- Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
5
|
Zheng S, Zhu Y, Liu C, Zhang S, Yu M, Xiang Z, Fan W, Wang S, Zhao A. Molecular Mechanisms Underlying the Biosynthesis of Melatonin and Its Isomer in Mulberry. FRONTIERS IN PLANT SCIENCE 2021; 12:708752. [PMID: 34691094 PMCID: PMC8526549 DOI: 10.3389/fpls.2021.708752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/10/2021] [Indexed: 05/19/2023]
Abstract
Mulberry (Morus alba L.) leaves and fruit are traditional Chinese medicinal materials with anti-inflammatory, immune regulatory, antiviral and anti-diabetic properties. Melatonin performs important roles in the regulation of circadian rhythms and immune activities. We detected, identified and quantitatively analyzed the melatonin contents in leaves and mature fruit from different mulberry varieties. Melatonin and three novel isoforms were found in the Morus plants. Therefore, we conducted an expression analysis of melatonin and its isomer biosynthetic genes and in vitro enzymatic synthesis of melatonin and its isomer to clarify their biosynthetic pathway in mulberry leaves. MaASMT4 and MaASMT20, belonging to class II of the ASMT gene family, were expressed selectively in mulberry leaves, and two recombinant proteins that they expressed catalyzed the conversion of N-acetylserotonin to melatonin and one of three isomers in vitro. Unlike the ASMTs of Arabidopsis and rice, members of the three ASMT gene families in mulberry can catalyze the conversion of N-acetylserotonin to melatonin. This study provides new insights into the molecular mechanisms underlying melatonin and its isomers biosynthesis and expands our knowledge of melatonin isomer biosynthesis.
Collapse
Affiliation(s)
- Sha Zheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yingxue Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Shuai Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Maode Yu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- *Correspondence: Aichun Zhao, ;
| |
Collapse
|
6
|
Boutin JA, Witt-Enderby PA, Sotriffer C, Zlotos DP. Melatonin receptor ligands: A pharmaco-chemical perspective. J Pineal Res 2020; 69:e12672. [PMID: 32531076 DOI: 10.1111/jpi.12672] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Melatonin MT1 and MT2 receptor ligands have been vigorously explored for the last 4 decades. Inspection of approximately 80 publications in the field revealed that most melatonergic ligands were structural analogues of melatonin combining three essential features of the parent compound: an aromatic ring bearing a methoxy group and an amide side chain in a relative arrangement similar to that present in melatonin. While several series of MT2 -selective agents-agonists, antagonists, or partial agonists-were reported, the field was lacking MT1 -selective agents. Herein, we describe various approaches toward the development of melatonergic ligands, keeping in mind that most of the molecules/pharmacophores obtained were essentially melatonin copies, even though diverse tri- or tetra-cyclic compounds were explored. In addition to lack of structural diversity, only few studies examined the activity of the reported melatonergic ligands in vivo. Moreover, an extensive pharmacological characterization including biopharmaceutical stability, pharmacokinetic properties, specificity toward other major receptors to name a few remained scarce. For example, many of the antagonists described were not stable in vivo, were not selective for the melatonin receptor subtype of interest, and were not fully characterized from a pharmacological standpoint. Indeed, virtual screening of large compound libraries has led to the recent discovery of potent and selective melatonin receptor agonists and partial agonists of new chemotypes. Having said this, the melatonergic field is still lacking subtype-selective melatonin receptor antagonists "active" in vivo, which are critical to our understanding of melatonin and melatonin receptors' role in basic physiology and disease.
Collapse
MESH Headings
- Animals
- Humans
- Ligands
- Melatonin/chemistry
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Receptor, Melatonin, MT2/chemistry
Collapse
Affiliation(s)
- Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Paula A Witt-Enderby
- School of Pharmacy & Graduate School of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburg, PA, USA
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Egypt
| |
Collapse
|
7
|
Melatonin pharmacophoric motifs in the anancomeric spiranic oxindole-cycloalkane scaffold: Theoretical and 1H NMR conformational analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Boutin JA, Legros C. The five dimensions of receptor pharmacology exemplified by melatonin receptors: An opinion. Pharmacol Res Perspect 2020; 8:e00556. [PMID: 31893125 PMCID: PMC6935684 DOI: 10.1002/prp2.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Receptology has been complicated with enhancements in our knowledge of G-protein-coupled-receptor (GPCR) biochemistry. This complexity is exemplified by the pharmacology of melatonin receptors. Here, we describe the complexity of GPCR biochemistry in five dimensions: (a) receptor expression, particularly in organs/tissues that are only partially understood; (b) ligands and receptor-associated proteins (interactome); (c) receptor function, which might be more complex than the known G-protein-coupled systems; (d) ligand bias, which favors a particular pathway; and (e) receptor dimerization, which might concern all receptors coexpressed in the same cell. Thus, receptor signaling might be modified or modulated, depending on the nature of the receptor complex. Fundamental studies are needed to clarify these points and find new ways to tackle receptor functionality. This opinion article emphasizes the global questions attached to new descriptions of GPCRs and aims to raise our awareness of the tremendous complexity of modern receptology.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales ServierSuresnesFrance
| | - Céline Legros
- Institut de Recherches ServierCroissy‐sur‐SeineFrance
| |
Collapse
|
9
|
Dhanasekaran S, Kannaujiya VK, Biswas RG, Singh VK. Enantioselective A3-Coupling Reaction Employing Chiral CuI-iPrpyboxdiPh/N-Boc-(l)-Proline Complex under Cooperative Catalysis: Application in the Synthesis of (Indol-2-yl)methanamines. J Org Chem 2019; 84:3275-3292. [DOI: 10.1021/acs.joc.8b03225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sivasankaran Dhanasekaran
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Vinod. K. Kannaujiya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Rayhan G. Biswas
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Vinod K. Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
10
|
Chauhan J, Luthra T, Sen S. Iodine-Catalyzed Metal-Free Oxidative Ring Opening of 1-Aryltetrahydro-β-carbolines: Facile Synthesis of C-2 Aroyl and Aryl Methanimino Indole Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University; 201314 Chithera, Dadri Gautam Budh Nagar, Uttar Pradesh India
| | - Tania Luthra
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University; 201314 Chithera, Dadri Gautam Budh Nagar, Uttar Pradesh India
| | - Subhabrata Sen
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University; 201314 Chithera, Dadri Gautam Budh Nagar, Uttar Pradesh India
| |
Collapse
|
11
|
Moriyama K, Hamada T, Ishida K, Togo H. 1,3-Iodo-amination of 2-methyl indoles via Csp2–Csp3 dual functionalization with iodine reagent. Chem Commun (Camb) 2018; 54:4258-4261. [DOI: 10.1039/c8cc00352a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Remote iodo-amination of indole derivatives via Csp2–Csp3 dual functionalization under transition-metal-free conditions.
Collapse
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| | - Tsukasa Hamada
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| | - Kazuma Ishida
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| | - Hideo Togo
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
12
|
Debnath S, Malakar S, Mondal S. Synthesis of Indole-2-methylsulfonamides by Domino Sonogashira Coupling and Hydroamination Reaction. ChemistrySelect 2017. [DOI: 10.1002/slct.201700544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sudarshan Debnath
- Department of Chemistry; Syamsundar College; Shyamsundar 713424 India
- Department of Chemistry; Visva-Bharati University; Santiniketan 731235 India
| | - Suniti Malakar
- Department of Chemistry; Syamsundar College; Shyamsundar 713424 India
- Department of Chemistry; Visva-Bharati University; Santiniketan 731235 India
| | - Shovan Mondal
- Department of Chemistry; Syamsundar College; Shyamsundar 713424 India
- Department of Chemistry; Visva-Bharati University; Santiniketan 731235 India
| |
Collapse
|
13
|
Mendoza-Figueroa H, Martínez-Gudiño G, Villanueva-Luna JE, Trujillo-Serrato JJ, Morales-Ríos MS. Pharmacophore modeling and conformational analysis in the gas phase and in aqueous solution of regioisomeric melatonin analogs. A theoretical and experimental study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Spadoni G, Bedini A, Lucarini S, Mari M, Caignard DH, Boutin JA, Delagrange P, Lucini V, Scaglione F, Lodola A, Zanardi F, Pala D, Mor M, Rivara S. Highly Potent and Selective MT2 Melatonin Receptor Full Agonists from Conformational Analysis of 1-Benzyl-2-acylaminomethyl-tetrahydroquinolines. J Med Chem 2015; 58:7512-25. [DOI: 10.1021/acs.jmedchem.5b01066] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Gilberto Spadoni
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Annalida Bedini
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Simone Lucarini
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Michele Mari
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Daniel-Henri Caignard
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy sur Seine, France
| | - Jean A. Boutin
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy sur Seine, France
| | - Philippe Delagrange
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy sur Seine, France
| | - Valeria Lucini
- Dipartimento
di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Francesco Scaglione
- Dipartimento
di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Alessio Lodola
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parco Area
delle Scienze 27/A, I-43124 Parma, Italy
| | - Franca Zanardi
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parco Area
delle Scienze 27/A, I-43124 Parma, Italy
| | - Daniele Pala
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parco Area
delle Scienze 27/A, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parco Area
delle Scienze 27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parco Area
delle Scienze 27/A, I-43124 Parma, Italy
| |
Collapse
|
15
|
Zhang X, Wang Z, Huang Q, Luo Y, Xie X, Lu W. Design, synthesis, and biological evaluation of a new class of MT2-selective agonists. RSC Adv 2014. [DOI: 10.1039/c4ra03728f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we have designed and synthesized a novel class of chiral 2,3-dihydro-1H-indene derivatives as highly selective MT2 agonists.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062, P.R. China
| | - Zhilong Wang
- CAS Key Laboratory of Receptor Research
- National Center for Drug Screening
- Shanghai Institute of Materia Medica Chinese Academy of Sciences
- Shanghai 201203, P.R. China
| | - Qingqing Huang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062, P.R. China
| | - Yu Luo
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062, P.R. China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research
- National Center for Drug Screening
- Shanghai Institute of Materia Medica Chinese Academy of Sciences
- Shanghai 201203, P.R. China
| | - Wei Lu
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062, P.R. China
| |
Collapse
|
16
|
Cacchi S, Fabrizi G, Goggiamani A, Molinaro C, Verdiglione R. Palladium-Catalyzed Synthesis of 2-(Aminomethyl)indoles from 3-(o-Trifluoroacetamidoaryl)-1-propargylic Alcohols and Amines. J Org Chem 2013; 79:401-7. [DOI: 10.1021/jo401456x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandro Cacchi
- Dipartimento di Chimica e
Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro
5, 00185 Rome, Italy
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e
Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro
5, 00185 Rome, Italy
| | - Antonella Goggiamani
- Dipartimento di Chimica e
Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro
5, 00185 Rome, Italy
| | - Carmela Molinaro
- Dipartimento di Chimica e
Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro
5, 00185 Rome, Italy
| | - Rosanna Verdiglione
- Dipartimento di Chimica e
Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro
5, 00185 Rome, Italy
| |
Collapse
|
17
|
Pala D, Beuming T, Sherman W, Lodola A, Rivara S, Mor M. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement. J Chem Inf Model 2013; 53:821-35. [PMID: 23541165 DOI: 10.1021/ci4000147] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Developing GPCR homology models for structure-based virtual screening requires the choice of a suitable template and refinement of binding site residues. We explored this systematically for the MT2 melatonin receptor, with the aim to build a receptor homology model that is optimized for the enrichment of active melatoninergic ligands. A set of 12 MT2 melatonin receptor models was built using different GPCR X-ray structural templates and submitted to a virtual screening campaign on a set of compounds composed of 29 known melatonin receptor ligands and 2560 drug-like decoys. To evaluate the effect of including a priori information in receptor models, 12 representative melatonin receptor ligands were placed into the MT2 receptor models in poses consistent with known mutagenesis data and with assessed pharmacophore models. The receptor structures were then adapted to the ligands by induced-fit docking. Most of the 144 ligand-adapted MT2 receptor models showed significant improvements in screening enrichments compared to the unrefined homology models, with some template/refinement combinations giving excellent enrichment factors. The discriminating ability of the models was further tested on the 29 active ligands plus a set of 21 inactive or low-affinity compounds from the same chemical classes. Rotameric states of side chains for some residues, presumed to be involved in the binding process, were correlated with screening effectiveness, suggesting the existence of specific receptor conformations able to recognize active compounds. The top MT2 receptor model was able to identify 24 of 29 active ligands among the first 2% of the screened database. This work provides insights into the use of refined GPCR homology models for virtual screening.
Collapse
Affiliation(s)
- Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Design, synthesis and pharmacological evaluation of new series of naphthalenic analogues as melatoninergic (MT1/MT2) and serotoninergic 5-HT2C dual ligands (I). Eur J Med Chem 2012; 49:310-23. [DOI: 10.1016/j.ejmech.2012.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
|
19
|
Bedini A, Lucarini S, Spadoni G, Tarzia G, Scaglione F, Dugnani S, Pannacci M, Lucini V, Carmi C, Pala D, Rivara S, Mor M. Toward the Definition of Stereochemical Requirements for MT2-Selective Antagonists and Partial Agonists by Studying 4-Phenyl-2-propionamidotetralin Derivatives. J Med Chem 2011; 54:8362-72. [DOI: 10.1021/jm200790v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Simone Lucarini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Francesco Scaglione
- Dipartimento di Farmacologia,
Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano,
Italy
| | - Silvana Dugnani
- Dipartimento di Farmacologia,
Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano,
Italy
| | - Marilou Pannacci
- Dipartimento di Farmacologia,
Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano,
Italy
| | - Valeria Lucini
- Dipartimento di Farmacologia,
Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano,
Italy
| | - Caterina Carmi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A Campus Universitario, I-43124 Parma, Italy
| | - Daniele Pala
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A Campus Universitario, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A Campus Universitario, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A Campus Universitario, I-43124 Parma, Italy
| |
Collapse
|
20
|
Mésangeau C, Fraise M, Delagrange P, Caignard DH, Boutin JA, Berthelot P, Yous S. Preparation and pharmacological evaluation of a novel series of 2-(phenylthio)benzo[b]thiophenes as selective MT2 receptor ligands. Eur J Med Chem 2011; 46:1835-40. [DOI: 10.1016/j.ejmech.2011.02.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/15/2022]
|
21
|
Heckman D, Attia MI, Behnam MAM, Mohsen AMY, Markl C, Julius J, Sethi S, Witt-Enderby PA, Zlotos DP. 2-[(1,3-Dihydro-2H-isoindol-2-yl)methyl]melatonin – a novel MT2-selective melatonin receptor antagonist. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00149c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Carocci A, Catalano A, Lovece A, Lentini G, Duranti A, Lucini V, Pannacci M, Scaglione F, Franchini C. Design, synthesis, and pharmacological effects of structurally simple ligands for MT1 and MT2 melatonin receptors. Bioorg Med Chem 2010; 18:6496-511. [DOI: 10.1016/j.bmc.2010.06.100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/22/2010] [Accepted: 06/29/2010] [Indexed: 12/11/2022]
|
23
|
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010; 62:343-80. [PMID: 20605968 PMCID: PMC2964901 DOI: 10.1124/pr.110.002832] [Citation(s) in RCA: 418] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT(1) and MT(2), that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Mésangeau C, Pérès B, Descamps-François C, Chavatte P, Audinot V, Coumailleau S, Boutin JA, Delagrange P, Bennejean C, Renard P, Caignard DH, Berthelot P, Yous S. Design, synthesis and pharmacological evaluation of novel naphthalenic derivatives as selective MT1 melatoninergic ligands. Bioorg Med Chem 2010; 18:3426-36. [DOI: 10.1016/j.bmc.2010.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 12/15/2022]
|
25
|
Ohta Y, Chiba H, Oishi S, Fujii N, Ohno H. Construction of Nitrogen Heterocycles Bearing an Aminomethyl Group by Copper-Catalyzed Domino Three-Component Coupling−Cyclization. J Org Chem 2009; 74:7052-8. [DOI: 10.1021/jo901328q] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusuke Ohta
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Chiba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
26
|
Radogna F, Paternoster L, De Nicola M, Cerella C, Ammendola S, Bedini A, Tarzia G, Aquilano K, Ciriolo M, Ghibelli L. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicol Appl Pharmacol 2009; 239:37-45. [DOI: 10.1016/j.taap.2009.05.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 04/21/2009] [Accepted: 05/12/2009] [Indexed: 12/15/2022]
|
27
|
Zlotos DP, Attia MI, Julius J, Sethi S, Witt-Enderby PA. 2-[(2,3-Dihydro-1H-indol-1-yl)methyl]melatonin Analogues: A Novel Class of MT2-Selective Melatonin Receptor Antagonists. J Med Chem 2009; 52:826-33. [DOI: 10.1021/jm800974d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Darius P. Zlotos
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| | - Mohamed I. Attia
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| | - Justin Julius
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| | - Shalini Sethi
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| | - Paula A. Witt-Enderby
- Institute of Pharmacy and Food Chemistry, Pharmaceutical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282
| |
Collapse
|
28
|
Synthesis of 3-phenylnaphthalenic derivatives as new selective MT2 melatoninergic ligands. Bioorg Med Chem 2008; 16:8339-48. [DOI: 10.1016/j.bmc.2008.08.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/18/2008] [Accepted: 08/22/2008] [Indexed: 12/15/2022]
|
29
|
Audinot V, Bonnaud A, Grandcolas L, Rodriguez M, Nagel N, Galizzi JP, Balik A, Messager S, Hazlerigg DG, Barrett P, Delagrange P, Boutin JA. Molecular cloning and pharmacological characterization of rat melatonin MT1 and MT2 receptors. Biochem Pharmacol 2008; 75:2007-19. [DOI: 10.1016/j.bcp.2008.02.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 12/15/2022]
|
30
|
Spadoni G, Bedini A, Diamantini G, Tarzia G, Rivara S, Lorenzi S, Lodola A, Mor M, Lucini V, Pannacci M, Caronno A, Fraschini F. Synthesis, Enantiomeric Resolution, and Structure–Activity Relationship Study of a Series of 10,11-Dihydro-5H-Dibenzo[a,d]cycloheptene MT2 Receptor Antagonists. ChemMedChem 2007; 2:1741-9. [PMID: 17907131 DOI: 10.1002/cmdc.200700141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Racemic N-(8-methoxy-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-10-ylmethyl)acetamide (compound 5) was previously identified as a novel selective MT(2) antagonist fulfilling the requirements of pharmacophore and 3D QSAR models. In this study the enantiomers of 5 were separated by medium-pressure liquid chromatography and behaved as the racemate. Compound 5 was modified at the acylaminomethyl side chain and at position C8. The resulting analogues generally behaved as melatonin receptor antagonists (GTPgammaS test) with a modest degree of selectivity (up to 10-fold) for the MT(2) receptor. Changes at the amide side chain led to a decrease in binding affinity, whereas 8-acetyl and 8-methyl derivatives 12 and 11, respectively, were as potent as the 8-methoxy parent compound 5. Docking experiments with an MT(2) receptor model suggested binding modes consistent with the observed SARs and with the lack of selectivity of the enantiomers of 5.
Collapse
Affiliation(s)
- Gilberto Spadoni
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27A, Campus Universitario, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rivara S, Lodola A, Mor M, Bedini A, Spadoni G, Lucini V, Pannacci M, Fraschini F, Scaglione F, Sanchez RO, Gobbi G, Tarzia G. N-(Substituted-anilinoethyl)amides: Design, Synthesis, and Pharmacological Characterization of a New Class of Melatonin Receptor Ligands. J Med Chem 2007; 50:6618-26. [DOI: 10.1021/jm700957j] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Rivara
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Alessio Lodola
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Marco Mor
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Annalida Bedini
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Gilberto Spadoni
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Valeria Lucini
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Marilou Pannacci
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Franco Fraschini
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Francesco Scaglione
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Rafael Ochoa Sanchez
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Gabriella Gobbi
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| | - Giorgio Tarzia
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G. P. Usberti 27/A, Campus Universitario, 43100 Parma, Italy, Istituto di Chimica Farmaceutica e Tossicologica, Universitá degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy, Department of Psychiatry, McGill University, Montréal, QC, Canada H1N 3V2, and Department of
| |
Collapse
|
32
|
Lucarini S, Bedini A, Spadoni G, Piersanti G. An improved synthesis of cis-4-phenyl-2-propionamidotetralin (4-P-PDOT): a selective MT(2) melatonin receptor antagonist. Org Biomol Chem 2007; 6:147-50. [PMID: 18075659 DOI: 10.1039/b713904g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel, efficient and diastereoselective procedure was developed for the gram-scale synthesis of cis-4-phenyl-2-propionamidotetralin (4-P-PDOT), a selective MT(2) melatonin receptor antagonist. The synthetic strategy involved the conversion of 4-phenyl-2-tetralone to enamide followed by diastereoselective reduction affording cis-4-P-PDOT in good yield. The mechanism of the reduction step was explored by employing deuterated reagents.
Collapse
Affiliation(s)
- Simone Lucarini
- Institute of Medicinal Chemistry, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | | | | | | |
Collapse
|
33
|
Faust R, Garratt PJ, Trujillo Pérez MA, Piccio VJD, Madsen C, Stenstrøm A, Frølund B, Davidson K, Teh MT, Sugden D. 7-Substituted-melatonin and 7-substituted-1-methylmelatonin analogues: Effect of substituents on potency and binding affinity. Bioorg Med Chem 2007; 15:4543-51. [PMID: 17459711 DOI: 10.1016/j.bmc.2007.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 04/05/2007] [Indexed: 12/15/2022]
Abstract
A series of 7-substituted melatonin and 1-methylmelatonin analogues were prepared and tested against human and amphibian melatonin receptors. 7-Substituents reduced the agonist potency of all the analogues in the Xenopus laevis melanophore assay, 7-bromomelatonin (5d) and N-butanoyl 7-bromo-5-methoxytryptamine (5f) being the most active compounds, but both were 42-fold less potent than melatonin (1). Whereas all the analogues bind with lower affinity at the human MT(1) receptor than melatonin, 5d, 5f and N-propanoyl 7-bromo-5-methoxytryptamine (5e) show a similar binding affinity to melatonin at the MT(2) receptor and consequently show some MT(2) selectivity. These results suggest that the receptor pocket around C-7 favours binding by an electronegative group, suggesting an electropositive region in this area of the receptor.
Collapse
Affiliation(s)
- Rüdiger Faust
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Csomós P, Fodor L, Mándity I, Bernáth G. An efficient route for the synthesis of 2-arylthiazino[5,6-b]indole derivatives. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.03.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Ohno H, Ohta Y, Oishi S, Fujii N. Direct Synthesis of 2-(Aminomethyl)indoles through Copper(I)-Catalyzed Domino Three-Component Coupling and Cyclization Reactions. Angew Chem Int Ed Engl 2007; 46:2295-8. [PMID: 17300118 DOI: 10.1002/anie.200604342] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
36
|
Ohno H, Ohta Y, Oishi S, Fujii N. Direct Synthesis of 2-(Aminomethyl)indoles through Copper(I)-Catalyzed Domino Three-Component Coupling and Cyclization Reactions. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Bedini A, Spadoni G, Gatti G, Lucarini S, Tarzia G, Rivara S, Lorenzi S, Lodola A, Mor M, Lucini V, Pannacci M, Scaglione F. Design and synthesis of N-(3,3-diphenylpropenyl)alkanamides as a novel class of high-affinity MT2-selective melatonin receptor ligands. J Med Chem 2007; 49:7393-403. [PMID: 17149869 DOI: 10.1021/jm060850a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of melatonin receptor ligands was discovered by opening the cyclic scaffolds of known classes of high affinity melatonin receptor antagonists, while retaining the pharmacophore elements postulated by previously described 3D-QSAR and receptor models. Compounds belonging to the classes of 2,3- and [3,3-diphenylprop(en)yl]alkanamides and of o- or [(m-benzyl)phenyl]ethyl-alkanamides were synthesized and tested on MT(1) and MT(2) receptors. The class of 3,3-diphenyl-propenyl-alkanamides was the most interesting one, with compounds having MT(2) receptor affinity similar to that of MLT, remarkable MT(2) selectivity, and partial agonist or antagonist behavior. In particular, the (E)-m-methoxy cyclobutanecarboxamido derivative 18f and the di-(m-methoxy) acetamido one, 18g, have sub-nM affinity for the MT(2) subtype, with more than 100-fold selectivity over MT(1), 18f being an antagonist and 18g a partial agonist on GTPgammaS test. Docking of 18g into a previously developed MT(2) receptor model showed a binding scheme consistent with that of other antagonists. The MT(2) expected binding affinities of the new compounds were calculated by a previously developed 3D-QSAR CoMFA model, giving satisfactory predictions.
Collapse
Affiliation(s)
- Annalida Bedini
- Istituto di Chimica Farmaceutica e Tossicologica, Università degli Studi di Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res 2006; 41:374-81. [PMID: 17014695 DOI: 10.1111/j.1600-079x.2006.00379.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin had previously been shown to reduce up to four 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) cation radicals (ABTS*+) via a scavenger cascade ending with N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). However, when melatonin is added to the reaction system in much lower quantities than ABTS*+, the number of radicals scavenged per melatonin molecule is considerably higher and can attain a value of ten. Under conditions allowing for such a stoichiometry, novel products have been detected which derive from AFMK (1). These were separated by repeated chromatography and the major compounds were characterized by spectroscopic methods, such as mass spectrometry (HPLC-MS, EI-MS and ESI-HRMS), 1H nuclear magnetic resonance (NMR) and 13C NMR, heteronuclear multiple bond connectivity (HMBC) correlations. The identified substances are formed by re-cyclization and represent 3-indolinones carrying the side chain at C2; the N-formyl group can be maintained, but deformylated analogs seem to be also generated, according to MS. The primary product from AFMK (1) is N-(1-formyl-5-methoxy-3-oxo-2,3-dihydro-1H-indol-2-ylidenemethyl)-acetamide (2), which is obtained after purification as E- and Z-isomers (2a, 2b); a secondary product has been identified as N-(1-formyl-2-hydroxy-5-methoxy-3-oxo-2,3-dihydro-1H-indol-2-ylmethyl)-acetamide (3). When H2O2 is added to the ABTS*+ reaction mixture in quantities not already leading to substantial reduction of this radical, compound 3 is isolated as the major product, whereas 2a and 2b are virtually absent. The substances formed differ from all previously known oxidation products which derive from melatonin and are, among these, the first 3-indolinones. Moreover, the aliphatic side chain at C2 is reminiscent of other substances which have been synthesized in the search for melatonin receptor ligands.
Collapse
Affiliation(s)
- Joachim Rosen
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Tsotinis A, Vlachou M, Papahatjis DP, Calogeropoulou T, Nikas SP, Garratt PJ, Piccio V, Vonhoff S, Davidson K, Teh MT, Sugden D. Mapping the Melatonin Receptor. 7. Subtype Selective Ligands Based on β-SubstitutedN-Acyl-5-methoxytryptamines and β-SubstitutedN-Acyl-5-methoxy-1-methyltryptamines. J Med Chem 2006; 49:3509-19. [PMID: 16759094 DOI: 10.1021/jm0512544] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of beta-substituted and beta,beta-disubstituted N-acyl 5-methoxy-1-methyltryptamines and 5-methoxytryptamines have been prepared as melatonin analogues to investigate the nature of the binding site of the melatonin receptor. The affinity of analogues was determined in a radioligand binding assay using cloned human MT(1) and MT(2) receptor subtypes expressed in NIH 3T3 cells. Agonist and antagonist potency of all analogues was measured using the pigment aggregation response of a clonal line of Xenopus laevis melanophores. beta-Methylmelatonin (17a) and beta,beta-dimethylmelatonin (17b), though showing a slight decrease in binding at human receptors, show an increase in potency on Xenopus. N-Butanoyl 5-methoxy-1-methyl-beta,beta-trimethylenetryptamine (12c) is an antagonist at human MT(1) receptors but an agonist at MT(2), while N-butanoyl 5-methoxy-1-methyl-beta,beta-tetramethylenetryptamine (13c) is an antagonist at MT(1) but had no action at MT(2) and is one of the first examples of an MT(1) selective antagonist.
Collapse
Affiliation(s)
- Andrew Tsotinis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli-Zografou, Athens 157 71, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Spadoni G, Diamantini G, Bedini A, Tarzia G, Vacondio F, Silva C, Rivara M, Mor M, Plazzi PV, Zusso M, Franceschini D, Giusti P. Synthesis, antioxidant activity and structure-activity relationships for a new series of 2-(N-acylaminoethyl)indoles with melatonin-like cytoprotective activity. J Pineal Res 2006; 40:259-69. [PMID: 16499563 DOI: 10.1111/j.1600-079x.2005.00309.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Methoxy-2-(N-acetylaminoethyl)indole (5d), a melatonin analogue derived from the transposition of the acetylaminoethyl side chain from C3 to C2 of the indole nucleus, had been previously characterized as a low affinity antagonist at MT1 and MT2 membrane receptors; this molecule is endowed with good in vitro antioxidant and cytoprotective potency in rat cerebellar cell cultures, comparable to or better than those of melatonin. In order to further investigate the role of structure-antioxidant activity relationships in cytoprotection, the structure of 5d was systematically modulated to design a new series of compounds. The 5-methoxy group was replaced by substituents with different electronic and lipophilic properties and it was moved to a different position on the indole ring. Other modifications of the lead structure involved the methylation of the indole nitrogen or its replacement by a sulfur atom. The side chain was also modified either increasing its lipophilicity or introducing an ionisable acid group. The antioxidant activity of this set of compounds was evaluated by the ABTS and conjugated dienes (CD) assays, while their cytoprotection was evaluated against kainate-induced cytotoxicity in cultured cerebellar neurons. In both antioxidant assays, the shift of the 5-methoxy group to the 4-position of the indole nucleus led to the most active radical scavenger (9), more potent than the parent compound and melatonin in the antioxidant tests, but much less effective as a cytoprotectant. Sharp structure-activity relationships were registered for cytoprotection, where the maintenance of the 5-alkoxy-2-(N-acylaminoethyl)indole scaffold appeared as the key feature to confer both antioxidant and cytoprotective activity to the structure. Some derivatives of the set, however, together with the most potent 5d, maintained a significant antioxidant and cytoprotective effect and could be employed as tools for in vivo pharmacological investigations on neuroprotective efficacy of melatonin-related indoles.
Collapse
Affiliation(s)
- Gilberto Spadoni
- Istituto di Chimica Farmaceutica e Tossicologica, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mor M, Rivara S, Lodola A, Lorenzi S, Bordi F, Plazzi PV, Spadoni G, Bedini A, Duranti A, Tontini A, Tarzia G. Application of 3D-QSAR in the Rational Design of Receptor Ligands and Enzyme Inhibitors. Chem Biodivers 2005; 2:1438-51. [PMID: 17191945 DOI: 10.1002/cbdv.200590117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design tools, they do not require the knowledge of the biological target structure, but are based on the comparison of drug structural features, thus being defined ligand-based drug design tools. In the 3D-QSAR approach, structural descriptors are calculated from molecular models of the ligands, as interaction fields within a three-dimensional (3D) lattice of points surrounding the ligand structure. These descriptors are collected in a large X matrix, which is submitted to multivariate analysis to look for correlations with biological activity. Like for other QSARs, the reliability and usefulness of the correlation models depends on the validity of the assumptions and on the quality of the data. A careful selection of compounds and pharmacological data can improve the application of 3D-QSAR analysis in drug design. Some examples of the application of CoMFA and CoMSIA approaches to the SAR study and design of receptor or enzyme ligands is described, pointing the attention to the fields of melatonin receptor ligands and FAAH inhibitors.
Collapse
Affiliation(s)
- Marco Mor
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area delle 27/A, I-43100 Parma.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rivara S, Lorenzi S, Mor M, Plazzi PV, Spadoni G, Bedini A, Tarzia G. Analysis of structure-activity relationships for MT2 selective antagonists by melatonin MT1 and MT2 receptor models. J Med Chem 2005; 48:4049-60. [PMID: 15943478 DOI: 10.1021/jm048956y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional homology models of human MT(1) and MT(2) melatonin receptors were built with the aim to investigate the structure-activity relationships (SARs) of MT(2) selective antagonists. A common interaction pattern was proposed for a series of structurally different MT(2) selective antagonists, which were positioned within the binding site by docking and simulated annealing. The proposed antagonist binding mode to the MT(2) receptor is characterized by the accommodation of the out-of-plane substituents in a hydrophobic pocket, which resulted as being fundamental for the explanation of the antagonist behavior and the MT(2) receptor selectivity. Moreover, to assess the ability of the MT(2) receptor model to reproduce the SARs of MT(2) antagonists, three new derivatives of the MT(2) selective antagonist N-[1-(4-chloro-benzyl)-4-methoxy-1H-indol-2-ylmethyl]-propionamide (7) were synthesized and tested for their receptor affinity and intrinsic activity. These compounds were docked into the MT(2) receptor model and were submitted to molecular dynamics studies, providing results in qualitative agreement with the experimental data. These results confirm the importance of the out-of-plane group in receptor binding and selectivity and provide a partial validation of the proposed G protein-coupled receptor model.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding, Competitive
- Cattle
- Humans
- Indoles/chemical synthesis
- Indoles/chemistry
- Indoles/pharmacology
- Mice
- Models, Molecular
- Molecular Sequence Data
- NIH 3T3 Cells
- Quantitative Structure-Activity Relationship
- Radioligand Assay
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Receptor, Melatonin, MT2/chemistry
- Receptor, Melatonin, MT2/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Silvia Rivara
- Dipartimento Farmaceutico, Università degli Studi di Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Karageorge GN, Bertenshaw S, Iben L, Xu C, Sarbin N, Gentile A, Dubowchik GM. Tetrahydroisoquinoline derivatives as melatonin MT2 receptor antagonists. Bioorg Med Chem Lett 2004; 14:5881-4. [PMID: 15501061 DOI: 10.1016/j.bmcl.2004.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/09/2004] [Accepted: 09/10/2004] [Indexed: 12/15/2022]
Abstract
A series of tetrahydroisoquinolines has yielded potent MT(2) receptor antagonists, which are selective versus the MT(1) receptor.
Collapse
Affiliation(s)
- George N Karageorge
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492-7660, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Spadoni G, Bedini A, Piersanti G, Mor M, Rivara S, Tarzia G. Strategies leading to MT2 selective melatonin receptor antagonists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 527:577-85. [PMID: 15206776 DOI: 10.1007/978-1-4615-0135-0_66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. This paper reviews our progress in developing subtype selective melatonin antagonists. Evidence is presented suggesting the structural features conferring MT2 selective antagonism.
Collapse
Affiliation(s)
- Gilberto Spadoni
- Istituto di Chimica Farmaceutica e Tossicologica, Università degli Studi di Urbino, Piazza Rinascimento 6, I-61029 Urbino, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Lucini V, Pannacci M, Scaglione F, Fraschini F, Rivara S, Mor M, Bordi F, Plazzi PV, Spadoni G, Bedini A, Piersanti G, Diamantini G, Tarzia G. Tricyclic alkylamides as melatonin receptor ligands with antagonist or inverse agonist activity. J Med Chem 2004; 47:4202-12. [PMID: 15293992 DOI: 10.1021/jm040768k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work reports the design and synthesis of novel alkylamides, characterized by a dibenzo[a,d]cycloheptene nucleus, as melatonin (MLT) receptor ligands. The tricyclic scaffold was chosen on the basis of previous quantitative structure-activity studies on MT1 and MT2 antagonists, relating selective MT2 antagonism to the presence of an aromatic substituent out of the plane of the MLT indole ring. Some dibenzo seven-membered structures were thus selected because of the noncoplanar arrangement of their benzene rings, and an alkylamide chain was introduced to fit the requirements for MLT receptor binding, namely, dibenzocycloheptenes with an acylaminoalkyl side chain at position 10 and dibenzoazepines with this side chain originating from the nitrogen atom bridging the two phenyl rings. Binding affinity at human cloned MT1 and MT2 receptors was measured by 2-[125I]iodomelatonin displacement assay and intrinsic activity by the GTPgammaS test. The majority of the compounds were characterized by higher affinity at the MT2 than at the MT1 receptor and by very low intrinsic activity values, thus confirming the importance of the noncoplanar arrangement of the two aromatic rings for selective MT2 antagonism. Dibenzocycloheptenes generally displayed higher MT1 and MT 2affinity than dibenzoazepines. N-(8-Methoxy-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-10-ylmethyl)propionamide (4c) and -butyramide (4d) were the most selective MT2 receptor antagonists of the series, with MT2 receptor affinity comparable to that of melatonin and as such among the highest reported in the literature for MLT receptor antagonists. The acetamide derivative 4b produced a noticeable reduction of GTPgammaS binding at MT2 receptor, thus being among the few inverse agonists described.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cells, Cultured
- Dibenzocycloheptenes/chemical synthesis
- Dibenzocycloheptenes/chemistry
- Dibenzocycloheptenes/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Ligands
- Mice
- Models, Molecular
- Polyunsaturated Alkamides
- Radioligand Assay
- Rats
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Valeria Lucini
- Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sengupta C, Leonard JT, Roy K. Exploring QSAR of melatonin receptor ligand benzofuran derivatives using E-state index. Bioorg Med Chem Lett 2004; 14:3435-9. [PMID: 15177448 DOI: 10.1016/j.bmcl.2004.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 04/23/2004] [Indexed: 01/01/2023]
Abstract
Considering the recent challenge to the medicinal chemists for the development of selective melatonin receptor ligands, an attempt has been made to explore physicochemical requirements of benzofuran derivatives for binding with human MT1 and MT2 receptor subtypes and also to explore selectivity requirements. In this study, E-states of different common atoms of the molecules (calculated according to Kier and Hall) and physicochemical parameters (partition coefficient and molar refractivity) were used as independent variables along with suitable dummy parameters. The best equation describing MT1 binding affinity [n = 34, Q2 = 0.670, Ra2 = 0.790, R2 = 0.822, R = 0.907, s = 0.609, F = 25.8 (df 5, 28)] suggests that the binding affinity decreases as the value of n (number of CH2 spacer beside R2) increases while it increases with rise in electrotopological state values of different atoms of the benzofuran ring. Again, presence of methoxy group at R1 and hydrogen, unsubstituted phenyl or fluoro-substituted phenyl group at R2 is conducive to the MT1 binding affinity. The binding affinity decreases if furyl substitution at R3 position is present. The best equation describing MT2 binding affinity [n = 34, Q2 = 0.602, Ra2 = 0.755, R2 = 0.792, R = 0.890, s = 0.584, F = 213 (df 5, 28)] shows that the MT2 binding affinity depends on the similar factors as described for MT1 binding affinity; however, the contributions of the factors for the two affinities are different to some extent as evidenced from the regression coefficients. Among the selectivity relations, the best equation [n = 33, Q2 = 0.496 Ra2 = 0.681, R2 = 0.721, R = 0.849, s = 0.458, F = 18.1(df 4, 28)] suggests that MT2 binding increases with increase in value of n, presence of methoxy group at R1, and E-state values of different atoms of the benzofuran ring, while it decreases in presence of furyl group at R3 position.
Collapse
Affiliation(s)
- Chandana Sengupta
- Drug Theoretics and Cheminformatics Lab, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India
| | | | | |
Collapse
|
47
|
Sun LQ, Chen J, Bruce M, Deskus JA, Epperson JR, Takaki K, Johnson G, Iben L, Mahle CD, Ryan E, Xu C. Synthesis and structure–activity relationship of novel benzoxazole derivatives as melatonin receptor agonists. Bioorg Med Chem Lett 2004; 14:3799-802. [PMID: 15203165 DOI: 10.1016/j.bmcl.2004.04.082] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/26/2004] [Accepted: 04/27/2004] [Indexed: 12/15/2022]
Abstract
A series of benzoxazole derivatives was synthesized and evaluated as melatoninergic ligands. The binding affinity of these compounds for human MT(1) and MT(2) receptors was determined using 2-[(125)I]-iodomelatonin as the radioligand. From this series of benzoxazole derivatives, compounds 14 and 17 were identified as melatonin receptor agonists.
Collapse
Affiliation(s)
- Li-Qiang Sun
- Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sun LQ, Chen J, Takaki K, Johnson G, Iben L, Mahle CD, Ryan E, Xu C. Design and synthesis of benzoxazole derivatives as novel melatoninergic ligands. Bioorg Med Chem Lett 2004; 14:1197-200. [PMID: 14980664 DOI: 10.1016/j.bmcl.2003.12.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/11/2003] [Accepted: 12/12/2003] [Indexed: 11/30/2022]
Abstract
A novel series of benzoxazole derivatives was synthesized and evaluated as melatoninergic ligands. The binding affinity of these compounds for human MT(1) and MT(2) receptors was determined using 2-[(125)I]-iodomelatonin as the radioligand. The results of the SAR studies in this series led to the identification of compound 28, which exhibited better MT(1) and MT(2) receptor affinities than melatonin itself. This work also established the benzoxazole nucleus as a melatoninergic pharmacophore, which served as an isosteric replacement to the previously established alkoxyaryl core.
Collapse
Affiliation(s)
- Li-Qiang Sun
- Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gatti G, Piersanti G, Spadoni G. Conformation by NMR of two tetralin-based receptor ligands. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2003; 58:469-76. [PMID: 12818685 DOI: 10.1016/s0014-827x(03)00064-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The conformation in solution of 1-phenyl-3-propionamido-1,2,3,4-tetrahydronaphthalene and 1-phenyl-3-(N,N-dimethylamino)-1,2,3,4-tetrahydronaphthalene has been determined by a combination of nuclear magnetic resonance measurements and molecular mechanics calculations. The results indicate that in the cis isomers the cyclohexene ring is in a locked conformation and the trans isomers correspond to a mixture of the two inverted half chairs. Moreover, the data allowed the identification of the two purposely-synthesized geometrical isomers of 1-phenyl-3-propionamidotetralin. Binding studies on melatonin receptor subtypes showed that the (+/-)-cis-1-phenyl-3-propionamido-1,2,3,4-tetrahydronaphthalene has higher affinity and selectivity ratio toward the MT(2) subtype than the (+/-)-trans-isomer.
Collapse
Affiliation(s)
- Giuseppe Gatti
- Istituto di Chimica Farmaceutica, Università degli Studi di Urbino, Piazza Rinascimento 6, I-61029 Urbino, Italy.
| | | | | |
Collapse
|
50
|
Audinot V, Mailliet F, Lahaye-Brasseur C, Bonnaud A, Le Gall A, Amossé C, Dromaint S, Rodriguez M, Nagel N, Galizzi JP, Malpaux B, Guillaumet G, Lesieur D, Lefoulon F, Renard P, Delagrange P, Boutin JA. New selective ligands of human cloned melatonin MT1 and MT2 receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:553-61. [PMID: 12764576 DOI: 10.1007/s00210-003-0751-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Accepted: 03/13/2003] [Indexed: 12/15/2022]
Abstract
Melatonin has a key role in the circadian rhythm relay to periphery organs. Melatonin exerts its multiple roles mainly through two seven transmembrane domain, G-coupled receptors, namely MT1 or MT2 receptors. A pharmacological characterization of these human cloned melatonin hMT1 and hMT2 receptors stably expressed in HEK-293 or CHO cells is presented using a 2-[125I]-iodo-melatonin binding assay and a [35S]-GTPgammaS functional assay. Both reference compounds and new chemically diverse ligands were evaluated. Binding affinities at each receptor were found to be comparable on either HEK-293 or CHO cell membranes. Novel non-selective or selective hMT1 and hMT2 ligands are described. The [35S]-GTPgammaS functional assay was used to define the functional activity of these compounds which included partial, full agonist and/or antagonist activity. None of the compounds acted as an inverse agonist. We report new types of selective antagonists, such as S 25567 and S 26131 for MT1 and S 24601 for MT2. These studies brought other new molecular tools such as the selective MT1 agonist, S 24268, as well as the non-selective antagonist, S 22153. Finally, we also discovered S 25150, the most potent melatonin receptor agonist, so far reported in the literature.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cell Line
- Cloning, Molecular/methods
- Cricetinae
- Dose-Response Relationship, Drug
- Humans
- Ligands
- Melatonin/analogs & derivatives
- Melatonin/chemistry
- Melatonin/metabolism
- Protein Binding/physiology
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
Collapse
Affiliation(s)
- Valérie Audinot
- Division de Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|