1
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Chung MC, Liu YQ, Jian BL, Xu SQ, Syu JJ, Lee CF, Tan KT. Affinity-Switchable Interaction of Biotin and Streptavidin for the Signal-ON Detection of Small Molecules. ACS Sens 2023; 8:4226-4232. [PMID: 37871282 DOI: 10.1021/acssensors.3c01572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Lateral flow assay (LFA) based on gold nanoparticles (AuNPs) is a widely used analytical device for the rapid analysis of environmental hazards and biomarkers. Typically, a sandwich-type format is used for macromolecule detection, in which the appearance of a red test line indicates a positive result (Signal-ON). In contrast, small molecule detection usually relies on a competitive assay, where the absence of a test line indicates positive testing (Signal-OFF). However, such a "Signal-OFF" reading is usually detected within a narrower dynamic range and tends to generate false-negative signals at a low concentration. Moreover, inconsistent readings between macromolecule and small molecule testing might lead to misinterpretation when used by nonskilled individuals. Herein, we report a "Signal-ON" small molecule competitive assay based on the sterically modulated affinity-switchable interaction of biotin and streptavidin. In the absence of a small molecule target, a large steric hindrance can be imposed on the biotin to prevent interaction with streptavidin. However, in the presence of the small molecule target, this steric effect is removed, allowing the biotin to bind to streptavidin and generate the desired test line. In this article, we demonstrate the selective detection of two small molecule drugs, sulfonamides and trimethoprim, using this simple and modular affinity-switchable lateral flow assay (ASLFA). We believe that this affinity-switchable approach can also be adapted in drug discovery and clinical diagnosis, where the competitive assay format is always used for the rapid analysis of small molecules.
Collapse
Affiliation(s)
- Min-Chi Chung
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Yun-Qiao Liu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Bo-Lin Jian
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Shun-Qiang Xu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Jhih-Jie Syu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung ,Taiwan 402202, Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung ,Taiwan 80708, Republic of China
| |
Collapse
|
3
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Morretta E, Ruggiero D, Belvedere R, Petrella A, Bruno I, Terracciano S, Monti MC. A multidisciplinary functional proteomics-aided strategy as a tool for the profiling of a novel cytotoxic thiadiazolopyrimidone. Bioorg Chem 2023; 138:106620. [PMID: 37229937 DOI: 10.1016/j.bioorg.2023.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
In recent years, thiadiazolopyrimidine derivatives have been acknowledged for their striking poly-pharmacological framework, thus representing an interesting scaffold for the development of new therapeutic candidates. This paper examines the synthesis and the interactome characterization of a novel bioactive thiadiazolopyrimidone (compound 1), endowed with cytotoxic activity on HeLa cancer cells. In detail, starting from a small set of synthesized thiadiazolopyrimidones, a multi-disciplinary strategy has been carried out on the most bioactive one to disclose its potential biological targets by functional proteomics, using a label-free mass spectrometry based platform coupling Drug Affinity Responsive Target Stability and targeted Limited Proteolysis-Multiple Reaction Monitoring. The identification of Annexin A6 (ANXA6) as compound 1 most reliable cellular partner paved the way to deepen the protein-ligand interaction through bio-orthogonal approaches and to prove compound 1 action on migration and invasion processes governed by ANXA6 modulation. The identification of compund 1 as the first ANXA6 protein modulator represents a relevant tool to further explore the biological role of ANXA6 in cancer, as well as to develop novel anticancer candidates.
Collapse
Affiliation(s)
- Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
5
|
Angeli A, Paoletti N, Supuran CT. Five-Membered Heterocyclic Sulfonamides as Carbonic Anhydrase Inhibitors. Molecules 2023; 28:molecules28073220. [PMID: 37049983 PMCID: PMC10096498 DOI: 10.3390/molecules28073220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
The development of heterocyclic derivatives has progressed considerably over the past decades, and many new carbonic anhydrase inhibitors (CAIs) fall into this field. In particular, five-membered heterocyclic sulfonamides have been generally shown to be more effective inhibitors compared to six-membered rings ones. Despite the importance of oxygen and nitrogen five-membered heterocyclic aromatic rings in medicinal chemistry, the installation of sulfonamide moiety on such heterocycles has not received much attention. On the other hand, 1,3,4-thiadiazole/thiadiazoline ring-bearing sulfonamides are the scaffolds which have been widely used in a variety of pharmaceutically important CAIs such as acetazolamide, metazolamide and their many derivatives obtained by using the tail approach. Here, we reviewed the field focusing on the diverse biological activities of these CAIs, such as antiglaucoma, antiepileptic, antitumor and antiinfective properties. This review highlights developments involving five-membered heterocyclic sulfonamides over the last years, with a focus on their pharmacological/clinical applications.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Niccolò Paoletti
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
6
|
Tian H, Li R, Guo F, Chen X. An Efficient Method for the Preparation of Sulfonamides from Sodium Sulfinates and Amines. Chemistry 2022; 11:e202200097. [PMID: 36005567 PMCID: PMC9405518 DOI: 10.1002/open.202200097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Indexed: 11/12/2022]
Abstract
Sulfonamides have a special role on medicine due to their broad biological activities, as bacterial infections, diabetes mellitus, oedema, hypertension prevention and treatment. In addition, sulfonamides are also useful in herbicides and pesticides. Herein, we communicate an efficient strategy for the preparation of sulfonamides via NH4I‐mediated amination of sodium sulfinates. This new method provides a general and environmentally friendly access to sulfonamide compounds and tolerates a wide range of functional groups.
Collapse
Affiliation(s)
- Haiying Tian
- Department of Pharmacy, Changzhi Medical College, 046000, Changzhi, P. R. China
| | - Ruiyan Li
- Department of Pharmacy, Changzhi Medical College, 046000, Changzhi, P. R. China
| | - Fang Guo
- Department of Materials Science and Engineering, Jinzhong University, 030619, Jinzhong, P. R. China
| | - Xiuling Chen
- Department of Materials Science and Engineering, Jinzhong University, 030619, Jinzhong, P. R. China
| |
Collapse
|
7
|
Shukralla AA, Dolan E, Delanty N. Acetazolamide: Old drug, new evidence? Epilepsia Open 2022; 7:378-392. [PMID: 35673961 PMCID: PMC9436286 DOI: 10.1002/epi4.12619] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 06/05/2022] [Indexed: 11/24/2022] Open
Abstract
Acetazolamide is an old drug used as an antiepileptic agent, amongst other indications. The drug is seldom used, primarily due to perceived poor efficacy and adverse events. Acetazolamide acts as a noncompetitive inhibitor of carbonic anhydrase, of which there are several subtypes in humans. Acetazolamide causes an acidification of the intracellular and extracellular environments activating acid‐sensing ion channels, and these may account for the anti‐seizure effects of acetazolamide. Other potential mechanisms are modulation of neuroinflammation and attenuation of high‐frequency oscillations. The overall effect increases the seizure threshold in critical structures such as the hippocampus. The evidence for its clinical efficacy was from 12 observational studies of 941 patients. The 50% responder rate was 49%, 20% of patients were rendered seizure‐free, and 30% were noted to have had at least one adverse event. We conclude that the evidence from several observational studies may overestimate efficacy because they lack a comparator; hence, this drug would need further randomized placebo‐controlled trials to assess effectiveness and harm.
Collapse
Affiliation(s)
| | - Emma Dolan
- The National Epilepsy Programme, Beaumont Hospital, Dublin, Ireland
| | - Norman Delanty
- The National Epilepsy Programme, Beaumont Hospital, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Disease, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
8
|
Kemparajegowda, Swarup HA, Chandrasekhar S, Jayanna B, Kumara K, Lokanath N, Thimmaiah SB, Mantelingu K. Sulfuric acid-mediated synthesis of 2,5-disubstituted 1,3,4-thiadiazole via intramolecular cyclization reaction from dithioesters: An approach to crystal structure prediction, DFT studies and Hirshfeld surface analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Gummidi L, Kerru N, Ebenezer O, Awolade P, Sanni O, Islam MS, Singh P. Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg Chem 2021; 115:105210. [PMID: 34332231 DOI: 10.1016/j.bioorg.2021.105210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/29/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
A simple and efficient protocol was developed to synthesize a new library of thiazolidine-4-one molecular hybrids (4a-n) via a one-pot multicomponent reaction involving 5-substituted phenyl-1,3,4-thiadiazol-2-amines, substituted benzaldehydes and 2-mercaptoacetic acid. The synthesized compounds were evaluated in vitro for their antidiabetic activities through α-glucosidase and α-amylase inhibition as well as their antioxidant and antimicrobial potentials. Compound 4e exhibited the most promising α-glucosidase and α-amylase inhibition with an IC50 value of 2.59 μM, which is ~1.5- and 14-fold superior as compared to the standard inhibitor acarbose. Structure-activity relationship (SAR) analysis revealed that the nature and position of substituents on the phenyl rings had a significant effect on the inhibitory potency.
Collapse
Affiliation(s)
- Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Oluwakemi Ebenezer
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Olakunle Sanni
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
10
|
Mishra CB, Kumari S, Angeli A, Bua S, Mongre RK, Tiwari M, Supuran CT. Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations. J Med Chem 2021; 64:3100-3114. [PMID: 33721499 DOI: 10.1021/acs.jmedchem.0c01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two sets of benzenesulfonamide-based effective human carbonic anhydrase (hCA) inhibitors have been developed using the tail approach. The inhibitory action of these novel molecules was examined against four isoforms: hCA I, hCA II, hCA VII, and hCA XII. Most of the molecules disclosed low to medium nanomolar range inhibition against all tested isoforms. Some of the synthesized derivatives selectively inhibited the epilepsy-involved isoforms hCA II and hCA VII, showing low nanomolar affinity. The anticonvulsant activity of selected sulfonamides was assessed using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (sc-PTZ) in vivo models of epilepsy. These potent CA inhibitors effectively inhibited seizures in both epilepsy models. The most effective compounds showed long duration of action and abolished MES-induced seizures up to 6 h after drug administration. These sulfonamides were found to be orally active anticonvulsants, being nontoxic in neuronal cell lines and in animal models.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Raj Kumar Mongre
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| |
Collapse
|
11
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
12
|
Swain SS, Paidesetty SK, Padhy RN. Phytochemical conjugation as a potential semisynthetic approach toward reactive and reuse of obsolete sulfonamides against pathogenic bacteria. Drug Dev Res 2020; 82:149-166. [PMID: 33025605 DOI: 10.1002/ddr.21746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
The emergence and reemergence of multidrug-resistant (MDR) bacteria and mycobacteria in community and hospital periphery have directly enhanced the hospitalization costs, morbidity and mortality, globally. The appearance of MDR pathogens, the currently used antibiotics, remains insufficient, and the development of potent antibacterial(s) is merely slow. Thus, the development of active antibacterials is the call of the day. The sulfonamides class of antibacterials was the most successful synthesized drug in the 19th century. Mechanically, sulfonamides were targeting bacterial folic acid biosynthesis and today, those are obsolete or clinically inactive. Nevertheless, the magic sulfonamide pharmacophore has been used continuously in several mainstream antibacterial, antidiabetic, antiviral drugs. Concomitantly, thousands of phytochemicals with antimicrobial potencies have been recorded and were commanded as alternate antibacterials toward control of MDR pathogens. However, none/very few isolated phytochemicals have gone up to the pure-drug stage due to the lack of the desired drug-likeness values and the required pharmacokinetic properties. Thus, chemical modification of parent drug remains as the versatile approach in antibacterial drug development. Improvement of clinically inactive sulfa drugs with suitable phytochemicals to develop active, low-toxic drug molecules followed by medicinal chemistry could be prudent. This review highlights such "sulfonamide-phytochemical" hybrid drug development research works for utilizing inactive sulfonamides and phytochemicals; the ingenious cost-effective and resource-saving hybrid drug concept could be a new trend in current antibacterial drug discovery to reactive the obsolete antibacterials.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020; 30:963-982. [PMID: 32806966 DOI: 10.1080/13543776.2020.1811853] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The clinically licensed drugs used as antibiotics prevent the microbial growth interfering with the biosynthesis of proteins, nucleic acids, microorganism wall biosynthesis or wall permeability, and microbial metabolic pathways. A serious, emerging problem is the arisen of extensive drug resistance afflicting most countries worldwide. AREAS COVERED An exciting approach to fight drug resistance is the identification of essential enzymes encoded by pathogen genomes. Inhibition of such enzymes may impair microbial growth or virulence due to interference with crucial metabolic processes. Genome exploration of pathogenic and nonpathogenic microorganisms has revealed carbonic anhydrases (CAs, EC 4.2.1.1) as possible antibacterial targets. EXPERT OPINION Balancing the equilibrium between CO2 and HCO3 - is essential for microbial metabolism and is regulated by at least four classes of CAs. Classical CA inhibitors (CAIs) such as ethoxzolamide were shown to kill the gastric pathogen Helicobacter pylori in vitro, whereas acetazolamide and some of its more lipophilic derivatives were shown to be effective against vancomycin-resistant Enterococcus spp., with MICs in the range of 0.007-2 µg/mL, better than linezolid, the only clinically used agent available to date. Such results reinforce the rationale of considering existing and newly designed CAIs as antibacterials with an alternative mechanism of action.
Collapse
|
14
|
Kaur J, Cao X, Abutaleb NS, Elkashif A, Graboski AL, Krabill AD, AbdelKhalek AH, An W, Bhardwaj A, Seleem MN, Flaherty DP. Optimization of Acetazolamide-Based Scaffold as Potent Inhibitors of Vancomycin-Resistant Enterococcus. J Med Chem 2020; 63:9540-9562. [PMID: 32787141 DOI: 10.1021/acs.jmedchem.0c00734] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vancomycin-resistant enterococci (VRE) are the second leading cause of hospital-acquired infections (HAIs) attributed to a drug-resistant bacterium in the United States, and resistance to the frontline treatments is well documented. To combat VRE, we have repurposed the FDA-approved carbonic anhydrase drug acetazolamide to design potent antienterococcal agents. Through structure-activity relationship optimization we have arrived at two leads possessing improved potency against clinical VRE strains from MIC = 2 μg/mL (acetazolamide) to MIC = 0.007 μg/mL (22) and 1 μg/mL (26). Physicochemical properties were modified to design leads that have either high oral bioavailability to treat systemic infections or low intestinal permeability to treat VRE infections in the gastrointestinal tract. Our data suggest the intracellular targets for the molecules are putative α-carbonic and γ-carbonic anhydrases, and homology modeling and molecular dynamics simulations were performed. Together, this study presents potential anti-VRE therapeutic options to provide alternatives for problematic VRE infections.
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Amanda L Graboski
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Ahmed Hassan AbdelKhalek
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Weiwei An
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Atul Bhardwaj
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, Indiana 47907, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, 207 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, Indiana 47907, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, 207 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
16
|
The Expression of Carbonic Anhydrases II, IX and XII in Brain Tumors. Cancers (Basel) 2020; 12:cancers12071723. [PMID: 32610540 PMCID: PMC7408524 DOI: 10.3390/cancers12071723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that participate in the regulation of pH homeostasis in addition to many other important physiological functions. Importantly, CAs have been associated with neoplastic processes and cancer. Brain tumors represent a heterogeneous group of diseases with a frequently dismal prognosis, and new treatment options are urgently needed. In this review article, we summarize the previously published literature about CAs in brain tumors, especially on CA II and hypoxia-inducible CA IX and CA XII. We review here their role in tumorigenesis and potential value in predicting prognosis of brain tumors, including astrocytomas, oligodendrogliomas, ependymomas, medulloblastomas, meningiomas, and craniopharyngiomas. We also introduce both already completed and ongoing studies focusing on CA inhibition as a potential anti-cancer strategy.
Collapse
|
17
|
Batra N, Rajendran V, Wadi I, Lathwal A, Dutta RK, Ghosh PC, Gupta RD, Nath M. Synthesis, characterization, and antiplasmodial efficacy of sulfonamide‐appended [1,2,3]‐triazoles. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neha Batra
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Vinoth Rajendran
- Department of BiochemistryUniversity of Delhi South Campus New Delhi India
| | - Ishan Wadi
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Ankit Lathwal
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Roshan Kumar Dutta
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Prahlad C. Ghosh
- Department of BiochemistryUniversity of Delhi South Campus New Delhi India
| | - Rinkoo D. Gupta
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Mahendra Nath
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| |
Collapse
|
18
|
Khoshdoun M, Taheri S, Daneshgar P, Jamshidi HR, Ziyaei Halimehjani A. Synthesis of 5‐amino‐1,3,4‐thiadiazoles containing dithiocarbamate groups. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maryam Khoshdoun
- Department of Organic Chemistry and Natural ProductsChemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Salman Taheri
- Department of Organic Chemistry and Natural ProductsChemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | | | | | | |
Collapse
|
19
|
Jiang H, Tang X, Xu Z, Wang H, Han K, Yang X, Zhou Y, Feng YL, Yu XY, Gui Q. TBAI-catalyzed selective synthesis of sulfonamides and β-aryl sulfonyl enamines: coupling of arenesulfonyl chlorides and sodium sulfinates with tert-amines. Org Biomol Chem 2019; 17:2715-2720. [PMID: 30775769 DOI: 10.1039/c8ob02992j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A simple, practical and metal-free method has been developed for the synthesis of sulfonamides and β-arylsulfonyl enamines via the selective cleavage of C-N and C-H bonds through the iodine-catalyzed oxidation of arenesulfonyl chlorides and sodium sulfinates with tert-amines. The method uses commercially available inexpensive catalysts and oxidants, and has a wide substrate scope and operational simplicity.
Collapse
Affiliation(s)
- Hongmei Jiang
- College of Science, Hunan Agricultural University, Changsha 410128, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu L, Bernal GM, Cahill KE, Pytel P, Fitzpatrick CA, Mashek H, Weichselbaum RR, Yamini B. BCL3 expression promotes resistance to alkylating chemotherapy in gliomas. Sci Transl Med 2019; 10:10/448/eaar2238. [PMID: 29973405 DOI: 10.1126/scitranslmed.aar2238] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/09/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
The response of patients with gliomas to alkylating chemotherapy is heterogeneous. However, there are currently no universally accepted predictors of patient response to these agents. We identify the nuclear factor κB (NF-κB) co-regulator B cell CLL/lymphoma 3 (BCL-3) as an independent predictor of response to temozolomide (TMZ) treatment. In glioma patients with tumors that have a methylated O6-methylguanine DNA methyltransferase (MGMT) promoter, high BCL-3 expression was associated with a poor response to TMZ. Mechanistically, BCL-3 promoted a more malignant phenotype by inducing an epithelial-to-mesenchymal transition in glioblastomas through promoter-specific NF-κB dimer exchange. Carbonic anhydrase II (CAII) was identified as a downstream factor promoting BCL-3-mediated resistance to chemotherapy. Experiments in glioma xenograft mouse models demonstrated that the CAII inhibitor acetazolamide enhanced survival of TMZ-treated animals. Our data suggest that BCL-3 might be a useful indicator of glioma response to alkylating chemotherapy and that acetazolamide might be repurposed as a chemosensitizer for treating TMZ-resistant gliomas.
Collapse
Affiliation(s)
- Longtao Wu
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Giovanna M Bernal
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Kirk E Cahill
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | - Heather Mashek
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Bakhtiar Yamini
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Egorov DM, Chernov IS, Popchuk MV, Polukeev VA, Dogadina AV. Some Features of Phosphorylation of 4-Substituted Thiosemicarbazides with Chloroethynylphosphonates. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
An overview of structurally diversified anticonvulsant agents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:321-344. [PMID: 31259739 DOI: 10.2478/acph-2019-0023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2018] [Indexed: 01/19/2023]
Abstract
There are several limited approaches to treat epilepsy in hospitals, for example, using medicines, surgery, electrical stimulation and dietary interventions. Despite the availability of all these new and old approaches, seizure is particularly difficult to manage. The quest for new antiepileptic molecules with more specificity and less CNS toxicity continues for medicinal chemists until a new and ideal drug arrives. This review covers new antiseizure molecules of different chemical classes, the exact mode of action of which is still unidentified. Newer agents include sulfonamides, thiadiazoles, semi- and thiosemicarbazones, pyrrolidine-2,5-diones, imidazoles, benzothiazoles and amino acid deriva tives. These new chemical entities can be useful for the design and development of forthcoming antiseizure agents.
Collapse
|
23
|
Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov 2019; 14:1175-1197. [DOI: 10.1080/17460441.2019.1651289] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Liu S, Chen R, Zhang J. Copper-Catalyzed Redox Coupling of Nitroarenes with Sodium Sulfinates. Molecules 2019; 24:molecules24071407. [PMID: 30974790 PMCID: PMC6479299 DOI: 10.3390/molecules24071407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
A simple copper-catalyzed redox coupling of sodium sulfinates and nitroarenes is described. In this process, abundant and stable nitroarenes serve as both the nitrogen sources and oxidants, and sodium sulfinates act as both reactants and reductants. A variety of aromatic sulfonamides were obtained in moderate to good yields with broad substrate scope. No external additive is employed for this kind of transformation.
Collapse
Affiliation(s)
- Saiwen Liu
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China.
| | - Ru Chen
- Yiyang Agriculture Products Quality Detect Center, Yiyang 413000, China.
| | - Jin Zhang
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China.
| |
Collapse
|
25
|
El-Naggar M, Sallam HA, Shaban SS, Abdel-Wahab SS, E Amr AEG, Azab ME, Nossier ES, Al-Omar MA. Design, Synthesis, and Molecular Docking Study of Novel Heterocycles Incorporating 1,3,4-Thiadiazole Moiety as Potential Antimicrobial and Anticancer Agents. Molecules 2019; 24:molecules24061066. [PMID: 30889918 PMCID: PMC6471095 DOI: 10.3390/molecules24061066] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
A new series of 5-(3,5-dinitrophenyl)-1,3,4-thiadiazole derivatives were prepared and evaluated for their in vitro antimicrobial, antitumor, and DHFR inhibition activity. Compounds 9, 10, 13, and 16 showed strong and broad-spectrum antimicrobial activity comparable to Amoxicillin and Fluconazole as positive antibiotic and antifungal controls, respectively. Compounds 6, 14, and 15 exhibited antitumor activity against four human cancer cell lines, CCRF-CEM leukemia, HCT-15 colon, PC-3 prostate, and UACC-257 melanoma cell lines using Doxorubicin as a reference drug. Compounds 10, 13, 14, and 15 proved to be the most active DHFR inhibitors with an IC50 range of 0.04 ± 0.82–1.00 ± 0.85 µM, in comparison with Methotrexate (IC50 = 0.14 ± 1.38 µM). The highly potent DHFR inhibitors shared a similar molecular docking mode and made a critical hydrogen bond and arene‒arene interactions via Ser59 and Phe31 amino acid residues, respectively.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE.
| | - Hanan A Sallam
- Synthetic Organic Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Safaa S Shaban
- Synthetic Organic Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Salwa S Abdel-Wahab
- Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, New Cairo 11835, Egypt.
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Centre, Cairo 12622, Egypt.
| | - Mohammad E Azab
- Synthetic Organic Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
26
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
27
|
Karaburun AÇ, Acar Çevik U, Osmaniye D, Sağlık BN, Kaya Çavuşoğlu B, Levent S, Özkay Y, Koparal AS, Behçet M, Kaplancıklı ZA. Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Potent Antifungal Agents. Molecules 2018; 23:molecules23123129. [PMID: 30501053 PMCID: PMC6321371 DOI: 10.3390/molecules23123129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 01/24/2023] Open
Abstract
With the goal of obtaining a novel bioactive compound with significant antifungal activity, a series of 1,3,4-thiadiazole derivatives (3a–3l) were synthesized and characterized. Due to thione-thiol tautomerism in the intermediate compound 2, type of substitution reaction in the final step was determined by two-dimensional (2D) NMR. In vitro antifungal activity of the synthesized compounds was evaluated against eight Candida species. The active compounds 3k and 3l displayed very notable antifungal effects. The probable mechanisms of action of active compounds were investigated using an ergosterol quantification assay. Docking studies on 14-α-sterol demethylase enzyme were also performed to investigate the inhibition potency of compounds on ergosterol biosynthesis. Theoretical absorption, distribution, metabolism, and excretion (ADME) predictions were calculated to seek their drug likeness of final compounds. The results of the antifungal activity test, ergosterol biosynthesis assay, docking study, and ADME predictions indicated that the synthesized compounds are potential antifungal agents, which inhibit ergosterol biosynthesis probably interacting with the fungal 14-α-sterol demethylase.
Collapse
Affiliation(s)
- Ahmet Çağrı Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Betül Kaya Çavuşoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ali Savaş Koparal
- Open Education Faculty, Anadolu University, Eskişehir 26470, Turkey.
| | - Mustafa Behçet
- Department of Medical Microbiology, Faculty of Medicine, Abant İzzet Baysal University, Bolu 14280, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|
28
|
Yang B, Lian C, Yue G, Liu D, Wei L, Ding Y, Zheng X, Lu K, Qiu D, Zhao X. Synthesis of N-arylsulfonamides through a Pd-catalyzed reduction coupling reaction of nitroarenes with sodium arylsulfinates. Org Biomol Chem 2018; 16:8150-8154. [PMID: 30335119 DOI: 10.1039/c8ob02226g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel one-step direct reductive coupling reaction between nitroarenes and sodium arylsulfinates was realized in the presence of an inexpensive Pd/C catalyst. In this procedure, readily available nitroarenes are employed as the nitrogen sources, and sodium arylsulfinates serve as both coupling partners and reductants. The method features high efficiency by using cheap Pd/C with low catalyst loading and good functional group tolerance in the absence of any additional reductants or ligands. This facile and mild synthetic method enables the high efficiency synthesis of functionalized N-arylsulfonamides from readily available substrates.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lomelino CL, Andring JT, McKenna R. Crystallography and Its Impact on Carbonic Anhydrase Research. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9419521. [PMID: 30302289 PMCID: PMC6158936 DOI: 10.1155/2018/9419521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
X-ray and neutron crystallography are powerful techniques utilized to study the structures of biomolecules. Visualization of enzymes in complex with substrate/product and the capture of intermediate states can be related to activity to facilitate understanding of the catalytic mechanism. Subsequent analysis of small molecule binding within the enzyme active site provides insight into mechanisms of inhibition, supporting the design of novel inhibitors using a structure-guided approach. The first X-ray crystal structures were determined for small, ubiquitous enzymes such as carbonic anhydrase (CA). CAs are a family of zinc metalloenzymes that catalyze the hydration of CO2, producing HCO3 - and a proton. The CA structure and ping-pong mechanism have been extensively studied and are well understood. Though the function of CA plays an important role in a variety of physiological functions, CA has also been associated with diseases such as glaucoma, edema, epilepsy, obesity, and cancer and is therefore recognized as a drug target. In this review, a brief history of crystallography and its impact on CA research is discussed.
Collapse
Affiliation(s)
- Carrie L. Lomelino
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Robert McKenna
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| |
Collapse
|
30
|
Carbonic anhydrase inhibition of Schiff base derivative of imino-methyl-naphthalen-2-ol: Synthesis, structure elucidation, molecular docking, dynamic simulation and density functional theory calculations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Jiang J, Zeng S, Chen D, Cheng C, Deng W, Xiang J. Synthesis of N-arylsulfonamides via Fe-promoted reaction of sulfonyl halides with nitroarenes in an aqueous medium. Org Biomol Chem 2018; 16:5016-5020. [DOI: 10.1039/c8ob01172a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fascinating Fe-promoted protocol for the synthesis of N-arylsulfonamides has been developed. Starting from commercially available nitroarenes and sulfonyl chlorides, moderate to excellent yields of the corresponding N-arylsulfonamides can be obtained. In particular, Fe dust was the sole reductant in the transformation and it can be easily performed on a large scale.
Collapse
Affiliation(s)
- Jun Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Sheng Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - De Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Chaozhihui Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Jiannan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| |
Collapse
|
32
|
Saçmacı M, Arslaner Ç, Şahin E. Synthesis and characterization of new thiadiazole derivatives bearing a pyrazole moiety. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1345905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mustafa Saçmacı
- Department of Chemistry, Faculty of Arts and Sciences, Bozok University, Yozgat, Turkey
| | - Çiler Arslaner
- Department of Chemistry, Faculty of Arts and Sciences, Bozok University, Yozgat, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
33
|
Abbas Q, Raza H, Hassan M, Phull AR, Kim SJ, Seo SY. Acetazolamide Inhibits the Level of Tyrosinase and Melanin: An Enzyme Kinetic, In Vitro, In Vivo, and In Silico Studies. Chem Biodivers 2017; 14. [PMID: 28557244 DOI: 10.1002/cbdv.201700117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022]
Abstract
Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti-melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC50 7.895 ± 0.24 μm) against tyrosinase as compared to the standard drug kojic acid (IC50 16.84 ± 0.64 μm) and kinetic analyses showed that ACZ is a non-competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l-DOPA. Western blot results showed that ACZ significantly (P < 0.05) decreased the expression level of tyrosinase at 40 μm. Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (P < 0.001) decreased the embryos pigmentation to 40.8% of untreated embryos at the dose of 40 μm of ACZ while kojic acid decreased only 25.0% of pigmentation at the same dose of kojic acid. In silico docking were performed against tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening.
Collapse
Affiliation(s)
- Qamar Abbas
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro 56, Gongju, Chungnam, 32588, Korea
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro 56, Gongju, Chungnam, 32588, Korea
| | - Mubashir Hassan
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro 56, Gongju, Chungnam, 32588, Korea
| | - Abdul Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro 56, Gongju, Chungnam, 32588, Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro 56, Gongju, Chungnam, 32588, Korea
| | - Sung-Yum Seo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro 56, Gongju, Chungnam, 32588, Korea
| |
Collapse
|
34
|
Kamath PR, Sunil D, Joseph MM, Abdul Salam AA, T.T. S. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur J Med Chem 2017; 136:442-451. [DOI: 10.1016/j.ejmech.2017.05.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023]
|
35
|
An environmentally friendly approach for the synthesis of quinazolinone sulfonamide. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1924-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Efficient T3P ® mediated synthesis, differential cytotoxicity and apoptosis induction by indolo-triazolo-thiadiazoles in human breast adenocarcinoma cells. Chem Biol Interact 2017; 268:53-67. [PMID: 28235427 DOI: 10.1016/j.cbi.2017.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/04/2017] [Accepted: 02/20/2017] [Indexed: 01/23/2023]
Abstract
The limited efficacy of marketed anticancer agents demands the design of novel target-specific hybrid molecules incorporating multiple bioactive pharmacores to combat cancer. In the present study, a one-pot simple and efficient T3P® mediated procedure for the preparation of twelve new 3-(substituted- [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazolo)-1H-indoles with short reaction times, easy workup procedure, good yields, and purity of products is described. Cytotoxicity assay (MTT), flow-cytometric univariate cell cycle analysis, Annexin V-FITC staining and DNA fragmentation for cell death mechanism suggested that compound 3d with chloro-substituted phenyl ring induced enhanced cytotoxicity by an apoptotic pathway with high differential toxicity to breast adenocarcinoma cells (MCF-7) when compared with normal human dermal fibroblast cells. Additionally, the interaction between the BH3 domain of anti-apoptotic proteins Bcl-2 and Bcl-xL with the pharmacophore 3d was examined by molecular docking simulations to assess its potential to induce apoptosis. The docking solutions were proposed to explain the observed selectivity of 3d to Bcl-xL protein. From the present findings, the lead compound, 3d exhibited better anticancer activity when related to the other synthesized molecules with specific action on MCF-7 cells and hence can be considered as a plausible candidate chemo-therapeutic agent, although this warrants further experimentation.
Collapse
|
37
|
Design and Comparative Evaluation of the Anticonvulsant Profile, Carbonic-Anhydrate Inhibition and Teratogenicity of Novel Carbamate Derivatives of Branched Aliphatic Carboxylic Acids with 4-Aminobenzensulfonamide. Neurochem Res 2017; 42:1972-1982. [PMID: 28275953 DOI: 10.1007/s11064-017-2216-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100+ years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6-9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-2-propylpentyl(4-sulfamoylphenyl)carbamate(1), 3-methyl-pentan-2-yl-(4-sulfamoylphenyl)carbamate (9) and 3-methylpentyl, (4-sulfamoylphenyl)carbamate (10) had ED50 values of 136, 31 and 14 mg/kg (MES) and 74, 53, and 80 mg/kg (6 Hz), respectively. Compound (10) had rat-MES-ED50 = 13 mg/kg and ED50 of 59 mg/kg at the mouse-corneal-kindling test. These potent carbamates (1,9,10) induced neural tube defects only at doses markedly exceeding their anticonvuslnat-ED50 values. None of these compounds were potent inhibitors of CA IV, but inhibited CA isoforms I, II and VII. The anticonvulsant properties of these compounds and particularly compound 10 make them potential candidates for further evaluation and development as new AEDs.
Collapse
|
38
|
Shahcheragh SM, Habibi A, Khosravi S. Straightforward synthesis of novel substituted 1,3,4-thiadiazole derivatives in choline chloride-based deep eutectic solvent. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zhu M, Wei W, Yang D, Cui H, Wang L, Meng G, Wang H. Metal-free I2O5-mediated direct construction of sulfonamides from thiols and amines. Org Biomol Chem 2017; 15:4789-4793. [DOI: 10.1039/c7ob00668c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A simple and efficient metal-free I2O5-mediated one-pot procedure for the construction of sulfonamides from thiols and amines has been developed.
Collapse
Affiliation(s)
- Minghui Zhu
- Institute of Medicine and Material Applied Technologies
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Wei Wei
- Institute of Medicine and Material Applied Technologies
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Daoshan Yang
- Institute of Medicine and Material Applied Technologies
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Huanhuan Cui
- Institute of Medicine and Material Applied Technologies
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Leilei Wang
- Institute of Medicine and Material Applied Technologies
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Guoqing Meng
- Institute of Medicine and Material Applied Technologies
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Hua Wang
- Institute of Medicine and Material Applied Technologies
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|
40
|
Imran S, Taha M, Ismail NH, Fayyaz S, Khan KM, Choudhary MI. Synthesis of novel bisindolylmethanes: New carbonic anhydrase II inhibitors, docking, and 3D pharmacophore studies. Bioorg Chem 2016; 68:90-104. [DOI: 10.1016/j.bioorg.2016.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
41
|
Lomelino CL, Supuran CT, McKenna R. Non-Classical Inhibition of Carbonic Anhydrase. Int J Mol Sci 2016; 17:ijms17071150. [PMID: 27438828 PMCID: PMC4964523 DOI: 10.3390/ijms17071150] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022] Open
Abstract
Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives.
Collapse
Affiliation(s)
- Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Piazza di San Marco, Firenze 50019, Italy.
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
42
|
Truong BN, Le LH, Chau DKN, Duus F, Luu T. Ultrasound accelerated sulfonylation of amines by p-acetamidobenzenesulfonyl chloride using Mg–Al hydrotalcite as an efficient green base catalyst. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1193180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Binh Nhat Truong
- Department of Organic Chemistry, National University of Science of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Luong Huu Le
- Department of Organic Chemistry, National University of Science of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Duy-Khiem Nguyen Chau
- Department of Organic Chemistry, National University of Science of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Fritz Duus
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Thi Xuan Thi Luu
- Department of Organic Chemistry, National University of Science of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
43
|
Yu H, Zhang Y. NH4I-Catalyzed Synthesis of Sulfonamides from Arylsufonylhydrazides and Amines. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Yotphan S, Sumunnee L, Beukeaw D, Buathongjan C, Reutrakul V. Iodine-catalyzed expeditious synthesis of sulfonamides from sulfonyl hydrazides and amines. Org Biomol Chem 2016; 14:590-597. [DOI: 10.1039/c5ob02075a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new synthesis of sulfonamides via an iodine-catalyzed sulfonylation of amines with arylsulfonyl hydrazides at room temperature is reported.
Collapse
Affiliation(s)
- Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| | - Ladawan Sumunnee
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| | - Danupat Beukeaw
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| | - Chonchanok Buathongjan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| | - Vichai Reutrakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| |
Collapse
|
45
|
Fekri A, Keshk EM. Utility involving thioacetoacetanilides as precursors for synthesis of new thiazole, thiadiazole and thiophene derivatives with antimicrobial activity. J Sulphur Chem 2015. [DOI: 10.1080/17415993.2015.1114117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ahmed Fekri
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Eman M. Keshk
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
46
|
Lee YR, Chen TC, Lee CC, Chen CL, Ahmed Ali AA, Tikhomirov A, Guh JH, Yu DS, Huang HS. Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising scaffold of antitumor agents. Eur J Med Chem 2015; 102:661-76. [DOI: 10.1016/j.ejmech.2015.07.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022]
|
47
|
Lebow J, Chuy JA, Cedermark K, Cook K, Sim LA. The development or exacerbation of eating disorder symptoms after topiramate initiation. Pediatrics 2015; 135:e1312-6. [PMID: 25847809 DOI: 10.1542/peds.2014-3413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 11/24/2022] Open
Abstract
The Food and Drug Administration recently approved topiramate for migraine prevention in adolescents. Given the well-established appetite-suppressant side effects of topiramate, as well as data suggesting a potential comorbidity between migraine and eating disorders, susceptible young migraine patients may be at a greater risk for the development or worsening of eating disorder symptoms with topiramate therapy. This case series comprises 7 adolescent patients in whom serious eating disorders developed or were exacerbated after the initiation of topiramate therapy. Clinical characteristics of these patients are highlighted. In addition, this case series provides guidelines for providers to use in assessing eating disorders before prescribing topiramate for migraine prevention in adolescents.
Collapse
Affiliation(s)
- Jocelyn Lebow
- Departments of Psychiatry and Psychology and Departments of Psychiatry and Behavioral Sciences and
| | - Jeffrey A Chuy
- Radiology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Katlyn Cook
- Cardiovascular Disease, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | | |
Collapse
|
48
|
Ghiasi M, Kamalinahad S. Conformational Analysis of Topiramate and Related Anion in the Solution and Interaction Between the Most Stable Conformer of Topiramate with Active Center of Carbonic Anhydrase Enzyme. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1009090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Synthesis and anticonvulsant activity of new N-phenyl-2-(4-phenylpiperazin-1-yl)acetamide derivatives. Med Chem Res 2015; 24:3047-3061. [PMID: 26167103 PMCID: PMC4491109 DOI: 10.1007/s00044-015-1360-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/02/2015] [Indexed: 11/16/2022]
Abstract
Twenty-two new N-phenyl-2-(4-phenylpiperazin-1-yl)acetamide derivatives have been synthesized and evaluated for their anticonvulsant activity in animal models of epilepsy. These molecules have been designed as analogs of previously obtained anticonvulsant active pyrrolidine-2,5-diones in which heterocyclic imide ring has been changed into chain amide bound. The final compounds were synthesized in the alkylation reaction of the corresponding amines with the previously obtained alkylating reagents 2-chloro-1-(3-chlorophenyl)ethanone (1) or 2-chloro-1-[3-(trifluoromethyl)phenyl]ethanone (2). Initial anticonvulsant screening was performed using standard maximal electroshock (MES) and subcutaneous pentylenetetrazole screens in mice and/or rats. Several compounds were tested additionally in the psychomotor seizures (6-Hz model). The acute neurological toxicity was determined applying the rotarod test. The results of pharmacological studies showed activity exclusively in the MES seizures especially for 3-(trifluoromethyl)anilide derivatives, whereas majority of 3-chloroanilide analogs were inactive. It should be emphasize that several molecules showed also activity in the 6-Hz screen which is an animal model of human partial and therapy-resistant epilepsy. In the in vitro studies, the most potent derivative 20 was observed as moderate binder to the neuronal voltage-sensitive sodium channels (site 2). The SAR studies for anticonvulsant activity confirmed the crucial role of pyrrolidine-2,5-dione core fragment for anticonvulsant activity.
Collapse
|
50
|
Haider S, Alam MS, Hamid H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur J Med Chem 2015; 92:156-77. [DOI: 10.1016/j.ejmech.2014.12.035] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
|