1
|
Teli G, Pal R, Maji L, Sengupta S, Raghavendra NM, Matada GSP. Medicinal Chemistry Perspectives on Recent Advances in Src Kinase Inhibitors as a Potential Target for the Development of Anticancer Agents: Biological Profile, Selectivity, Structure-Activity Relationship. Chem Biodivers 2023; 20:e202300515. [PMID: 37563848 DOI: 10.1002/cbdv.202300515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
2
|
Analgesic and anti-inflammatory activity of quinoxaline derivatives: Design synthesis and characterization. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
3
|
Ozawa T, Ozawa M. Application of FMO to Ligand Design: SBDD, FBDD, and Protein–Protein Interaction. RECENT ADVANCES OF THE FRAGMENT MOLECULAR ORBITAL METHOD 2021:205-251. [DOI: 10.1007/978-981-15-9235-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
3D-QSAR and molecular docking studies of aminopyrimidine derivatives as novel three-targeted Lck/Src/KDR inhibitors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Jiang X, Yu J, Zhou Z, Kongsted J, Song Y, Pannecouque C, De Clercq E, Kang D, Poongavanam V, Liu X, Zhan P. Molecular design opportunities presented by solvent‐exposed regions of target proteins. Med Res Rev 2019; 39:2194-2238. [PMID: 31002405 DOI: 10.1002/med.21581] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Ji Yu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Zhongxia Zhou
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Jacob Kongsted
- Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Odense Denmark
| | - Yuning Song
- Department of Clinical PharmacyQilu Hospital of Shandong University Jinan China
| | - Christophe Pannecouque
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Dongwei Kang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | | | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| |
Collapse
|
6
|
Zhang Z, Zhang D, Liu Y, Yang D, Ran F, Wang ML, Zhao G. Targeting Bruton's tyrosine kinase for the treatment of B cell associated malignancies and autoimmune diseases: Preclinical and clinical developments of small molecule inhibitors. Arch Pharm (Weinheim) 2018; 351:e1700369. [DOI: 10.1002/ardp.201700369] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Zhang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Daoguang Zhang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Yang Liu
- The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Dezhi Yang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Fansheng Ran
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Michael L. Wang
- The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Guisen Zhao
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| |
Collapse
|
7
|
Kalash L, Val C, Azuaje J, Loza MI, Svensson F, Zoufir A, Mervin L, Ladds G, Brea J, Glen R, Sotelo E, Bender A. Computer-aided design of multi-target ligands at A 1R, A 2AR and PDE10A, key proteins in neurodegenerative diseases. J Cheminform 2017; 9:67. [PMID: 29290010 PMCID: PMC5748027 DOI: 10.1186/s13321-017-0249-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/01/2017] [Indexed: 01/30/2023] Open
Abstract
Compounds designed to display polypharmacology may have utility in treating complex diseases, where activity at multiple targets is required to produce a clinical effect. In particular, suitable compounds may be useful in treating neurodegenerative diseases by promoting neuronal survival in a synergistic manner via their multi-target activity at the adenosine A1 and A2A receptors (A1R and A2AR) and phosphodiesterase 10A (PDE10A), which modulate intracellular cAMP levels. Hence, in this work we describe a computational method for the design of synthetically feasible ligands that bind to A1 and A2A receptors and inhibit phosphodiesterase 10A (PDE10A), involving a retrosynthetic approach employing in silico target prediction and docking, which may be generally applicable to multi-target compound design at several target classes. This approach has identified 2-aminopyridine-3-carbonitriles as the first multi-target ligands at A1R, A2AR and PDE10A, by showing agreement between the ligand and structure based predictions at these targets. The series were synthesized via an efficient one-pot scheme and validated pharmacologically as A1R/A2AR-PDE10A ligands, with IC50 values of 2.4-10.0 μM at PDE10A and Ki values of 34-294 nM at A1R and/or A2AR. Furthermore, selectivity profiling of the synthesized 2-amino-pyridin-3-carbonitriles against other subtypes of both protein families showed that the multi-target ligand 8 exhibited a minimum of twofold selectivity over all tested off-targets. In addition, both compounds 8 and 16 exhibited the desired multi-target profile, which could be considered for further functional efficacy assessment, analog modification for the improvement of selectivity towards A1R, A2AR and PDE10A collectively, and evaluation of their potential synergy in modulating cAMP levels.
Collapse
Affiliation(s)
- Leen Kalash
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB21EW UK
| | - Cristina Val
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jhonny Azuaje
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María I. Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Fredrik Svensson
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB21EW UK
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB40WS UK
| | - Azedine Zoufir
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB21EW UK
| | - Lewis Mervin
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB21EW UK
- Discovery Sciences, AstraZeneca R&D, Cambridge Science Park, Cambridge, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB21QJ UK
| | - José Brea
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Robert Glen
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB21EW UK
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB21EW UK
| |
Collapse
|
8
|
Ramakrishnan C, Mary Thangakani A, Velmurugan D, Anantha Krishnan D, Sekijima M, Akiyama Y, Gromiha MM. Identification of type I and type II inhibitors of c-Yes kinase using in silico and experimental techniques. J Biomol Struct Dyn 2017; 36:1566-1576. [DOI: 10.1080/07391102.2017.1329098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600036, Tamilnadu, India
| | - Anthony Mary Thangakani
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Dhanabalan Anantha Krishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Masakazu Sekijima
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yutaka Akiyama
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
9
|
Chen LH, Kao CH, Dhole S, Barve IJ, Shen LC, Chung WS, Sun CM. Regioselective synthesis of imidazo[1,5-a]quinoxalines and methyl N-phenylbenzimidats on an ionic liquid support. RSC Adv 2016. [DOI: 10.1039/c6ra11861e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An ionic liquid supported synthesis of imidazo[1,5-a]quinoxalines and methyl N-phenylbenzimidats was explored to generate polycyclic imidazo[1,5-a]quinoxalines and methyl N-phenylbenzimidats during the cleavage of the support.
Collapse
Affiliation(s)
- Li-Hsun Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300-10
- ROC
| | - Chih-Hsien Kao
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300-10
- ROC
| | - Sandip Dhole
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300-10
- ROC
| | - Indrajeet J. Barve
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300-10
- ROC
| | - Li-Ching Shen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300-10
- ROC
| | - Wen-Sheng Chung
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300-10
- ROC
| | - Chung-Ming Sun
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300-10
- ROC
- Department of Medicinal and Applied Chemistry
| |
Collapse
|
10
|
Mamedov VA, Kalinin AA, Zhukova NA, Syakaev VV, Rizvanov IK, Latypov SK, Sinyashin OG. A short and efficient protocol for the synthesis of imidazo[1,5- a ]quinoxalin-4-ones from 3-aroylquinoxalinones and compounds with the aminomethylene moiety. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Mamedov VA, Kalinin AA. Advances in the synthesis of imidazo[1,5-a]- and imidazo[1,2-a]quinoxalines. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n09abeh004424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine. Eur J Med Chem 2014; 85:688-715. [DOI: 10.1016/j.ejmech.2014.08.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022]
|
13
|
Attanasi OA, Favi G, Giorgi G, Majer R, Perrulli FR, Santeusanio S. Access to novel imidazo[1,5-a]pyrazine scaffolds by the combined use of a three-component reaction and a base-assisted intramolecular cyclization. Org Biomol Chem 2014; 12:4610-9. [PMID: 24848196 DOI: 10.1039/c4ob00676c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel and practical two-step approach to an intriguing class of imidazo[1,5-a]pyrazines with exocyclic C=X (X = CH2, O) bonds is described. The process utilizes a sequential three-component reaction of propargyl amine or aminoester, 1,2-diaza-1,3-dienes and isothiocyanates to furnish functionalized 2-thiohydantoins which are transformed into thiohydantoin-fused tetrahydropyrazines by subsequent regioselective base-promoted cyclization.
Collapse
Affiliation(s)
- Orazio A Attanasi
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Rakov DV, Zhukova NA, Rizvanov IK, Mamedov A. Comparative Characterization of Mass Spectral Methods for the Study of IMIDAZO[1,5-a]QUINOXALIN-4-Ones. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Singla P, Luxami V, Paul K. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Adv 2014. [DOI: 10.1039/c3ra46304d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Ogunleye LO, Jester BW, Riemen AJ, Badran AH, Wang P, Ghosh I. When tight is too tight: Dasatinib and its lower affinity analogue for profiling kinase inhibitors in a three-hybrid split-luciferase system. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00275f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report new CIDs based on Dasatinib and its analogues for profiling kinase inhibitors using a split-luciferase screen.
Collapse
Affiliation(s)
- Luca O. Ogunleye
- University of Arizona
- Department of Chemistry and Biochemistry
- Tucson
- USA
| | | | | | - Ahmed H. Badran
- University of Arizona
- Department of Chemistry and Biochemistry
- Tucson
- USA
| | - Ping Wang
- University of Arizona
- Department of Chemistry and Biochemistry
- Tucson
- USA
| | - Indraneel Ghosh
- University of Arizona
- Department of Chemistry and Biochemistry
- Tucson
- USA
| |
Collapse
|
17
|
Han B, Ma X, Zhao R, Zhang J, Wei X, Liu X, Liu X, Zhang C, Tan C, Jiang Y, Chen Y. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries. Chem Cent J 2012; 6:139. [PMID: 23173901 PMCID: PMC3538513 DOI: 10.1186/1752-153x-6-139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/07/2012] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED BACKGROUND Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. RESULTS We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. CONCLUSIONS SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.
Collapse
Affiliation(s)
- Bucong Han
- The Key Laboratory of Chemical Biology, Guangdong Province, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, People’s Republic of China
- Computation and Systems Biology, Singapore-MIT Alliance, National University of Singapore, E4-04-10, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Bioinformatics and Drug Design Group, Department of Pharmacy, Centre for Computational Science and Engineering, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Xiaohua Ma
- Bioinformatics and Drug Design Group, Department of Pharmacy, Centre for Computational Science and Engineering, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Ruiying Zhao
- Central Research Institute of China Chemical Science and Technology, 20 Xueyuan Road, Haidian District, Beijing, 100083, People’s Republic of China
| | - Jingxian Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, Centre for Computational Science and Engineering, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Xiaona Wei
- Computation and Systems Biology, Singapore-MIT Alliance, National University of Singapore, E4-04-10, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Bioinformatics and Drug Design Group, Department of Pharmacy, Centre for Computational Science and Engineering, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Xianghui Liu
- Bioinformatics and Drug Design Group, Department of Pharmacy, Centre for Computational Science and Engineering, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Xin Liu
- Bioinformatics and Drug Design Group, Department of Pharmacy, Centre for Computational Science and Engineering, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Cunlong Zhang
- The Key Laboratory of Chemical Biology, Guangdong Province, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Chunyan Tan
- The Key Laboratory of Chemical Biology, Guangdong Province, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Yuyang Jiang
- The Key Laboratory of Chemical Biology, Guangdong Province, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Yuzong Chen
- The Key Laboratory of Chemical Biology, Guangdong Province, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, People’s Republic of China
- Computation and Systems Biology, Singapore-MIT Alliance, National University of Singapore, E4-04-10, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Bioinformatics and Drug Design Group, Department of Pharmacy, Centre for Computational Science and Engineering, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore, 117543, Singapore
| |
Collapse
|
18
|
Pastor J, Rodríguez-Arístegui S, Hernández AI, Varela C, Salgado A, Martínez S. New use of bis(benzotriazolyl)-1,2-(dialkylamino)ethanes for the synthesis of 2-H-3-dialkylamino imidazo[1,2-a]pyrazine derivatives. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.12.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Kim KH, Maderna A, Schnute ME, Hegen M, Mohan S, Miyashiro J, Lin L, Li E, Keegan S, Lussier J, Wrocklage C, Nickerson-Nutter CL, Wittwer AJ, Soutter H, Caspers N, Han S, Kurumbail R, Dunussi-Joannopoulos K, Douhan J, Wissner A. Imidazo[1,5-a]quinoxalines as irreversible BTK inhibitors for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett 2011; 21:6258-63. [DOI: 10.1016/j.bmcl.2011.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/26/2011] [Accepted: 09/02/2011] [Indexed: 01/28/2023]
|
20
|
Abstract
IMPORTANCE OF THE FIELD Inflammatory diseases are one of the major health issues and have become a major focus in the pharmaceutical and biotech industries. To date, drugs prescribed for treatment of these diseases target enzymes that are not specific to the immune system resulting in adverse effects. The main challenge of this research field is, therefore, identifying targets that act specifically on the diseased tissue. AREAS COVERED IN THIS REVIEW This review summarizes drug discovery efforts on kinases that have been identified as key players mediating inflammation and autoimmune disorders. In particular, we discuss recent developments on well-established targets such as mammalian target of rapamycin, JAK3, spleen tyrosine kinase, p38α and lymphocyte specific kinase but provide also a perspective on emerging targets. WHAT THE READER WILL GAIN The reader will obtain an overview of drug discovery efforts on kinases in inflammation, recent clinical and preclinical data and developed inhibitor scaffolds. In addition, the reader will be updated on issues in target validation of current drug targets and the potential of selected novel kinase targets in this important disease area. TAKE HOME MESSAGE Cellular signaling networks that regulate inflammatory response are still poorly understood making rational selection of targets challenging. Recent data suggest that kinase targets that are specific to the immune system and mediate signals immediately downstream of surface receptors are most efficacious in the clinic.
Collapse
Affiliation(s)
- Susanne Müller
- University of Oxford, Structural Genomics Consortium (SGC), Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, UK + 44 1865 617584 ; + 44 1865 617575 ;
| | | |
Collapse
|
21
|
Regioselective functionalization of 2-(2′-fluorophenyl)-3-cyanopyridine and its cyclization to benzo[h]-1,6-naphthyridines. Tetrahedron 2010. [DOI: 10.1016/j.tet.2009.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Takayama T, Umemiya H, Amada H, Yabuuchi T, Shiozawa F, Katakai H, Takaoka A, Yamaguchi A, Endo M, Sato M. Pyrrole derivatives as potent inhibitors of lymphocyte-specific kinase: Structure, synthesis, and SAR. Bioorg Med Chem Lett 2009; 20:108-11. [PMID: 19945869 DOI: 10.1016/j.bmcl.2009.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 01/08/2023]
Abstract
We have described the synthesis, enzyme inhibitory activity, structure-activity relationships, and proposed binding mode of a novel series of pyrrole derivatives as lymphocyte-specific kinase (Lck) inhibitors. The most potent analogs exhibited good enzyme inhibitory activity (IC(50)s <10nM) for Lck kinase inhibition.
Collapse
Affiliation(s)
- Tetsuo Takayama
- Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd, 403, Yoshino-Cho 1-Chome, Kita-Ku, Saitama-Shi, Saitama 331-9530, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Takayama T, Umemiya H, Amada H, Yabuuchi T, Koami T, Shiozawa F, Oka Y, Takaoka A, Yamaguchi A, Endo M, Sato M. Ring-fused pyrazole derivatives as potent inhibitors of lymphocyte-specific kinase (Lck): Structure, synthesis, and SAR. Bioorg Med Chem Lett 2009; 20:112-6. [PMID: 19945867 DOI: 10.1016/j.bmcl.2009.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 11/30/2022]
Abstract
We have identified a novel series of ring-fused pyrazole derivatives as lymphocyte-specific kinase (Lck) inhibitors. The most potent analogs exhibited good enzyme inhibitory activity (IC(50)s <1nM) as well as excellent cellular activity against mixed lymphocyte reaction (MLR) (IC(50)s <1nM).
Collapse
Affiliation(s)
- Tetsuo Takayama
- Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd, 403, Yoshino-Cho 1-Chome, Kita-Ku, Saitama-Shi, Saitama 331-9530, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deleuze-Masquefa C, Moarbess G, Khier S, David N, Gayraud-Paniagua S, Bressolle F, Pinguet F, Bonnet PA. New imidazo[1,2-a]quinoxaline derivatives: Synthesis and in vitro activity against human melanoma. Eur J Med Chem 2009; 44:3406-11. [DOI: 10.1016/j.ejmech.2009.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/26/2009] [Accepted: 02/12/2009] [Indexed: 11/24/2022]
|
25
|
Hunt JA, Beresis RT, Goulet JL, Holmes MA, Hong XJ, Kovacs E, Mills SG, Ruzek RD, Wong F, Hermes JD, Park YW, Salowe SP, Sonatore LM, Wu L, Woods A, Zaller DM, Sinclair PJ. Disubstituted pyrimidines as Lck inhibitors. Bioorg Med Chem Lett 2009; 19:5440-3. [PMID: 19674899 DOI: 10.1016/j.bmcl.2009.07.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 11/27/2022]
Abstract
We have developed a family of 4-benzimidazolyl-N-piperazinethyl-pyrimidin-2-amines that are subnanomolar inhibitors of Lck. A subset of these Lck inhibitors, with heterocyclic substituents at the benzimidazole C5, are also low-nanomolar inhibitors of cellular IL2 release.
Collapse
Affiliation(s)
- Julianne A Hunt
- Merck Research Laboratories, Merck & Co., PO Box 2000, Rahway, NJ 07065, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sharma S, Kundu B. Application of the Modified Pictet−Spengler Cyclization Reaction for the Preparation of an Imidazopyrazine Ring: Synthesis of new Pyrido- and Pyrimido-imidazopyrazines. ACTA ACUST UNITED AC 2009; 11:720-31. [PMID: 19435370 DOI: 10.1021/cc9000345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sunil Sharma
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226001, India
| | - Bijoy Kundu
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226001, India
| |
Collapse
|
27
|
Liew CY, Ma XH, Liu X, Yap CW. SVM Model for Virtual Screening of Lck Inhibitors. J Chem Inf Model 2009; 49:877-85. [DOI: 10.1021/ci800387z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chin Y. Liew
- Pharmaceutical Data Exploration Laboratory, Department of Pharmacy, National University of Singapore, and Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore
| | - Xiao H. Ma
- Pharmaceutical Data Exploration Laboratory, Department of Pharmacy, National University of Singapore, and Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore
| | - Xianghui Liu
- Pharmaceutical Data Exploration Laboratory, Department of Pharmacy, National University of Singapore, and Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore
| | - Chun W. Yap
- Pharmaceutical Data Exploration Laboratory, Department of Pharmacy, National University of Singapore, and Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore
| |
Collapse
|
28
|
Abstract
Recent advances in our understanding of the mechanisms of T-cell activation, migration to inflammatory sites, and pathologic disease processes triggered the development of a wide variety of T-cell-targeted signaling inhibitors, which have different targets and modes of action. Depending on the distribution and the role of targets in disease processes, T-cell inhibitors exhibit different levels of efficacy and potential side effects. This review outlines target molecules to which T-cell inhibitors have been developed, their efficacy, and potential safety concerns of T-cell inhibitors.
Collapse
Affiliation(s)
- Jonghwa Won
- Molecular Immunology Division, Mogam Biotechnology Research Institute, Gyounggi-Do, South Korea.
| | | |
Collapse
|
29
|
Discovery of potent and cell-active allosteric dual Akt 1 and 2 inhibitors. Bioorg Med Chem Lett 2008; 18:4186-90. [PMID: 18539456 DOI: 10.1016/j.bmcl.2008.05.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 11/21/2022]
Abstract
This paper describes the improvement of cell potency in a class of allosteric Akt 1 and 2 inhibitors. Key discoveries include identifying the solvent exposed region of the molecule and appending basic amines to enhance the physiochemical properties of the molecules. Findings from the structure-activity relationships are discussed.
Collapse
|
30
|
DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Chai L, Chaffee SC, Deak HL, Epstein LF, Faust T, Gallant P, Gore A, Gu Y, Henkle B, Hsieh F, Huang X, Kim JL, Lee JH, Martin MW, McGowan DC, Metz D, Mohn D, Morgenstern KA, Oliveira-dos-Santos A, Patel VF, Powers D, Rose PE, Schneider S, Tomlinson SA, Tudor YY, Turci SM, Welcher AA, Zhao H, Zhu L, Zhu X. Structure-Guided Design of Aminopyrimidine Amides as Potent, Selective Inhibitors of Lymphocyte Specific Kinase: Synthesis, Structure–Activity Relationships, and Inhibition of in Vivo T Cell Activation. J Med Chem 2008; 51:1681-94. [DOI: 10.1021/jm7010996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Erin F. DiMauro
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - John Newcomb
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Joseph J. Nunes
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Jean E. Bemis
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Christina Boucher
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Lilly Chai
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Stuart C. Chaffee
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Holly L. Deak
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Linda F. Epstein
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Ted Faust
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Paul Gallant
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Anu Gore
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Yan Gu
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Brad Henkle
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Faye Hsieh
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Xin Huang
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Joseph L. Kim
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Josie H. Lee
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Matthew W. Martin
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - David C. McGowan
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Daniela Metz
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Deanna Mohn
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Kurt A. Morgenstern
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Antonio Oliveira-dos-Santos
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Vinod F. Patel
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - David Powers
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Paul E. Rose
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Stephen Schneider
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Susan A. Tomlinson
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Yan-Yan Tudor
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Susan M. Turci
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Andrew A. Welcher
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Huilin Zhao
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Li Zhu
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Xiaotian Zhu
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| |
Collapse
|
31
|
Martin MW, Newcomb J, Nunes JJ, Boucher C, Chai L, Epstein LF, Faust T, Flores S, Gallant P, Gore A, Gu Y, Hsieh F, Huang X, Kim JL, Middleton S, Morgenstern K, Oliveira-dos-Santos A, Patel VF, Powers D, Rose P, Tudor Y, Turci SM, Welcher AA, Zack D, Zhao H, Zhu L, Zhu X, Ghiron C, Ermann M, Johnston D, Saluste CGP. Structure-based design of novel 2-amino-6-phenyl-pyrimido[5',4':5,6]pyrimido[1,2-a]benzimidazol-5(6H)-ones as potent and orally active inhibitors of lymphocyte specific kinase (Lck): synthesis, SAR, and in vivo anti-inflammatory activity. J Med Chem 2008; 51:1637-48. [PMID: 18278858 DOI: 10.1021/jm701095m] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lck, or lymphocyte specific kinase, is a cytoplasmic tyrosine kinase of the Src family expressed in T-cells and NK cells. Genetic evidence from knockout mice and human mutations demonstrates that Lck kinase activity is critical for T-cell receptor-mediated signaling, leading to normal T-cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T-cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. In this paper, we describe the structure-guided design, synthesis, structure-activity relationships, and pharmacological characterization of 2-amino-6-phenylpyrimido[5',4':5,6]pyrimido[1,2- a]benzimidazol-5(6 H)-ones, a new class of compounds that are potent inhibitors of Lck. The most promising compound of this series, 6-(2,6-dimethylphenyl)-2-((4-(4-methyl-1-piperazinyl)phenyl)amino)pyrimido[5',4':5,6]pyrimido-[1,2- a]benzimidazol-5(6 H)-one ( 25), exhibits potent inhibition of Lck kinase activity. This activity translates into inhibition of in vitro cell-based assays and in vivo models of T-cell activation and arthritis, respectively.
Collapse
Affiliation(s)
- Matthew W Martin
- Department of Medicinal Chemistry, Amgen Inc., One Kendall Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Deak HL, Newcomb JR, Nunes JJ, Boucher C, Cheng AC, DiMauro EF, Epstein LF, Gallant P, Hodous BL, Huang X, Lee JH, Patel VF, Schneider S, Turci SM, Zhu X. N-(3-(Phenylcarbamoyl)arylpyrimidine)-5-carboxamides as potent and selective inhibitors of Lck: Structure, synthesis and SAR. Bioorg Med Chem Lett 2008; 18:1172-6. [DOI: 10.1016/j.bmcl.2007.11.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 12/11/2022]
|
33
|
DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Buchanan JL, Buckner WH, Cheng A, Faust T, Hsieh F, Huang X, Lee JH, Marshall TL, Martin MW, McGowan DC, Schneider S, Turci SM, White RD, Zhu X. Discovery of 4-amino-5,6-biaryl-furo[2,3-d]pyrimidines as inhibitors of Lck: development of an expedient and divergent synthetic route and preliminary SAR. Bioorg Med Chem Lett 2007; 17:2305-9. [PMID: 17280833 DOI: 10.1016/j.bmcl.2007.01.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/12/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
4-Amino-5,6-biaryl-furo[2,3-d]pyrimidines were identified as potent non-selective inhibitors of Lck. A novel, divergent, and practical synthetic route was developed to access derivatives from bifunctional intermediates. Lead optimization was guided by X-ray crystallographic data, and preliminary SAR led to the identification of compounds with improved cellular potency and selectivity.
Collapse
Affiliation(s)
- Erin F DiMauro
- Department of Medicinal Chemistry, Amgen Inc., One Kendall Square, Building 1000, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martin MW, Newcomb J, Nunes JJ, Bemis JE, McGowan DC, White RD, Buchanan JL, DiMauro EF, Boucher C, Faust T, Hsieh F, Huang X, Lee JH, Schneider S, Turci SM, Zhu X. Discovery of novel 2,3-diarylfuro[2,3-b]pyridin-4-amines as potent and selective inhibitors of Lck: synthesis, SAR, and pharmacokinetic properties. Bioorg Med Chem Lett 2007; 17:2299-304. [PMID: 17276681 DOI: 10.1016/j.bmcl.2007.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/12/2007] [Accepted: 01/12/2007] [Indexed: 11/18/2022]
Abstract
2,3-Diarylfuro[2,3-b]pyridine-4-amines are a novel class of potent and selective inhibitors of Lck. The discovery, synthesis, and structure activity relationships of this series of inhibitors are reported. The most promising compounds were also profiled to deduce their pharmacokinetic properties.
Collapse
Affiliation(s)
- Matthew W Martin
- Department of Medicinal Chemistry, Amgen Inc., One Kendall Square, Building 1000, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Morjaria S, Deleuze-Masquefa C, Lafont V, Gayraud S, Bompart J, Bonnet PA, Dornand J. Impairment of TNF-alpha production and action by imidazo[1,2- alpha] quinoxalines, a derivative family which displays potential anti-inflammatory properties. Int J Immunopathol Pharmacol 2006; 19:525-38. [PMID: 17026837 DOI: 10.1177/039463200601900308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In a previous study, we analysed the synthesis and properties of a series of imidazo[1,2-alpha]quinoxalines designed in our laboratory as possible imiquimod analogues. We found that these imidazo[1,2-alpha]quinoxalines were in fact potent inhibitors of phosphodiesterase 4 enzymes (PDE4). PDE4 inhibition normally results in an increase in intracellular cAMP which, in PBMC, induces the suppression of TNF-alpha mRNA transcription and thus cytokine synthesis. Such an effect is antagonistic to that of imiquimod. Furthermore, some TNF-alpha-induced activity, such as cell apoptosis which is dependent on the intracellular cAMP levels might also be affected. Therefore, by counteracting the properties of TNF-alpha and/or its production, the imidazo[1,2-alpha]quinoxalines could be considered as potential anti-inflammatory drugs. The present study was performed to confirm or refute this hypothesis. For this, we characterized the effects of imidazo[1,2-alpha]quinoxalines both on TNF-alpha activity and synthesis in regard to their ability to act as inhibitors of PDE4 (IPDE4). We found that the imidazo[1,2-alpha]quinoxalines dose-dependently prevented the TNF-alpha-triggered death of L929 cells, with the 8-series (-NHCH3 in R4) being the most potent. Moreover, when the effect of the 8-series on TNF-alpha production was investigated using gamma9delta2 T cells, it was observed that these compounds impaired the TCR:CD3-triggered TNF-alpha production. Structure-activity analysis revealed that these properties of the drugs did not coincide with their IPDE4 properties. This prompted further exploration into other signalling mechanisms possibly involved in TNF-alpha action and production, notably the p38 MAPK and the PI3K pathway. We demonstrate here that the imidazo[1,2-alpha]quinoxalines targeted these pathways in a different way: they activated the p38 MAPK pathway whilst inhibiting the PI3K pathway. Such effects on cell signalling could account for the imidazo[1,2-alpha]quinoxalines effects on 1) action and 2) production of TNF-alpha, which define these drugs as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- S Morjaria
- INSERM U431, University of Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Mukaiyama H, Nishimura T, Kobayashi S, Ozawa T, Kamada N, Komatsu Y, Kikuchi S, Oonota H, Kusama H. Synthesis and c-Src inhibitory activity of imidazo[1,5-a]pyrazine derivatives as an agent for treatment of acute ischemic stroke. Bioorg Med Chem 2006; 15:868-85. [PMID: 17095233 DOI: 10.1016/j.bmc.2006.10.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/18/2006] [Accepted: 10/20/2006] [Indexed: 12/20/2022]
Abstract
We synthesized and evaluated a series of C-5 substituted imidazo[1,5-a]pyrazine derivatives to identify potent c-Src inhibitors as potential therapeutic agents for acute ischemic stroke. Among these compounds, compound 14c.HCl demonstrated remarkable central nervous system (CNS) penetration and significant neuroprotective efficacy in vivo in rat models.
Collapse
Affiliation(s)
- Harunobu Mukaiyama
- Central Research Laboratory, Kissei Pharmaceutical Company Ltd, 4365-1, Azumino-city, Nagano 399-8304, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thanasekaran P, Liao RT, Manimaran B, Liu YH, Chou PT, Rajagopal S, Lu KL. Photoluminescence Electron-Transfer Quenching of Rhenium(I) Rectangles with Amines. J Phys Chem A 2006; 110:10683-9. [PMID: 16970357 DOI: 10.1021/jp060391p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron-transfer (ET) reactions from aromatic amines to excited states of rhenium(I)-based molecular rectangles [{Re(CO)3(mu-bpy)Br}{Re(CO)3(mu-L)Br}]2 (bpy = 4,4'-bipyridine, L = 4,4'-dipyridylacetylene (dpa), I; L = 4,4'-dipyridylbutadiyne (dpb), II; and L = 1,4-bis(4'-pyridylethynyl)benzene (bpeb), III) were investigated in a dichloromethane solution using luminescence quenching techniques. Direct evidence for the ET reaction was obtained from the detection of the amine cation radical in this system using time-resolved transient absorption spectroscopy. The values of the luminescence quenching rate constants, kq, of the 3MLCT excited state of Re(I) rectangles with amines were found to be higher than those for the monomeric Re(I) complexes and other Re(I)-based metallacyclophanes. The observed kq values were correlated well with the driving force (Delta G degrees) for the ET reactions. In addition, a semiclassical theory of ET was successfully applied to the photoluminescence quenching of Re(I) rectangles with amines.
Collapse
Affiliation(s)
- P Thanasekaran
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Knight ZA, Shokat KM. Features of Selective Kinase Inhibitors. ACTA ACUST UNITED AC 2005; 12:621-37. [PMID: 15975507 DOI: 10.1016/j.chembiol.2005.04.011] [Citation(s) in RCA: 512] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 11/19/2022]
Abstract
Small-molecule inhibitors of protein and lipid kinases have emerged as indispensable tools for studying signal transduction. Despite the widespread use of these reagents, there is little consensus about the biochemical criteria that define their potency and selectivity in cells. We discuss some of the features that determine the cellular activity of kinase inhibitors and propose a framework for interpreting inhibitor selectivity.
Collapse
Affiliation(s)
- Zachary A Knight
- Program in Chemistry and Chemical Biology, University of California-San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
39
|
Chen P, Norris D, Das J, Spergel SH, Wityak J, Leith L, Zhao R, Chen BC, Pitt S, Pang S, Shen DR, Zhang R, De Fex HF, Doweyko AM, McIntyre KW, Shuster DJ, Behnia K, Schieven GL, Barrish JC. Discovery of novel 2-(aminoheteroaryl)-thiazole-5-carboxamides as potent and orally active Src-family kinase p56Lck inhibitors. Bioorg Med Chem Lett 2004; 14:6061-6. [PMID: 15546730 DOI: 10.1016/j.bmcl.2004.09.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 09/22/2004] [Accepted: 09/22/2004] [Indexed: 11/22/2022]
Abstract
A series of substituted 2-(aminoheteroaryl)-thiazole-5-carboxamide analogs have been synthesized as novel, potent inhibitors of the Src-family kinase p56Lck. Among them, compound 2 displayed superior in vitro potency and excellent in vivo efficacy.
Collapse
Affiliation(s)
- Ping Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 4000, Princeton, NJ 08543-4000, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|