1
|
Ni G, Du Y, Tang F, Liu J, Zhao H, Chen Q. Review of α-nucleosides: from discovery, synthesis to properties and potential applications. RSC Adv 2019; 9:14302-14320. [PMID: 35519323 PMCID: PMC9064229 DOI: 10.1039/c9ra01399g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023] Open
Abstract
Nucleic acids play an important role in the genetic process of organisms; nucleosides, the building block of nucleic acids, typically exist in nature in a β configuration. As an anomer of β-nucleoside, α-nucleoside is extremely rare in nature. Because of their unique and interesting properties such as high stability, specific parallel double-stranded structure and some other biochemical properties, α-nucleosides have attracted wide attention. Various methods including but not limited to the mercuri procedure, fusion reaction and Vorbrüggen glycosylation have been used to synthesize α-nucleosides and their derivatives. However, to the best of our knowledge, there is no review that has summarized these works. Therefore, we systematically review the discovery, synthesis, properties, and potential applications of α-nucleosides in this article and look to provide a reference for subsequent studies in the coming years.
Collapse
Affiliation(s)
- Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yuqi Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Fan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
2
|
Schweifer A, Maier F, Ehrlichmann W, Lamparter D, Kneilling M, Pichler BJ, Hammerschmidt F, Reischl G. [ 18F]Fluoro-azomycin-2´-deoxy-β-d-ribofuranoside - A new imaging agent for tumor hypoxia in comparison with [ 18F]FAZA. Nucl Med Biol 2016; 43:759-769. [PMID: 27693670 DOI: 10.1016/j.nucmedbio.2016.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Radiolabeled 2-nitroimidazoles (azomycins) are a prominent class of biomarkers for PET imaging of hypoxia. [18F]Fluoro-azomycin-α-arabinoside ([18F]FAZA) - already in clinical use - may be seen as α-configuration nucleoside, but enters cells only via diffusion and is not transported by cellular nucleoside transporters. To enhance image contrast in comparison to [18F]FAZA our objective was to 18F-radiolabel an azomycin-2´-deoxyriboside with β-configuration ([18F]FAZDR, [18F]-β-8) to mimic nucleosides more closely and comparatively evaluate it versus [18F]FAZA. METHODS Precursor and cold standards for [18F]FAZDR were synthesized from methyl 2-deoxy-d-ribofuranosides α- and β-1 in 6 steps yielding precursors α- and β-5. β-5 was radiolabeled in a GE TRACERlab FXF-N synthesizer in DMSO and deprotected with NH4OH to give [18F]FAZDR ([18F]-β-8). [18F]FAZA or [18F]FAZDR was injected in BALB/c mice bearing CT26 colon carcinoma xenografts, PET scans (10min) were performed after 1, 2 and 3h post injection (p.i.). On a subset of mice injected with [18F]FAZDR, we analyzed biodistribution. RESULTS [18F]FAZDR was obtained in non-corrected yields of 10.9±2.4% (9.1±2.2GBq, n=4) 60min EOB, with radiochemical purity >98% and specific activity >50GBq/μmol. Small animal PET imaging showed a decrease in uptake over time for both [18F]FAZDR (1h p.i.: 0.56±0.22% ID/cc, 3h: 0.17±0.08% ID/cc, n=9) and [18F]FAZA (1h: 1.95±0.59% ID/cc, 3h: 0.87±0.55% ID/cc), whereas T/M ratios were significantly higher for [18F]FAZDR at 1h (2.76) compared to [18F]FAZA (1.69, P<0.001), 3h p.i. ratios showed no significant difference. Moreover, [18F]FAZDR showed an inverse correlation between tracer uptake in carcinomas and oxygen breathing, while muscle tissue uptake was not affected by switching from air to oxygen. CONCLUSIONS First PET imaging results with [18F]FAZDR showed advantages over [18F]FAZA regarding higher tumor contrast at earlier time points p.i. Availability of precursor and cold fluoro standard together with high output radiosynthesis will allow for a more detailed quantitative evaluation of [18F]FAZDR, especially with regard to mechanistic studies whether active transport processes are involved, compared to passive diffusion as observed for [18F]FAZA.
Collapse
Affiliation(s)
- Anna Schweifer
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Florian Maier
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Walter Ehrlichmann
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Denis Lamparter
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany; Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | | | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Synthesis of [¹⁸F]-labelled maltose derivatives as PET tracers for imaging bacterial infection. Mol Imaging Biol 2015; 17:168-76. [PMID: 25277604 DOI: 10.1007/s11307-014-0793-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To develop novel positron emission tomography (PET) agents for visualization and therapy monitoring of bacterial infections. PROCEDURES It is known that maltose and maltodextrins are energy sources for bacteria. Hence, (18)F-labelled maltose derivatives could be a valuable tool for imaging bacterial infections. We have developed methods to synthesize 4-O-(α-D-glucopyranosyl)-6-deoxy-6-[(18)F]fluoro-D-glucopyranoside (6-[(18)F]fluoromaltose) and 4-O-(α-D-glucopyranosyl)-1-deoxy-1-[(18)F]fluoro-D-glucopyranoside (1-[(18)F]fluoromaltose) as bacterial infection PET imaging agents. 6-[(18)F]fluoromaltose was prepared from precursor 1,2,3-tri-O-acetyl-4-O-(2',3',-di-O-acetyl-4',6'-benzylidene-α-D-glucopyranosyl)-6-deoxy-6-nosyl-D-glucopranoside (5). The synthesis involved the radio-fluorination of 5 followed by acidic and basic hydrolysis to give 6-[(18)F]fluoromaltose. In an analogous procedure, 1-[(18)F]fluoromaltose was synthesized from 2,3, 6-tri-O-acetyl-4-O-(2',3',4',6-tetra-O-acetyl-α-D-glucopyranosyl)-1-deoxy-1-O-triflyl-D-glucopranoside (9). Stability of 6-[(18)F]fluoromaltose in phosphate-buffered saline (PBS) and human and mouse serum at 37 °C was determined. Escherichia coli uptake of 6-[(18)F]fluoromaltose was examined. RESULTS A reliable synthesis of 1- and 6-[(18)F]fluoromaltose has been accomplished with 4-6 and 5-8% radiochemical yields, respectively (decay-corrected with 95 % radiochemical purity). 6-[(18)F]fluoromaltose was sufficiently stable over the time span needed for PET studies (∼96% intact compound after 1-h and ∼65% after 2-h incubation in serum). Bacterial uptake experiments indicated that E. coli transports 6-[(18)F]fluoromaltose. Competition assays showed that the uptake of 6-[(18)F]fluoromaltose was completely blocked by co-incubation with 1 mM of the natural substrate maltose. CONCLUSION We have successfully synthesized 1- and 6-[(18)F]fluoromaltose via direct fluorination of appropriate protected maltose precursors. Bacterial uptake experiments in E. coli and stability studies suggest a possible application of 6-[(18)F]fluoromaltose as a new PET imaging agent for visualization and monitoring of bacterial infections.
Collapse
|
4
|
Braitsch M, Kählig H, Kontaxis G, Fischer M, Kawada T, Konrat R, Schmid W. Synthesis of fluorinated maltose derivatives for monitoring protein interaction by (19)F NMR. Beilstein J Org Chem 2012; 8:448-55. [PMID: 22509216 PMCID: PMC3326624 DOI: 10.3762/bjoc.8.51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/08/2012] [Indexed: 12/05/2022] Open
Abstract
A novel reporter system, which is applicable to the 19F NMR investigation of protein interactions, is presented. This approach uses 2-F-labeled maltose as a spy ligand to indirectly probe protein–ligand or protein–protein interactions of proteins fused or tagged to the maltose-binding protein (MBP). The key feature is the simultaneous NMR observation of both 19F NMR signals of gluco/manno-type-2-F-maltose-isomers; one isomer (α-gluco-type) binds to MBP and senses the protein interaction, and the nonbinding isomers (β-gluco- and/or α/β-manno-type) are utilized as internal references. Moreover, this reporter system was used for relative affinity studies of fluorinated and nonfluorinated carbohydrates to the maltose-binding protein, which were found to be in perfect agreement with published X-ray data. The results of the NMR competition experiments together with the established correlation between 19F chemical shift data and molecular interaction patterns, suggest valuable applications for studies of protein–ligand interaction interfaces.
Collapse
Affiliation(s)
- Michaela Braitsch
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
5
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
6
|
|
7
|
Narayanasamy J, Pullagurla MR, Sharon A, Wang J, Schinazi RF, Chu CK. Synthesis and anti-HIV activity of (-)-beta-D-(2R,4R)-1,3-dioxolane-2,6-diamino purine (DAPD) (amdoxovir) and (-)-beta-D-(2R,4R)-1,3-dioxolane guanosine (DXG) prodrugs. Antiviral Res 2007; 75:198-209. [PMID: 17532483 PMCID: PMC2025703 DOI: 10.1016/j.antiviral.2007.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 02/01/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Prodrugs of (-)-beta-D-(2R,4R)-1,3-dioxolane-2,6-diamino purine (DAPD), organic salts of DAPD, 5'-L-valyl DAPD and N-1 substituted (-)-beta-D-(2R,4R)-1,3-dioxolane guanosine (DXG) have been synthesized with the objective of finding molecules which might be superior to DAPD and DXG in solubility as well as pharmacologic profiles. Synthesized prodrugs were evaluated for anti-HIV activity against HIV-1(LAI) in primary human lymphocytes (PBM cells) as well as their cytotoxicity in PBM, CEM and Vero cells. DAPD prodrugs, modified at the C6 position of the purine ring, demonstrated several folds of enhanced anti-HIV activity in comparison to the parent compound DAPD without increasing the toxicity. The presence of alkyl amino groups at the C6 position of the purine ring increased the antiviral potency several folds, and the most potent compound (-)-beta-D-(2R,4R)-1,3-dioxolane-2-amino-6-aminoethyl purine (8) was 17 times more potent than that of DAPD. 5'-L-Valyl DAPD 20 and organic acid salts 21-24 also exhibited enhanced anti-HIV activity in comparison to DAPD, while DXG prodrugs 16 and 17 exhibited lower potency than that of DXG or DAPD.
Collapse
|
8
|
Joubert S, McNicoll N, De Léan A. Biochemical and pharmacological characterization of P-site inhibitors on homodimeric guanylyl cyclase domain from natriuretic peptide receptor-A. Biochem Pharmacol 2006; 73:954-63. [PMID: 17196175 DOI: 10.1016/j.bcp.2006.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/19/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Guanylyl cyclases catalyze the formation of cGMP from GTP. This family of enzymes includes soluble (sGC) and particulate guanylyl cyclases (pGC). The sGC are heterodimers containing one active catalytic site and one inactive pseudo-site. They are activated by nitric oxide. The pGC are homodimers whose activity is notably regulated by peptide binding to the extracellular domain and by ATP binding to the intracellular kinase homology domain (KHD). The catalytic mechanism of the pGC is still not well understood. Homology modeling of the structure of the homodimeric guanylyl cyclase domain, based on the crystal structure of adenylyl cyclase, suggests the existence of two functional sites for the substrate GTP. We used a purified and fully active recombinant catalytic domain from mammalian pGC, to document its enzyme kinetics properties in the absence of the KHD. The enzyme presents positive cooperativity with the substrate Mg-GTP. However, a heterodimeric catalytic domain mutant (GC-HET) containing only one active catalytic site is non-cooperative and is more similar to sGC. Structure-activity studies of purine nucleoside analogs indicate that 2'd3'GMP is the most potent inhibitor of pGC tested. It displays mixed non-competitive inhibition properties that are potentiated by the second catalytic product inorganic pyrophosphate (PPi). It appears to be equivalent to purinergic site (P-site) inhibitors characterized on particulate adenylyl cyclase. Inhibition of pGC by 2'd3'GMP in the presence of PPi is accompanied by a loss of cooperative enzyme kinetics. These results are best explained by an allosteric dimer model with positive cooperativity for both the substrate and inhibitors.
Collapse
Affiliation(s)
- Simon Joubert
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3T 1J4
| | | | | |
Collapse
|
9
|
Dong S, Paquette LA. Highly Stereoselective β-Anomeric Glycosidation of a 2‘-Deoxy Syn-5‘-Configured 4‘-Spironucleoside. J Org Chem 2006; 71:1647-52. [PMID: 16468819 DOI: 10.1021/jo052324h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct enantioselective pathway that delivers exclusively the beta-anomer of a 4'-spironucleoside has been successfully developed. The key starting material is the enantiomerically pure dihydroxy lactone 19, which has proven amenable to conversion to glycal 22 via the chloro acetonide. This intermediate is then capped as the 3,5-O-(tetraisopropyldisiloxane-1,3-diyl) glycal. The latter can enter into N-iodosuccinimide-promoted glycosidation with persilylated thymine. Only the beta anomer is formed. Ensuing deiodination and desilylation proceed quantitatively to furnish the targeted, previously elusive anomer.
Collapse
Affiliation(s)
- Shuzhi Dong
- Evans Chemical Laboratories, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
10
|
Dong S, Paquette LA. Stereoselective Synthesis of Conformationally Constrained 2‘-Deoxy-4‘-thia β-Anomeric Spirocyclic Nucleosides Featuring Either Hydroxyl Configuration at C5‘. J Org Chem 2005; 70:1580-96. [PMID: 15730276 DOI: 10.1021/jo048071u] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An enantioselective approach to 2'-deoxy-4'-thia spirocyclic nucleosides featuring an alpha- or beta-hydroxyl substituent at C-5' of the carbocyclic ring is detailed. The starting point is the mandelate acetal 8. The overall strategy involves the stereocontrolled dihydroxylation of this dihydrothiophene, subsequent generation of the keto acetonide 12 followed by its Meerwein-Ponndorf-Verley reduction and beta-elimination, protection of the resulting dihydroxy thiaglycal, electrophilic glycosidation according to the Haraguchi protocol, reductive removal of the phenylseleno group, and end-game global deprotection. Acquisition of the alpha- and beta-5'-isomers is equally facile. Various 1D and 2D NMR techniques are used for assigning configuration.
Collapse
Affiliation(s)
- Shuzhi Dong
- Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
11
|
Paquette LA, Seekamp CK, Kahane AL, Hilmey DG, Gallucci J. Stereochemical Features of Lewis Acid-Promoted Glycosidations Involving 4‘-Spiroannulated DNA Building Blocks. J Org Chem 2004; 69:7442-7. [PMID: 15497968 DOI: 10.1021/jo048904g] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tin tetrachloride-catalyzed glycosidation of persilylated nucleobases with acetate donor 6 in CH(2)Cl(2) solution followed by deprotection gave rise very predominantly to alpha-spironucleosides. These stereochemical assignments stem from the determination of NOE interactions and an X-ray crystallographic analysis of the latter product. Computational studies revealed that these results are consistent with the fact that the C5' substituent shields the beta-face of the oxonium ion involved in the coupling reaction while the C3' substituent is projected away from the alpha-underside. Attack from the more open direction is therefore kinetically favored. Entirely comparable calculations suggested that donor 19 should behave comparably. Experimentation involving this donor gave results consistent with this model although more equitable alpha/beta spironucleoside product ratios were seen when acetonitrile was employed as the reaction medium.
Collapse
Affiliation(s)
- Leo A Paquette
- Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | |
Collapse
|