1
|
Aryan, Babu B, Divakar S, Gowramma B, Jupudi S, Chand J, Malakar Kumar V. Rational design of thiazolidine-4-one-gallic acid hybrid derivatives as selective partial PPARγ modulators: an in-silico approach for type 2 diabetes treatment. J Biomol Struct Dyn 2025; 43:694-708. [PMID: 37997952 DOI: 10.1080/07391102.2023.2283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Type 2 diabetes mellitus is a bipolar metabolic disorder characterized by abnormalities in insulin production from β-cells and insulin resistance. Thiazolidinediones are potent anti-diabetic agents that act through the modulation of the peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor. However, their full agonistic activity leads to severe side effects by stabilizing Helix12 through strong hydrogen bonding with the TYR473 residue. Partial and selective PPARγ modulators (GW0072, GQ16, VSP-51, MRL-20, MBX-213, INT131) have demonstrated superior results compared to full agonists without causing adverse effects, as reported in existing data. To address this uncertainty and advance therapeutic options, we identified and designed a novel class of compounds (A1-A23) based on a hybrid structure combining phenolic and Thiazolidine-4-one's moieties. Our rational drug design strategy incorporated structural-activity relationship principle, and validated the docking studies through calculated the root mean square deviation. Additionally, we conducted molecular docking, binding energy, molecular dynamics simulations, and post-molecular dynamics calculations to evaluate the dynamics behavior between the ligands and protein. The selected ligands demonstrated highly favorable docking scores and binding energies, comparable to the co-crystal (rosiglitazone) such as A12 (-13.9 kcal/mol and -86.2 kcal/mol), A1 (-11.1 kcal/mol and -79.5 kcal/mol), A13 (-11.3 kcal/mol and -91.4 kcal/mol), and the co-crystal itself (-9.8 kcal/mol and -76 kcal/mol), respectively. Finally, the MD revealed that, the selected ligands were equally contributed for stabilization of Helix12 and β-sheets. It was concluded, the designed ligands (A12, A1, and A13) exhibited weaker hydrogen-bond interactions with specific residue TYR473 which partially modulated the PPARγ protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aryan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - B Babu
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - S Divakar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - B Gowramma
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Jagdish Chand
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Vishnu Malakar Kumar
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
2
|
Viviani LG, Iijima TS, Piccirillo E, Rezende L, Alegria TGP, Netto LES, T.-do Amaral A, Miyamoto S. Identification of Novel Human 15-Lipoxygenase-2 (h15-LOX-2) Inhibitors Using a Virtual Screening Approach. J Med Chem 2025; 68:307-323. [PMID: 39700339 PMCID: PMC11726667 DOI: 10.1021/acs.jmedchem.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
The human 15-lipoxygenase-2 (h15-LOX-2) catalyzes mainly the regio- and stereospecific oxygenation of arachidonate to its corresponding hydroperoxide (15(S)-HpETE). h15-LOX-2 is implicated in the biosynthesis of inflammatory lipid mediators and plays a role in the development of atherosclerotic plaques, but it is still underexploited as a drug target. Here, to search for novel h15-LOX-2 inhibitors, we used a virtual screening (VS) approach consisting of shape-based matching, two-dimensional (2D) structural "dissimilarity", docking, and visual inspection filters, which were applied to a "curated" ZINC database (∼8 × 106 compounds). The VS was experimentally validated, and six micromolar-range inhibitors were identified among 13 tested compounds (46.2%). The Ki values could be determined for two inhibitors, compounds 10 (Ki = 16.4 ± 8.1 μM) and 13 (Ki = 15.1 ± 7.6 μM), which showed a mixed-type mechanism of inhibition. Overall, the identified inhibitors fulfill drug-like criteria and are structurally novel compared with known h15-LOX-2 inhibitors.
Collapse
Affiliation(s)
- Lucas G. Viviani
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Thais S. Iijima
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Erika Piccirillo
- Center
for Medicinal Chemistry (CQMED), State University
of Campinas, Av. André
Tosello 550, 13083-886 Campinas, Brazil
| | - Leandro Rezende
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Thiago G. P. Alegria
- Department
of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090 São Paulo, Brazil
| | - Luis Eduardo S. Netto
- Department
of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090 São Paulo, Brazil
| | - Antonia T.-do Amaral
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Sayuri Miyamoto
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| |
Collapse
|
3
|
Wong AR, Yang AWH, Gill H, Lenon GB, Hung A. Mechanisms of Nelumbinis folium targeting PPARγ for weight management: A molecular docking and molecular dynamics simulations study. Comput Biol Med 2023; 166:107495. [PMID: 37742414 DOI: 10.1016/j.compbiomed.2023.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
The lotus leaf, Nelumbinis folium (NF), has frequently appeared in obesity clinical trials as an intervention to promote weight loss and improve metabolic profiles. However, the molecular mechanisms by which it interacts with important obesity targets and pathways, such as the peroxisome proliferator-activated receptor gamma (PPARγ) within the PPAR signalling pathway, were not well understood. This study aims to screen for candidate compounds from NF with desirable pharmacokinetic properties and examine their binding feasibility at the PPARγ ligand-binding domain (LBD). Ligand- and structure-based screening of NF compounds were performed, and a consensus approach has been applied to identify druggable candidates. By examining the pharmacokinetic profiles, a large proportion of NF compounds exhibited favourable drug-likeness and oral bioavailability properties. Furthermore, the binding affinity scores and poses provided new insights on the distinctive binding behaviours of NF compounds at the LBD of PPARγ in its inactive form. Several NF compounds could bind strongly to PPARγ at sub-pockets where partial agonists and antagonists were found to bind and may induce conformational changes that influence co-repressor binding, trans-repression, and gene expression inhibition. Subsequent molecular dynamics simulations of a candidate compound (NF129 narcissin) bound to PPARγ revealed conformational stability, residue fluctuation, and binding behaviours comparable to that of the known inhibitor, SR1664. Therefore, it can be proposed that narcissin exhibits characteristics of a PPARγ antagonist. Further experimental validation to support the development of NF129 as a future anti-obesity agent is warranted.
Collapse
Affiliation(s)
- Ann Rann Wong
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Laghezza A, Cerchia C, Genovese M, Leuci R, Pranzini E, Santi A, Brunetti L, Piemontese L, Tortorella P, Biswas A, Singh RP, Tambe S, Ca S, Pattnaik AK, Jayaprakash V, Paoli P, Lavecchia A, Loiodice F. A New Antidiabetic Agent Showing Short- and Long-Term Effects Due to Peroxisome Proliferator-Activated Receptor Alpha/Gamma Dual Agonism and Mitochondrial Pyruvate Carrier Inhibition. J Med Chem 2023; 66:3566-3587. [PMID: 36790935 DOI: 10.1021/acs.jmedchem.2c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A new series of analogues or derivatives of the previously reported PPARα/γ dual agonist LT175 allowed the identification of ligand 10, which was able to potently activate both PPARα and -γ subtypes as full and partial agonists, respectively. Docking studies were performed to provide a molecular explanation for this different behavior on the two different targets. In vivo experiments showed that this compound induced a significant reduction in blood glucose and lipid levels in an STZ-induced diabetic mouse model displaying no toxic effects on bone, kidney, and liver. By examining in depth the antihyperglycemic activity of 10, we found out that it produced a slight but significant inhibition of the mitochondrial pyruvate carrier, acting also through insulin-independent mechanisms. This is the first example of a PPARα/γ dual agonist reported to show this inhibitory effect representing, therefore, the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Massimo Genovese
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Rosalba Leuci
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Erica Pranzini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Alice Santi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Leonardo Brunetti
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Suhas Tambe
- Adgyl Lifesciences Private Ltd., Bengaluru 560058, India
| | - Sudeep Ca
- Bioanalytical Section, Eurofins Advinus Biopharma Services India Pvt. Ltd., Bengaluru 560058, India
| | - Ashok Kumar Pattnaik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
5
|
Kumar M, Duraisamy K, Annapureddy RR, Chan CB, Chow BKC. Novel small molecule MRGPRX2 antagonists inhibit a murine model of allergic reaction. J Allergy Clin Immunol 2022; 151:1110-1122. [PMID: 36581009 DOI: 10.1016/j.jaci.2022.12.805] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Activation of Mas-related G protein-coupled receptor X2 (MRGPRX2) is a crucial non-IgE pathway for mast cell activation associated with allergic reactions and inflammation. Only a few peptides and small compounds targeting MRGPRX2 have been reported, with limited information on their pharmacologic activity. OBJECTIVE We sought to develop novel small molecule MRGPRX2 antagonists to treat MRGPRX2-mediated allergies and inflammation. METHODS A computational approach was used to design novel small molecules as MRGPRX2 antagonists. The short-listed molecules were synthesized and characterized by liquid chromatography and mass spectrometry as well as nuclear magnetic resonance. Inhibitory activity on MRGPRX2 signaling was assessed in vitro by using functional bioassays (β-hexosaminidase, calcium flux, and chemokine synthesis) and receptor activation assays (β-arrestin recruitment and Western blot analysis) in human LAD-2 mast cells and HTLA cells. In vivo effects of the novel MRGPRX2 antagonists were assessed using a mouse model of acute allergy and systemic anaphylaxis. RESULTS The novel small molecules demonstrated higher binding affinity with MRGPRX2 in the docking study. The half-maximal inhibitory concentration is in the low micromolar range (5-21 μM). The small molecules inhibited not only the early phase of mast cell activation but also the late phase, associated with chemokine and prostaglandin release. Further, Western blot analysis revealed inhibition of downstream phospholipase C-γ, extracellular signal-regulated protein kinase 1/2, and Akt signaling pathway. Moreover, in the mouse models of allergies, small molecule administration effectively blocks acute, systemic allergic reactions and inflammation and prevents systemic anaphylaxis. CONCLUSION The small molecules might hold a significant therapeutic promise to treat MRGPRX2-mediated allergies and inflammation.
Collapse
Affiliation(s)
- Mukesh Kumar
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR
| | - Karthi Duraisamy
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR
| | | | - Chi Bun Chan
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
6
|
O’Mahony G, Petersen J, Ek M, Rae R, Johansson C, Jianming L, Prokoph N, Bergström F, Bamberg K, Giordanetto F, Zarrouki B, Karlsson D, Hogner A. Discovery by Virtual Screening of an Inhibitor of CDK5-Mediated PPARγ Phosphorylation. ACS Med Chem Lett 2022; 13:681-686. [PMID: 35450368 PMCID: PMC9014497 DOI: 10.1021/acsmedchemlett.1c00715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
Abstract
Thiazolidinedione PPARγ agonists such as rosiglitazone and pioglitazone are effective antidiabetic drugs, but side effects have limited their use. It has been posited that their positive antidiabetic effects are mainly mediated by the inhibition of the CDK5-mediated Ser273 phosphorylation of PPARγ, whereas the side effects are linked to classical PPARγ agonism. Thus compounds that inhibit PPARγ Ser273 phosphorylation but lack classical PPARγ agonism have been sought as safer antidiabetic therapies. Herein we report the discovery by virtual screening of 10, which is a potent PPARγ binder and in vitro inhibitor of the CDK5-mediated phosphorylation of PPARγ Ser273 and displays negligible PPARγ agonism in a reporter gene assay. The pharmacokinetic properties of 10 are compatible with oral dosing, enabling preclinical in vivo testing, and a 7 day treatment demonstrated an improvement in insulin sensitivity in the ob/ob diabetic mouse model.
Collapse
Affiliation(s)
- Gavin O’Mahony
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Jens Petersen
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Margareta Ek
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Rebecca Rae
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Carina Johansson
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Liu Jianming
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Nina Prokoph
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Fredrik Bergström
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Krister Bamberg
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Bader Zarrouki
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Daniel Karlsson
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Anders Hogner
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| |
Collapse
|
7
|
Dixit G, Prabhu A. The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Exp Mol Pathol 2021; 124:104723. [PMID: 34822814 DOI: 10.1016/j.yexmp.2021.104723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.
Collapse
Affiliation(s)
- Gargi Dixit
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
8
|
Mao J, Akhtar J, Zhang X, Sun L, Guan S, Li X, Chen G, Liu J, Jeon HN, Kim MS, No KT, Wang G. Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models. iScience 2021; 24:103052. [PMID: 34553136 PMCID: PMC8441174 DOI: 10.1016/j.isci.2021.103052] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early quantitative structure-activity relationship (QSAR) technologies have unsatisfactory versatility and accuracy in fields such as drug discovery because they are based on traditional machine learning and interpretive expert features. The development of Big Data and deep learning technologies significantly improve the processing of unstructured data and unleash the great potential of QSAR. Here we discuss the integration of wet experiments (which provide experimental data and reliable verification), molecular dynamics simulation (which provides mechanistic interpretation at the atomic/molecular levels), and machine learning (including deep learning) techniques to improve QSAR models. We first review the history of traditional QSAR and point out its problems. We then propose a better QSAR model characterized by a new iterative framework to integrate machine learning with disparate data input. Finally, we discuss the application of QSAR and machine learning to many practical research fields, including drug development and clinical trials.
Collapse
Affiliation(s)
- Jiashun Mao
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
| | - Javed Akhtar
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| | - Xiao Zhang
- Shanghai Rural Commercial Bank Co., Ltd, Shanghai 200002, China
| | - Liang Sun
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shenghui Guan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
| | - Xinyu Li
- School of Life and Health Sciences and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guangming Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| | - Jiaxin Liu
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeon-Nae Jeon
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min Sung Kim
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Guanyu Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Miyachi H. Structural Biology-Based Exploration of Subtype-Selective Agonists for Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2021; 22:ijms22179223. [PMID: 34502131 PMCID: PMC8430769 DOI: 10.3390/ijms22179223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Progress in understanding peroxisome proliferator-activated receptor (PPAR) subtypes as nuclear receptors that have pleiotropic effects on biological responses has enabled the exploration of new subtype-selective PPAR ligands. Such ligands are useful chemical biology/pharmacological tools to investigate the functions of PPARs and are also candidate drugs for the treatment of PPAR-mediated diseases, such as metabolic syndrome, inflammation and cancer. This review summarizes our medicinal chemistry research of more than 20 years on the design, synthesis, and pharmacological evaluation of subtype-selective PPAR agonists, which has been based on two working hypotheses, the ligand superfamily concept and the helix 12 (H12) holding induction concept. X-ray crystallographic analyses of our agonists complexed with each PPAR subtype validate our working hypotheses.
Collapse
Affiliation(s)
- Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Bolnykh V, Rossetti G, Rothlisberger U, Carloni P. Expanding the boundaries of ligand–target modeling by exascale calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Viacheslav Bolnykh
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
- Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital Aachen RWTH Aachen University Aachen Germany
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS‐5/INM‐9) “Computational Biomedicine” Forschungszentrum Jülich Jülich Germany
- JARA‐Institute INM‐11 “Molecular Neuroscience and Neuroimaging” Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
11
|
Tilekar K, Hess JD, Upadhyay N, Bianco AL, Schweipert M, Laghezza A, Loiodice F, Meyer-Almes FJ, Aguilera RJ, Lavecchia A, C S R. Thiazolidinedione "Magic Bullets" Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects. J Med Chem 2021; 64:6949-6971. [PMID: 34006099 PMCID: PMC10926851 DOI: 10.1021/acs.jmedchem.1c00491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monotargeting anticancer agents suffer from resistance and target nonspecificity concerns, which can be tackled with a multitargeting approach. The combined treatment with HDAC inhibitors and PPARγ agonists has displayed potential antitumor effects. Based on these observations, this work involves design and synthesis of molecules that can simultaneously target PPARγ and HDAC. Several out of 25 compounds inhibited HDAC4, and six compounds acted as dual-targeting agents. Compound 7i was the most potent, with activity toward PPARγ EC50 = 0.245 μM and HDAC4 IC50 = 1.1 μM. Additionally, compounds 7c and 7i were cytotoxic to CCRF-CEM cells (CC50 = 2.8 and 9.6 μM, respectively), induced apoptosis, and caused DNA fragmentation. Furthermore, compound 7c modulated the expression of c-Myc, cleaved caspase-3, and caused in vivo tumor regression in CCRF-CEM tumor xenografts. Thus, this study provides a basis for the rational design of dual/multitargeting agents that could be developed further as anticancer therapeutics.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| | - Jessica D Hess
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| | - Alessandra Lo Bianco
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Haardtring 100, 64295 Darmstadt, Germany
| | - Antonio Laghezza
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Haardtring 100, 64295 Darmstadt, Germany
| | - Renato J Aguilera
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Ramaa C S
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| |
Collapse
|
12
|
Ponticelli M, Russo D, Faraone I, Sinisgalli C, Labanca F, Lela L, Milella L. The Promising Ability of Humulus lupulus L. Iso-α-acids vs. Diabetes, Inflammation, and Metabolic Syndrome: A Systematic Review. Molecules 2021; 26:954. [PMID: 33670177 PMCID: PMC7916982 DOI: 10.3390/molecules26040954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
For centuries, natural medicines have represented the only option for treating human diseases and, nowadays, plant phytochemicals are considered as promising compounds to treat or prevent chronic conditions. Among them, hop flowers (Humulus lupulus L.), typically used in brewing industries to give the typical aroma and flavor to beer, have attracted particular attention for their health promoting properties. Several in vivo/vitro studies and human interventional trials have demonstrated the beneficial effects of these molecules on weight gain, lipid metabolism, glucose homeostasis, insulin sensitivities, and inflammation by acting on different targets. All these activities suggest a possible role of bitter hop acid in preventing metabolic syndrome and its related diseases. A systematic quest on PubMed and Scopus databases was performed to identify pre-clinical and clinical studies focusing on this topic. This systematic review summarizes the results obtained by different cell lines, animal models, and human interventional trials to propose iso-α-acids as medical nutrition therapy to treat or prevent metabolic syndrome and its related disorders as diabetes, dislipidemia inflammation, etc.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (I.F.); (C.S.); (F.L.); (L.L.)
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (I.F.); (C.S.); (F.L.); (L.L.)
- Spinoff BioActiPlant s.r.l., Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (I.F.); (C.S.); (F.L.); (L.L.)
- Spinoff BioActiPlant s.r.l., Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Chiara Sinisgalli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (I.F.); (C.S.); (F.L.); (L.L.)
- Spinoff BioActiPlant s.r.l., Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Fabiana Labanca
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (I.F.); (C.S.); (F.L.); (L.L.)
| | - Ludovica Lela
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (I.F.); (C.S.); (F.L.); (L.L.)
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (I.F.); (C.S.); (F.L.); (L.L.)
| |
Collapse
|
13
|
Bou-Petit E, Plans A, Rodríguez-Picazo N, Torres-Coll A, Puigjaner C, Font-Bardia M, Teixidó J, Ramon Y Cajal S, Estrada-Tejedor R, Borrell JI. C4-C5 fused pyrazol-3-amines: when the degree of unsaturation and electronic characteristics of the fused ring controls regioselectivity in Ullmann and acylation reactions. Org Biomol Chem 2020; 18:5145-5156. [PMID: 32583833 DOI: 10.1039/d0ob00796j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrazol-3-amine is a scaffold present in a large number of compounds with a wide range of biological activities and, in many cases, the heterocycle is C4-C5 fused to a second ring. Among the different reactions used for the decoration of the pyrazole ring, Ullmann and acylation have been widely applied. However, there is some confusion in the literature regarding the regioselectivity of such reactions (substitution at N1 or N2 of the pyrazole ring) and no predictive rule has been so far established. As a part of our work on 3-amino-pyrazolo[3,4-b]pyridones 13, we have studied the regioselectivity of such reactions in different C4-C5 fused pyrazol-3-amines. As a rule of thumb, the Ullmann and acylation reactions take place, predominantly, at the NH and non-protonated nitrogen atom of the pyrazole ring respectively, of the most stable initial tautomer (1H- or 2H-pyrazole), which can be easily predicted by using DFT calculations.
Collapse
Affiliation(s)
- Elisabeth Bou-Petit
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, E-08017 Barcelona, Spain.
| | - Arnau Plans
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, E-08017 Barcelona, Spain.
| | - Nieves Rodríguez-Picazo
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, E-08017 Barcelona, Spain.
| | - Antoni Torres-Coll
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, E-08017 Barcelona, Spain.
| | - Cristina Puigjaner
- Unitat de Difracció de Raigs X, Centres Cientificotècnics, Universitat de Barcelona, Lluís Solè i Sabarís 1-3, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raigs X, Centres Cientificotècnics, Universitat de Barcelona, Lluís Solè i Sabarís 1-3, 08028 Barcelona, Spain
| | - Jordi Teixidó
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, E-08017 Barcelona, Spain.
| | - Santiago Ramon Y Cajal
- Departamento de Patología, Hospital Universitario Valle de Hebrón, Universidad Autónoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Roger Estrada-Tejedor
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, E-08017 Barcelona, Spain.
| | - José I Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, E-08017 Barcelona, Spain.
| |
Collapse
|
14
|
Thangavel N, Al Bratty M, Javed SA, Ahsan W, Alhazmi HA. Critical Insight into the Design of PPAR-γ Agonists by Virtual Screening Techniques. Curr Drug Discov Technol 2020; 16:82-90. [PMID: 29493458 DOI: 10.2174/1570163815666180227164028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Design of novel PPAR-γ modulators with better binding efficiency and fewer side effects to treat type 2 diabetes is still a challenge for medicinal chemists. Cost and time efficient computational methods have presently become an integral part of research in nuclear receptors and their ligands, enabling hit to lead identification and lead optimization. This review will focus on cutting-edge technologies used in most recent studies on the design of PPAR- γ agonists and will discuss the chemistry of few molecules which emerged successful. METHODS Literature review was carried out in google scholar using customized search from 2011- 2017. Computer-aided design methods presented in this article were used as search terms to retrieve corresponding literature. RESULTS Virtual screening of natural product libraries is an effective strategy to harness nature as the source of ligands for PPARs. Rigid and induced fit docking and core hopping approach in docking are rapid screening methods to predict the PPAR- γ and PPAR-α/ γ dual agonistic activity. Onedimensional drug profile matching is one of the recent virtual screening methods by which an antiprotozoal drug, Nitazoxanide was identified as a PPAR- γ agonist. CONCLUSION It is concluded that to achieve a convincing and reliable design of PPAR-γ agonist by virtual screening techniques, customized workflow comprising of appropriate models is essential in which methods may be applied either sequentially or simultaneously.
Collapse
Affiliation(s)
- Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box. 114, Jazan 45 142, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box. 114, Jazan 45 142, Saudi Arabia
| | - Sadique Akhtar Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box. 114, Jazan 45 142, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box. 114, Jazan 45 142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box. 114, Jazan 45 142, Saudi Arabia
| |
Collapse
|
15
|
Pavlović N, Đanić M, Stanimirov B, Goločorbin-Kon S, Stankov K, Lalić-Popović M, Mikov M. In silico Discovery of Resveratrol Analogues as Potential Agents in Treatment of Metabolic Disorders. Curr Pharm Des 2020; 25:3776-3783. [PMID: 31663474 DOI: 10.2174/1381612825666191029095252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/19/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Resveratrol was demonstrated to act as partial agonist of PPAR-γ receptor, which opens up the possibility for its use in the treatment of metabolic disorders. Considering the poor bioavailability of resveratrol, particularly due to its low aqueous solubility, we aimed to identify analogues of resveratrol with improved pharmacokinetic properties and higher binding affinities towards PPAR-γ. METHODS 3D structures of resveratrol and its analogues were retrieved from ZINC database, while PPAR-γ structure was obtained from Protein Data Bank. Docking studies were performed using Molegro Virtual Docker software. Molecular descriptors relevant to pharmacokinetics were calculated from ligand structures using VolSurf+ software. RESULTS Using structural similarity search method, 56 analogues of resveratrol were identified and subjected to docking analyses. Binding energies were ranged from -136.69 to -90.89 kcal/mol, with 16 analogues having higher affinities towards PPAR-γ in comparison to resveratrol. From the calculated values of SOLY descriptor, 23 studied compounds were shown to be more soluble in water than resveratrol. However, only two tetrahydroxy stilbene derivatives, piceatannol and oxyresveratrol, had both better solubility and affinity towards PPAR-γ. These compounds also had more favorable ADME profile, since they were shown to be more metabolically stable and wider distributed in body than resveratrol. CONCLUSION Piceatannol and oxyresveratrol should be considered as potential lead compounds for further drug development. Although experimental validation of obtained in silico results is required, this work can be considered as a step toward the discovery of new natural and safe drugs in treatment of metabolic disorders.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Mladena Lalić-Popović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
16
|
To Probe Full and Partial Activation of Human Peroxisome Proliferator-Activated Receptors by Pan-Agonist Chiglitazar Using Molecular Dynamics Simulations. PPAR Res 2020; 2020:5314187. [PMID: 32308671 PMCID: PMC7152983 DOI: 10.1155/2020/5314187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chiglitazar is a promising new-generation insulin sensitizer with low reverse effects for the treatment of type II diabetes mellitus (T2DM) and has shown activity as a nonselective pan-agonist to the human peroxisome proliferator-activated receptors (PPARs) (i.e., full activation of PPARγ and a partial activation of PPARα and PPARβ/δ). Yet, it has no high-resolution complex structure with PPARs and its detailed interactions and activation mechanism remain unclear. In this study, we docked chiglitazar into three experimentally resolved crystal structures of hPPAR subtypes, PPARα, PPARβ/δ, and PPARγ, followed by 3 μs molecular dynamics simulations for each system. Our MM-GBSA binding energy calculation revealed that chiglitazar most favorably bound to hPPARγ (-144.6 kcal/mol), followed by hPPARα (-138.0 kcal/mol) and hPPARβ (-135.9 kcal/mol), and the order is consistent with the experimental data. Through the decomposition of the MM-GBSA binding energy by residue and the use of two-dimensional interaction diagrams, key residues involved in the binding of chiglitazar were identified and characterized for each complex system. Additionally, our detailed dynamics analyses support that the conformation and dynamics of helix 12 play a critical role in determining the activities of the different types of ligands (e.g., full agonist vs. partial agonist). Rather than being bent fully in the direction of the agonist versus antagonist conformation, a partial agonist can adopt a more linear conformation and have a lower degree of flexibility. Our finding may aid in further development of this new generation of medication.
Collapse
|
17
|
Khan H, Zafar M, Patel S, Shah SMM, Bishayee A. Pharmacophore studies of 1, 3, 4-oxadiazole nucleus: Lead compounds as α-glucosidase inhibitors. Food Chem Toxicol 2019; 130:207-218. [DOI: 10.1016/j.fct.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/30/2019] [Accepted: 05/04/2019] [Indexed: 01/22/2023]
|
18
|
Al Sharif M, Alov P, Diukendjieva A, Vitcheva V, Simeonova R, Krasteva I, Shkondrov A, Tsakovska I, Pajeva I. Molecular determinants of PPARγ partial agonism and related in silico/in vivo studies of natural saponins as potential type 2 diabetes modulators. Food Chem Toxicol 2017; 112:47-59. [PMID: 29247773 DOI: 10.1016/j.fct.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
Abstract
The metabolic syndrome, which includes hypertension, type 2 diabetes (T2D) and obesity, has reached an epidemic-like scale. Saponins and sapogenins are considered as valuable natural products for ameliorating this pathology, possibly through the nuclear receptor PPARγ activation. The aims of this study were: to look for in vivo antidiabetic effects of a purified saponins' mixture (PSM) from Astragalus corniculatus Bieb; to reveal by in silico methods the molecular determinants of PPARγ partial agonism, and to investigate the potential PPARγ participation in the PSM effects. In the in vivo experiments spontaneously hypertensive rats (SHRs) with induced T2D were treated with PSM or pioglitazone as a referent PPARγ full agonist, and pathology-relevant biochemical markers were analysed. The results provided details on the PSM modulation of the glucose homeostasis and its potential mechanism. The in silico studies focused on analysis of the protein-ligand interactions in crystal structures of human PPARγ-partial agonist complexes, pharmacophore modelling and molecular docking. They outlined key pharmacophoric features, typical for the PPARγ partial agonists, which were used for pharmacophore-based docking of the main PSM sapogenin. The in silico studies, strongly suggest possible involvement of PPARγ-mediated mechanisms in the in vivo antidiabetic and antioxidant effects of PSM from A. corniculatus.
Collapse
Affiliation(s)
- Merilin Al Sharif
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Petko Alov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Antonia Diukendjieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Vessela Vitcheva
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Rumyana Simeonova
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Ilina Krasteva
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Aleksandar Shkondrov
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| |
Collapse
|
19
|
Yasmin S, Capone F, Laghezza A, Piaz FD, Loiodice F, Vijayan V, Devadasan V, Mondal SK, Atlı Ö, Baysal M, Pattnaik AK, Jayaprakash V, Lavecchia A. Novel Benzylidene Thiazolidinedione Derivatives as Partial PPARγ Agonists and their Antidiabetic Effects on Type 2 Diabetes. Sci Rep 2017; 7:14453. [PMID: 29089569 PMCID: PMC5663708 DOI: 10.1038/s41598-017-14776-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) has received significant attention as a key regulator of glucose and lipid homeostasis. In this study, we synthesized and tested a library of novel 5-benzylidene-thiazolidin-2,4-dione (BTZD) derivatives bearing a substituent on nitrogen of TZD nucleus (compounds 1a-1k, 2i-10i, 3a, 6a, and 8a-10a). Three compounds (1a, 1i, and 3a) exhibited selectivity towards PPARγ and were found to be weak to moderate partial agonists. Surface Plasmon Resonance (SPR) results demonstrated binding affinity of 1a, 1i and 3a towards PPARγ. Furthermore, docking experiments revealed that BTZDs interact with PPARγ through a distinct binding mode, forming primarily hydrophobic contacts with the ligand-binding pocket (LBD) without direct H-bonding interactions to key residues in H12 that are characteristic of full agonists. In addition, 1a, 1i and 3a significantly improved hyperglycemia and hyperlipidaemia in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats at a dose of 36 mg/kg/day administered orally for 15 days. Histopathological investigations revealed that microscopic architecture of pancreatic and hepatic cells improved in BTZDs-treated diabetic rats. These findings suggested that 1a, 1i and 3a are very promising pharmacological agents by selectively targeting PPARγ for further development in the clinical treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Fabio Capone
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131, Napoli, Italy
| | - Antonio Laghezza
- Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Fulvio Loiodice
- Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Viswanathan Vijayan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, 600 025, Chennai, India
| | - Velmurugan Devadasan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, 600 025, Chennai, India
| | - Susanta K Mondal
- TCG Lifesciences Ltd, Block-EP&GP, BIPL, Tower-B, Saltlake, Sector-V, Kolkata, 700091, West Bengal, India
| | - Özlem Atlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Yunus Emre Kampüsü, 26470, Eskişehir, Turkey
| | - Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Yunus Emre Kampüsü, 26470, Eskişehir, Turkey
| | - Ashok K Pattnaik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131, Napoli, Italy.
| |
Collapse
|
20
|
Proschak E, Heitel P, Kalinowsky L, Merk D. Opportunities and Challenges for Fatty Acid Mimetics in Drug Discovery. J Med Chem 2017; 60:5235-5266. [PMID: 28252961 DOI: 10.1021/acs.jmedchem.6b01287] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acids beyond their role as an endogenous energy source and storage are increasingly considered as signaling molecules regulating various physiological effects in metabolism and inflammation. Accordingly, the molecular targets involved in formation and physiological activities of fatty acids hold significant therapeutic potential. A number of these fatty acid targets are addressed by some of the oldest and most widely used drugs such as cyclooxygenase inhibiting NSAIDs, whereas others remain unexploited. Compounds orthosterically binding to proteins that endogenously bind fatty acids are considered as fatty acid mimetics. On the basis of their structural resemblance, fatty acid mimetics constitute a family of bioactive compounds showing specific binding thermodynamics and following similar pharmacokinetic mechanisms. This perspective systematically evaluates targets for fatty acid mimetics, investigates their common structural characteristics, and highlights demands in their discovery and design. In summary, fatty acid mimetics share particularly favorable characteristics justifying the conclusion that their therapeutic potential vastly outweighs the challenges in their design.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Lena Kalinowsky
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| |
Collapse
|
21
|
A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability. Sci Rep 2017; 7:41273. [PMID: 28117438 PMCID: PMC5259791 DOI: 10.1038/srep41273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects.
Collapse
|
22
|
Muralikumar S, Vetrivel U, Narayanasamy A, N Das U. Probing the intermolecular interactions of PPARγ-LBD with polyunsaturated fatty acids and their anti-inflammatory metabolites to infer most potential binding moieties. Lipids Health Dis 2017; 16:17. [PMID: 28109294 PMCID: PMC5251316 DOI: 10.1186/s12944-016-0404-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023] Open
Abstract
Background PPARγ is an isoform of peroxisome proliferator-activated receptor (PPAR) belonging to a super family of nuclear receptors. PPARγ receptor is found to play a crucial role in the modulation of lipid and glucose homeostasis. Its commotion has been reported to play a significant role in a broad spectrum of diseases such as type 2 diabetes mellitus, inflammatory diseases, Alzheimer’s disease, and in some cancers. Hence, PPARγ is an important therapeutic target. Polyunsaturated fatty acids (PUFAs) and their metabolites (henceforth referred to as bioactive lipids) are known to function as agonists of PPARγ. However, agonistic binding modes and affinity of these ligands to PPARγ are yet to be deciphered. Methods In this study, we performed a comparative molecular docking, binding free energy calculation and molecular dynamics simulation to infer and rank bioactive lipids based on the binding affinities with the ligand binding domain (LBD) of PPARγ. Results The results inferred affinity in the order of resolvin E1 > neuroprotectin D1 > hydroxy-linoleic acid > docosahexaenoic acid > lipoxin A4 > gamma-linolenic acid, arachidonic acid > alpha-linolenic acid > eicosapentaenoic acid > linoleic acid. Of all the bioactive lipids studied, resolvin E1, neuroprotectin D1 and hydroxy-linoleic acid showed significant affinity comparable to proven PPARγ agonist namely, rosiglitazone, in terms of Glide XP docking score, H-bond formation with the key residues, binding free energy and stable complex formation with LBD favouring co-activator binding, as inferred through Molecular Dynamics trajectory analysis. Conclusion Hence, these three bioactive lipids (resolvin E1, neuroprotectin D1 and hydroxy-linoleic acid) may be favourably considered as ideal drug candidates in therapeutic modulation of clinical conditions such as type 2 DM, Alzheimer’s disease and other instances where PPARγ is a key player.
Collapse
Affiliation(s)
- Shalini Muralikumar
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India.
| | - Angayarkanni Narayanasamy
- Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Undurti N Das
- UND Life Sciences, 2020 S 360th St, # K202, Federal Way, WA, 98003, USA. .,BioScience Research Centre, GVP College of Engineering, Visakhapatnam, 530048, India.
| |
Collapse
|
23
|
Evaluation of selected 3D virtual screening tools for the prospective identification of peroxisome proliferator-activated receptor (PPAR) γ partial agonists. Eur J Med Chem 2016; 124:49-62. [DOI: 10.1016/j.ejmech.2016.07.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
|
24
|
The antiproliferative and proapoptotic effects of cladosporols A and B are related to their different binding mode as PPARγ ligands. Biochem Pharmacol 2016; 108:22-35. [DOI: 10.1016/j.bcp.2016.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
|
25
|
van Marrewijk LM, Polyak SW, Hijnen M, Kuruvilla D, Chang MR, Shin Y, Kamenecka TM, Griffin PR, Bruning JB. SR2067 Reveals a Unique Kinetic and Structural Signature for PPARγ Partial Agonism. ACS Chem Biol 2016; 11:273-83. [PMID: 26579553 DOI: 10.1021/acschembio.5b00580] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic full agonists of PPARγ have been prescribed for the treatment of diabetes due to their ability to regulate glucose homeostasis and insulin sensitization. While the use of full agonists of PPARγ has been hampered due to severe side effects, partial agonists have shown promise due to their decreased incidence of such side effects in preclinical models. No kinetic information has been forthcoming in regard to the mechanism of full versus partial agonism of PPARγ to date. Here, we describe the discovery of a partial agonist, SR2067. A co-crystal structure obtained at 2.2 Å resolution demonstrates that interactions with the β-sheet are driven exclusively via hydrophobic interactions mediated through a naphthalene group, an observation that is unique from other partial agonists. Surface plasmon resonance revealed that SR2067 binds to the receptor with higher affinity (KD = 513 nM) as compared to that of full agonist rosiglitazone, yet it has a much slower off rate compared to that of rosiglitazone.
Collapse
Affiliation(s)
- Laura M. van Marrewijk
- School
of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- School
of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marcel Hijnen
- GE Healthcare Life Sciences ANZ, Melbourne, Victoria 3121, Australia
| | - Dana Kuruvilla
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Mi Ra Chang
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Youseung Shin
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Theodore M. Kamenecka
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Patrick R. Griffin
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - John B. Bruning
- School
of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
26
|
Muñoz-Gutierrez C, Adasme-Carreño F, Fuentes E, Palomo I, Caballero J. Computational study of the binding orientation and affinity of PPARγ agonists: inclusion of ligand-induced fit by cross-docking. RSC Adv 2016. [DOI: 10.1039/c6ra12084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A cross-docking study for describing differential binding energies of PPARγ and agonists was successful after the inclusion of protein flexibility through the use of several crystal receptor conformations.
Collapse
Affiliation(s)
| | | | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology
- Faculty of Health Sciences
- Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES)
- Talca University
- Talca
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohematology
- Faculty of Health Sciences
- Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES)
- Talca University
- Talca
| | - Julio Caballero
- Centro de Bioinformatica y Simulacion Molecular (CBSM)
- Universidad de Talca
- Talca
- Chile
| |
Collapse
|
27
|
Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. PPAR Res 2015; 2015:816856. [PMID: 26435709 PMCID: PMC4578752 DOI: 10.1155/2015/816856] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023] Open
Abstract
PPARγ (peroxisome proliferator activated receptor γ) is a ligand activated transcription factor of the nuclear receptor superfamily that controls the expression of a variety of genes involved in fatty acid metabolism, adipogenesis, and insulin sensitivity. While endogenous ligands of PPARγ include fatty acids and eicosanoids, synthetic full agonists of the receptor, including members of the thiazolidinedione (TZD) class, have been widely prescribed for the treatment of type II diabetes mellitus (T2DM). Unfortunately, the use of full agonists has been hampered by harsh side effects with some removed from the market in many countries. In contrast, partial agonists of PPARγ have been shown to retain favourable insulin sensitizing effects while exhibiting little to no side effects and thus represent a new potential class of therapeutics for the treatment of T2DM. Partial agonists have been found to not only display differences in transcriptional and cellular outcomes, but also act through distinct structural and dynamic mechanisms within the ligand binding cavity compared to full agonists.
Collapse
|
28
|
dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, Polikarpov I. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. J Struct Biol 2015; 191:332-40. [PMID: 26185032 DOI: 10.1016/j.jsb.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/30/2015] [Accepted: 07/13/2015] [Indexed: 01/06/2023]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-dependent transcription factors that control various functions in human organism, including the control of glucose and lipid metabolism. PPARγ is a target of TZD agonists, clinically used to improve insulin sensitivity whereas fibrates, PPARα ligands, lower serum triglyceride levels. We report here the structural studies of GL479, a synthetic dual PPARα/γ agonist, designed by a combination of clofibric acid skeleton and a phenyldiazenyl moiety, as bioisosteric replacement of stilbene group, in complex with both PPARα and PPARγ receptors. GL479 was previously reported as a partial agonist of PPARγ and a full agonist of PPARα with high affinity for both PPARs. Our structural studies reveal different binding modes of GL479 to PPARα and PPARγ, which may explain the distinct activation behaviors observed for each receptor. In both cases the ligand interacts with a Tyr located at helix 12 (H12), resulting in the receptor active conformation. In the complex with PPARα, GL479 occupies the same region of the ligand-binding pocket (LBP) observed for other full agonists, whereas GL479 bound to PPARγ displays a new binding mode. Our results indicate a novel region of PPARs LBP that may be explored for the design of partial agonists as well dual PPARα/γ agonists that combine, simultaneously, the therapeutic effects of the treatment of insulin resistance and dyslipidemia.
Collapse
Affiliation(s)
- Jademilson Celestino dos Santos
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Amanda Bernardes
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Letizia Giampietro
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Barbara De Filippis
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Rosa Amoroso
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
29
|
Lemkul JA, Lewis SN, Bassaganya-Riera J, Bevan DR. Phosphorylation of PPARγ Affects the Collective Motions of the PPARγ-RXRα-DNA Complex. PLoS One 2015; 10:e0123984. [PMID: 25954810 PMCID: PMC4425662 DOI: 10.1371/journal.pone.0123984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
Peroxisome-proliferator activated receptor-γ (PPARγ) is a nuclear hormone receptor that forms a heterodimeric complex with retinoid X receptor-α (RXRα) to regulate transcription of genes involved in fatty acid storage and glucose metabolism. PPARγ is a target for pharmaceutical intervention in type 2 diabetes, and insight into interactions between PPARγ, RXRα, and DNA is of interest in understanding the function and regulation of this complex. Phosphorylation of PPARγ by cyclin-dependent kinase 5 (Cdk5) has been shown to dysregulate the expression of metabolic regulation genes, an effect that is counteracted by PPARγ ligands. We applied molecular dynamics (MD) simulations to study the relationship between the ligand-binding domains of PPARγ and RXRα with their respective DNA-binding domains. Our results reveal that phosphorylation alters collective motions within the PPARγ-RXRα complex that affect the LBD-LBD dimerization interface and the AF-2 coactivator binding region of PPARγ.
Collapse
Affiliation(s)
- Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephanie N. Lewis
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology & Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- Nutritional Immunology & Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
30
|
Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. J Comput Aided Mol Des 2015; 29:421-39. [PMID: 25616366 PMCID: PMC4395532 DOI: 10.1007/s10822-015-9831-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/09/2015] [Indexed: 01/28/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40 %) when compared to docking with a single structure model (<20 %). Prediction was also improved when specific protein-ligand interactions between the docked ligands and structure models were given greater weight than the calculated free energy of binding. A large-scale screen of compounds using a marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development.
Collapse
Affiliation(s)
- Stephanie N Lewis
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Tech, Blacksburg, VA, USA,
| | | | | | | | | |
Collapse
|
31
|
Harada S, Hiromori Y, Nakamura S, Kawahara K, Fukakusa S, Maruno T, Noda M, Uchiyama S, Fukui K, Nishikawa JI, Nagase H, Kobayashi Y, Yoshida T, Ohkubo T, Nakanishi T. Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds. Sci Rep 2015; 5:8520. [PMID: 25687586 PMCID: PMC4330522 DOI: 10.1038/srep08520] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/22/2015] [Indexed: 11/28/2022] Open
Abstract
Organotin compounds such as triphenyltin (TPT) and tributyltin (TBT) act as endocrine disruptors through the peroxisome proliferator–activated receptor γ (PPARγ) signaling pathway. We recently found that TPT is a particularly strong agonist of PPARγ. To elucidate the mechanism underlying organotin-dependent PPARγ activation, we here analyzed the interactions of PPARγ ligand-binding domain (LBD) with TPT and TBT by using X-ray crystallography and mass spectroscopy in conjunction with cell-based activity assays. Crystal structures of PPARγ-LBD/TBT and PPARγ-LBD/TPT complexes were determined at 1.95 Å and 1.89 Å, respectively. Specific binding of organotins is achieved through non-covalent ionic interactions between the sulfur atom of Cys285 and the tin atom. Comparisons of the determined structures suggest that the strong activity of TPT arises through interactions with helix 12 of LBD primarily via π-π interactions. Our findings elucidate the structural basis of PPARγ activation by TPT.
Collapse
Affiliation(s)
- Shusaku Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Youhei Hiromori
- 1] Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan [2] Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Fukakusa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun-ichi Nishikawa
- Laboratory of Health Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's Univerasity, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo, 663-8179, Japan
| | - Hisamitsu Nagase
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Yuji Kobayashi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| |
Collapse
|
32
|
Kim WJ, Son WS, Ryu KS, Lee SK, Choi KH, Lee JS, Lee BJ. Bacterial peptide deformylase inhibitor PMT analogs inhibit cancer cell growth by interacting with human peptide deformylase. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0498-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol 2014; 8:45-53. [PMID: 24997250 PMCID: PMC4195804 DOI: 10.1016/j.coviro.2014.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022]
Abstract
Coronaviruses are RNA viruses that cause systemic diseases in humans and animals. There are no approved drugs for the treatment of coronavirus infections. Several SARS-CoV inhibitors, with known mechanisms of action, have been identified. These inhibitors stand as promising leads for coronavirus therapeutics.
Coronaviruses are positive stranded RNA viruses that cause respiratory, enteric and central nervous system diseases in many species, including humans. Until recently, the relatively low burden of disease in humans caused by few of these viruses impeded the development of coronavirus specific therapeutics. However, the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV), and more recently, Middle East respiratory syndrome coronavirus (MERS-CoV), has impelled the development of such drugs. This review focuses on some newly identified SARS-CoV inhibitors, with known mechanisms of action and their potential to inhibit the novel MERS-CoV. The clinical development of optimized versions of such compounds could be beneficial for the treatment and control of SARS-CoV, the current MERS-CoV and other future SARS-like epidemics.
Collapse
Affiliation(s)
- Adeyemi O Adedeji
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
| | - Stefan G Sarafianos
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
34
|
Abstract
Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature.
Collapse
Affiliation(s)
- Gregory Sliwoski
- Jr., Center for Structural Biology, 465 21st Ave South, BIOSCI/MRBIII, Room 5144A, Nashville, TN 37232-8725.
| | | | | | | |
Collapse
|
35
|
SAR and Computer-Aided Drug Design Approaches in the Discovery of Peroxisome Proliferator-Activated Receptor γ Activators: A Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/406049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activators of PPARγ, Troglitazone (TGZ), Rosiglitazone (RGZ), and Pioglitazone (PGZ) were introduced for treatment of Type 2 diabetes, but TGZ and RGZ have been withdrawn from the market along with other promising leads due cardiovascular side effects and hepatotoxicity. However, the continuously improving understanding of the structure/function of PPARγ and its interactions with potential ligands maintain the importance of PPARγ as an antidiabetic target. Extensive structure activity relationship (SAR) studies have thus been performed on a variety of structural scaffolds by various research groups. Computer-aided drug discovery (CADD) approaches have also played a vital role in the search and optimization of potential lead compounds. This paper focuses on these approaches adopted for the discovery of PPARγ ligands for the treatment of Type 2 diabetes. Key concepts employed during the discovery phase, classification based on agonistic character, applications of various QSAR, pharmacophore mapping, virtual screening, molecular docking, and molecular dynamics studies are highlighted. Molecular level analysis of the dynamic nature of ligand-receptor interaction is presented for the future design of ligands with better potency and safety profiles. Recently identified mechanism of inhibition of phosphorylation of PPARγ at SER273 by ligands is reviewed as a new strategy to identify novel drug candidates.
Collapse
|
36
|
Ohashi M, Oyama T, Putranto EW, Waku T, Nobusada H, Kataoka K, Matsuno K, Yashiro M, Morikawa K, Huh NH, Miyachi H. Design and synthesis of a series of α-benzyl phenylpropanoic acid-type peroxisome proliferator-activated receptor (PPAR) gamma partial agonists with improved aqueous solubility. Bioorg Med Chem 2013; 21:2319-2332. [DOI: 10.1016/j.bmc.2013.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/16/2022]
|
37
|
Kouskoumvekaki I, Petersen RK, Fratev F, Taboureau O, Nielsen TE, Oprea TI, Sonne SB, Flindt EN, Jónsdóttir SÓ, Kristiansen K. Discovery of a Novel Selective PPARγ Ligand with Partial Agonist Binding Properties by Integrated in Silico/in Vitro Work Flow. J Chem Inf Model 2013; 53:923-37. [DOI: 10.1021/ci3006148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irene Kouskoumvekaki
- Center for Biological Sequence
Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark
| | - Rasmus K. Petersen
- BioLigands, Science Park, 5230, Odense, Denmark
- Department
of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Filip Fratev
- Center for Biological Sequence
Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark
- Micar 21 Ltd., 34B Persenk Str., 1407, Sofia, Bulgaria
| | - Olivier Taboureau
- Center for Biological Sequence
Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark
- UMR-S973, MTi, University Paris Diderot, F-75013 Paris, France
| | - Thomas E. Nielsen
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Singapore Centre on Environmental
Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Tudor I. Oprea
- Center for Biological Sequence
Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark
- Translational
Informatics Division, Department of Internal
Medicine, MSC09 5025, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131,
United States
| | - Si B. Sonne
- Department
of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Esben N. Flindt
- BioLigands, Science Park, 5230, Odense, Denmark
- Department
of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Svava Ósk Jónsdóttir
- Center for Biological Sequence
Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark
- Department
of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj
Bygade 19, DK-2860 Søborg, Denmark
| | - Karsten Kristiansen
- Department
of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| |
Collapse
|
38
|
Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS One 2012; 7:e50816. [PMID: 23226391 PMCID: PMC3511273 DOI: 10.1371/journal.pone.0050816] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists.
Collapse
|
39
|
Affiliation(s)
- I-Lin Lu
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
40
|
Pirat C, Farce A, Lebègue N, Renault N, Furman C, Millet R, Yous S, Speca S, Berthelot P, Desreumaux P, Chavatte P. Targeting Peroxisome Proliferator-Activated Receptors (PPARs): Development of Modulators. J Med Chem 2012; 55:4027-61. [DOI: 10.1021/jm101360s] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Céline Pirat
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Nicolas Lebègue
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Christophe Furman
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| | - Régis Millet
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| | - Saı̈d Yous
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté de
Médecine, Amphis J et K, Université Lille-Nord de France, INSERM U995, Boulevard du Professeur Jules
Leclerc, 59045 Lille Cedex, France
| | - Pascal Berthelot
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté de
Médecine, Amphis J et K, Université Lille-Nord de France, INSERM U995, Boulevard du Professeur Jules
Leclerc, 59045 Lille Cedex, France
| | - Philippe Chavatte
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| |
Collapse
|
41
|
Guasch L, Sala E, Valls C, Blay M, Mulero M, Arola L, Pujadas G, Garcia-Vallvé S. Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. J Comput Aided Mol Des 2011; 25:717-28. [DOI: 10.1007/s10822-011-9446-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
42
|
Al-Najjar BO, Wahab HA, Tengku Muhammad TS, Shu-Chien AC, Ahmad Noruddin NA, Taha MO. Discovery of new nanomolar peroxisome proliferator-activated receptor γ activators via elaborate ligand-based modeling. Eur J Med Chem 2011; 46:2513-2529. [PMID: 21482446 DOI: 10.1016/j.ejmech.2011.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/12/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
Abstract
Peroxisome Proliferator-Activated Receptor γ (PPARγ) activators have drawn great recent attention in the clinical management of type 2 diabetes mellitus, prompting several attempts to discover and optimize new PPARγ activators. With this in mind, we explored the pharmacophoric space of PPARγ using seven diverse sets of activators. Subsequently, genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of accessing self-consistent and predictive quantitative structure-activity relationship (QSAR) (r2(71)=0.80, F=270.3, r2LOO=0.73, r2PRESS against 17 external test inhibitors=0.67). Three orthogonal pharmacophores emerged in the QSAR equation and were validated by receiver operating characteristic (ROC) curves analysis. The models were then used to screen the national cancer institute (NCI) list of compounds. The highest-ranking hits were tested in vitro. The most potent hits illustrated EC50 values of 15 and 224 nM.
Collapse
Affiliation(s)
- Belal O Al-Najjar
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | | | | | | | | | | |
Collapse
|
43
|
1,3-Diphenyl-1H-pyrazole derivatives as a new series of potent PPARγ partial agonists. Bioorg Med Chem 2010; 18:8315-23. [DOI: 10.1016/j.bmc.2010.09.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/26/2010] [Accepted: 09/28/2010] [Indexed: 11/21/2022]
|
44
|
Pharmacophore-driven identification of PPARγ agonists from natural sources. J Comput Aided Mol Des 2010; 25:107-16. [PMID: 21069556 DOI: 10.1007/s10822-010-9398-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/26/2010] [Indexed: 01/14/2023]
Abstract
In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.
Collapse
|
45
|
Doshi LS, Brahma MK, Bahirat UA, Dixit AV, Nemmani KVS. Discovery and development of selective PPAR gamma modulators as safe and effective antidiabetic agents. Expert Opin Investig Drugs 2010; 19:489-512. [PMID: 20367191 DOI: 10.1517/13543781003640169] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD PPARgamma full agonists (pioglitazone and rosiglitazone) are the mainstay drugs for the treatment of type 2 diabetes; however, mechanism-based side effects have limited their full therapeutic potential. In recent years, much progress has been achieved in the discovery and development of selective PPARgamma modulators (SPPARgammaMs) as safer alternatives to PPARgamma full agonists. AREAS COVERED IN THIS REVIEW This review focuses on the preclinical and clinical data of all the SPPARgammaMs discovered so far, retrieved by searching PubMed, Prous Integrity database and company news updates from 1999 to date. WHAT THE READER WILL GAIN Here we thoroughly discuss SPPARgammaMs' mode of action, briefly examine new ways to identify superior SPPARgammaMs, and finally, compare and contrast the pharmacological and safety profile of various agents. TAKE HOME MESSAGE The preclinical and clinical findings clearly suggest that selective PPARgamma modulators have the potential to become the next generation of PPARgamma agonists: effective insulin sensitizers with a superior safety profile to that of PPARgamma full agonists.
Collapse
Affiliation(s)
- Lalit S Doshi
- Department of Pharmacology, Piramal Life Sciences Limited, 1 Nirlon Complex, Goregaon (E), Mumbai - 400 063, India
| | | | | | | | | |
Collapse
|
46
|
Nascimento AS. Structural requirement for PPARγ binding revealed by a meta analysis of holo-crystal structures. Biochimie 2010; 92:499-506. [DOI: 10.1016/j.biochi.2010.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
|
47
|
Fakhrudin N, Ladurner A, Atanasov AG, Heiss EH, Baumgartner L, Markt P, Schuster D, Ellmerer EP, Wolber G, Rollinger JM, Stuppner H, Dirsch VM. Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma. Mol Pharmacol 2010; 77:559-66. [PMID: 20064974 PMCID: PMC3523390 DOI: 10.1124/mol.109.062141] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists are used for the treatment of type 2 diabetes and metabolic syndrome. However, the currently used PPAR gamma agonists display serious side effects, which has led to a great interest in the discovery of novel ligands with favorable properties. The aim of our study was to identify new PPARgamma agonists by a PPAR gamma pharmacophore-based virtual screening of 3D natural product libraries. This in silico approach led to the identification of several neolignans predicted to bind the receptor ligand binding domain (LBD). To confirm this prediction, the neolignans dieugenol, tetrahydrodieugenol, and magnolol were isolated from the respective natural source or synthesized and subsequently tested for PPAR gamma receptor binding. The neolignans bound to the PPAR gamma LBD with EC(50) values in the nanomolar range, exhibiting a binding pattern highly similar to the clinically used agonist pioglitazone. In intact cells, dieugenol and tetrahydrodieugenol selectively activated human PPAR gamma-mediated, but not human PPAR alpha- or -beta/delta-mediated luciferase reporter expression, with a pattern suggesting partial PPAR gamma agonism. The coactivator recruitment study also demonstrated partial agonism of the tested neolignans. Dieugenol, tetrahydrodieugenol, and magnolol but not the structurally related eugenol induced 3T3-L1 preadipocyte differentiation, confirming effectiveness in a cell model with endogenous PPAR gamma expression. In conclusion, we identified neolignans as novel ligands for PPAR gamma, which exhibited interesting activation profiles, recommending them as potential pharmaceutical leads or dietary supplements.
Collapse
Affiliation(s)
- Nanang Fakhrudin
- University of Vienna, Department of Pharmacognosy, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cross-Talk between PPARgamma and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR Res 2010; 2009:818945. [PMID: 20182551 PMCID: PMC2826877 DOI: 10.1155/2009/818945] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 10/30/2009] [Accepted: 12/02/2009] [Indexed: 12/25/2022] Open
Abstract
PPARγ activation in type 2 diabetic patients results in a marked improvement in insulin and glucose parameters, resulting from an improvement of whole-body insulin sensitivity. Adipose tissue is the major mediator of PPARγ action on insulin sensitivity. PPARγ activation in mature adipocytes induces the expression of a number of genes involved in the insulin signaling cascade, thereby improving insulin sensitivity. PPARγ is the master regulator of adipogenesis, thereby stimulating the production of small insulin-sensitive adipocytes. In addition to its importance in adipogenesis, PPARγ plays an important role in regulating lipid, metabolism in mature adipocytes by increasing fatty acid trapping. Finally, adipose tissue produces several cytokines that regulate energy homeostasis, lipid and glucose metabolism. Disturbances in the production of these factors may contribute to metabolic abnormalities, and PPARγ activation is also associated with beneficial effects on expression and secretion of a whole range of cytokines.
Collapse
|
49
|
Zorrilla S, Garzón B, Pérez-Sala D. Selective binding of the fluorescent dye 1-anilinonaphthalene-8-sulfonic acid to peroxisome proliferator-activated receptor gamma allows ligand identification and characterization. Anal Biochem 2009; 399:84-92. [PMID: 20025845 DOI: 10.1016/j.ab.2009.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily involved in insulin sensitization, atherosclerosis, inflammation, and carcinogenesis. PPARgamma transcriptional activity is modulated by specific ligands that promote conformational changes allowing interaction with coactivators. Here we show that the fluorophore 1-anilinonaphthalene-8-sulfonic acid (ANS) binds to PPARgamma-LBD (ligand binding domain), displaying negligible interaction with other nuclear receptors such as PPARalpha and retinoid X receptor alpha (RXRalpha). ANS binding is competed by PPARgamma agonists such as rosiglitazone, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), and 9,10-dihydro-15-deoxy-Delta(12,14)-prostaglandin J(2) (CAY10410). Moreover, the affinity of PPARgamma for these ligands, determined through ANS competition titrations, is within the range of that reported previously, thereby suggesting that ANS competition could be useful in the screening and characterization of novel PPARgamma agonists. In contrast, gel-based competition assays showed limited performance with noncovalently bound ligands. We applied the ANS binding assay to characterize a biotinylated analog of 15d-PGJ(2) that does not activate PPAR in cells. We found that although this compound bound to PPARgamma with low affinity, it failed to promote PPARgamma interaction with a fluorescent SRC-1 peptide, indicating a lack of receptor activation. Therefore, combined approaches using ANS and fluorescent coactivator peptides to monitor PPARgamma binding and interactions may provide valuable strategies to fully understand the role of PPARgamma ligands.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain.
| | | | | |
Collapse
|
50
|
Lewis SN, Bassaganya-Riera J, Bevan DR. Virtual Screening as a Technique for PPAR Modulator Discovery. PPAR Res 2009; 2010:861238. [PMID: 19746174 PMCID: PMC2738858 DOI: 10.1155/2010/861238] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/24/2009] [Indexed: 12/11/2022] Open
Abstract
Virtual screening (VS) is a discovery technique to identify novel compounds with therapeutic and preventive efficacy against disease. Our current focus is on the in silico screening and discovery of novel peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists. It is well recognized that PPARgamma agonists have therapeutic applications as insulin sensitizers in type 2 diabetes or as anti-inflammatories. VS is a cost- and time-effective means for identifying small molecules that have therapeutic potential. Our long-term goal is to devise computational approaches for testing the PPARgamma-binding activity of extensive naturally occurring compound libraries prior to testing agonist activity using ligand-binding and reporter assays. This review summarizes the high potential for obtaining further fundamental understanding of PPARgamma biology and development of novel therapies for treating chronic inflammatory diseases through evolution and implementation of computational screening processes for immunotherapeutics in conjunction with experimental methods for calibration and validation of results.
Collapse
Affiliation(s)
- Stephanie N. Lewis
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, 201 Engel Hall 0308, Blacksburg, VA 24061, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Nutrition, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street 0477, Blacksburg, VA 24061, USA
| | - David R. Bevan
- Department of Biochemistry, Virginia Polytechnic Institute and State University, 201 Engel Hall 0308, Blacksburg, VA 24061, USA
| |
Collapse
|