1
|
Martinez VR, Martins Lima A, Stergiopulos N, Velez Rueda JO, Islas MS, Griera M, Calleros L, Rodriguez Puyol M, Jaquenod de Giusti C, Portiansky EL, Ferrer EG, De Giusti V, Williams PAM. Effect of the structural modification of Candesartan with Zinc on hypertension and left ventricular hypertrophy. Eur J Pharmacol 2023; 946:175654. [PMID: 36930883 DOI: 10.1016/j.ejphar.2023.175654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Hypertension is the most common cause of left ventricular hypertrophy, contributing to heart failure progression. Candesartan (Cand) is an angiotensin receptor antagonist widely used for hypertension treatment. Structural modifications were previously performed by our group using Zinc (ZnCand) as a strategy for improving its pharmacological properties. The measurements showed that ZnCand exerts a stronger interaction with the angiotensin II receptor, type 1 (AT1 receptor), reducing oxidative stress and intracellular calcium flux, a mechanism implied in cell contraction. These results were accompanied by the reduction of the contractile capacity of mesangial cells. In vivo experiments showed that the complex causes a significant decrease in systolic blood pressure after 8 weeks of treatment in spontaneously hypertensive rats (SHR). The reduction of heart hypertrophy was evidenced by echocardiography, the histologic cross-sectional area of cardiomyocytes, collagen content, the B-type natriuretic peptide (BNP) marker and connective tissue growth factor (CTGF) and the matrix metalloproteinase 2 (MMP-2) expression. Besides, the complex restored the redox status. In this study, we demonstrated that the complexation with Zn(II) improves the antihypertensive and cardiac effects of the parental drug.
Collapse
Affiliation(s)
- Valeria R Martinez
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900, La Plata, Argentina; CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Augusto Martins Lima
- Laboratory of Hemodynamics & Cardiovascular Technology (LHTC), Institute of Bioengineering (Bâtiment MED), Station 9, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Nikolaous Stergiopulos
- Laboratory of Hemodynamics & Cardiovascular Technology (LHTC), Institute of Bioengineering (Bâtiment MED), Station 9, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jorge O Velez Rueda
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Maria S Islas
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Mercedes Griera
- Departamento de Fisiología, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Laura Calleros
- Departamento de Fisiología, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Manuel Rodriguez Puyol
- Departamento de Fisiología, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Carolina Jaquenod de Giusti
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes-UNLP, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, 1900, La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900, La Plata, Argentina
| | - Verónica De Giusti
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900, La Plata, Argentina.
| |
Collapse
|
2
|
Moorthy NSHN. In Silico Based Structural and Fingerprint Analysis of Structurally Diverse AT1 inhibitors. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200818155601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objective:
The development of pharmacologically active molecules
for the treatment of hypertension and other cardiovascular diseases are important nowadays. In the
present investigation, computational techniques have been implemented on Angiotensin II Type 1
(AT1) antagonists to develop better predictive models.
Methods:
Quantitative Structure Activity Relationship (QSAR) and structural patterns/fragments
analyses were performed using physicochemical descriptors and MACCS Fingerprints calculaced
from AT1 inhibitors collected from the literature.
Results:
The significant models developed have been validated by Leave One Out (LOO) and test
set methods, which exhibit considerable Q2 values (>0.65 for the training set and >0.5 for the test
set) and the R2pred values for the models are also >0.5. The applicability of the contributed descriptors
in these models revealed that the chlorine atom, dipole moment, hydrogen bond donor atoms
and electrostatic potential are negatively contributing, and the presence of bond between
heavy atoms and the carbon atom connected with small side chain and topological polar vdW surface
area are favorable for the AT1 antagonistic activity. The MACCS Fingerprints showed that the
presence of atoms (kind of heavy atoms), such as N, O, and S, connected with other heteroatoms or carbon
or any other atoms, through single or double bonds are predominantly present in highly active molecules.
The presence of halogens, long chain alkanes, halogenated alkanes, and sulfur atoms attached with
nitrogen through any atoms are responsible for decreased AT1 antagonistic activity.
Conclusion:
The results have provided additional information on the structural patterns of the
compounds based on its MACCS Fingerprints, which may be used for further characterization and
design of novel AT1 inhibitors.
Collapse
|
3
|
Kellici TF, Ntountaniotis D, Liapakis G, Tzakos AG, Mavromoustakos T. The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
4
|
Durdagi S, Erol I, Salmas RE, Aksoydan B, Kantarcioglu I. Oligomerization and cooperativity in GPCRs from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neurosci Lett 2018; 700:30-37. [PMID: 29684528 DOI: 10.1016/j.neulet.2018.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) can form homo- and heterodimers or constitute higher oligomeric clusters with other heptahelical GPCRs. In this article, multiscale molecular modeling approaches as well as experimental techniques which are used to study oligomerization of GPCRs are reviewed. In particular, the effect of dimerization/oligomerization to the ligand binding affinity of individual protomers and also on the efficacy of the oligomer are discussed by including diverse examples from the literature. In addition, possible allosteric effects that may emerge upon interaction of GPCRs with membrane components, like cholesterol, is also discussed. Investigation of these above-mentioned interactions may greatly contribute to the candidate molecule screening studies and development of novel therapeutics with fewer adverse effects.
Collapse
Affiliation(s)
- Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey.
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Isik Kantarcioglu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Bioengineering Program, Graduate School of Natural and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
5
|
Durdagi S, Aksoydan B, Erol I, Kantarcioglu I, Ergun Y, Bulut G, Acar M, Avsar T, Liapakis G, Karageorgos V, Salmas RE, Sergi B, Alkhatib S, Turan G, Yigit BN, Cantasir K, Kurt B, Kilic T. Integration of multi-scale molecular modeling approaches with experiments for the in silico guided design and discovery of novel hERG-Neutral antihypertensive oxazalone and imidazolone derivatives and analysis of their potential restrictive effects on cell proliferation. Eur J Med Chem 2017; 145:273-290. [PMID: 29329002 DOI: 10.1016/j.ejmech.2017.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
AT1 antagonists is the most recent drug class of molecules against hypertension and they mediate their actions through blocking detrimental effects of angiotensin II (A-II) when acts on type I (AT1) A-II receptor. The effects of AT1 antagonists are not limited to cardiovascular diseases. AT1 receptor blockers may be used as potential anti-cancer agents - due to the inhibition of cell proliferation stimulated by A-II. Therefore, AT1 receptors and the A-II biosynthesis mechanisms are targets for the development of new synthetic drugs and therapeutic treatment of various cardiovascular and other diseases. In this work, multi-scale molecular modeling approaches were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. In silico-guided designed hit molecules were then synthesized and tested for their binding affinities to human AT1 receptor in radioligand binding studies, using [125I-Sar1-Ile8] AngII. Among the compounds tested, 19d and 9j molecules bound to receptor in a dose response manner and with relatively high affinities. Next, cytotoxicity and wound healing assays were performed for these hit molecules. Since hit molecule 19d led to deceleration of cell motility in all three cell lines (NIH3T3, A549, and H358) tested in this study, this molecule is investigated in further tests. In two cell lines (HUVEC and MCF-7) tested, 19d induced G2/M cell cycle arrest in a concentration dependent manner. Adherent cells detached from the plates and underwent cell death possibly due to apoptosis at 19d concentrations that induced cell cycle arrest.
Collapse
Affiliation(s)
- Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey.
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Isik Kantarcioglu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Bioengineering Program, Graduate School of Natural and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| | - Yavuz Ergun
- Department of Chemistry, Dokuz Eylul University, Izmir, Turkey
| | - Gulay Bulut
- Department of Molecular Biology and Genetics, Bahcesehir University, Istanbul, Turkey
| | - Melih Acar
- Department of Medical Biology, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - George Liapakis
- Department of Pharmacology, Faculty of Medicine, University of Crete, Greece
| | - Vlasios Karageorgos
- Department of Pharmacology, Faculty of Medicine, University of Crete, Greece
| | - Ramin E Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Barış Sergi
- Department of Molecular Biology and Genetics, Bahcesehir University, Istanbul, Turkey
| | - Sara Alkhatib
- Bioengineering Program, Graduate School of Natural and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| | - Gizem Turan
- Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Berfu Nur Yigit
- Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Kutay Cantasir
- School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Bahar Kurt
- School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Turker Kilic
- Department of Neurosurgery, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
6
|
Aksoydan B, Kantarcioglu I, Erol I, Salmas RE, Durdagi S. Structure-based design of hERG-neutral antihypertensive oxazalone and imidazolone derivatives. J Mol Graph Model 2017; 79:103-117. [PMID: 29156380 DOI: 10.1016/j.jmgm.2017.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiotensin II receptor type 1 (AT1) antagonists are the most recent drug class against hypertension. Recently first crystal structure of AT1 receptor is deposited to the protein data bank (PDB ID: 4YAY). In this work, several molecular screening methods such as molecular docking and de novo design studies were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. A database consisting of 3500-fragments were used to enumerate de novo designed imidazolone and oxazolone derivatives and hereby more than 50000 novel small molecules were generated. These derivatives were then used in high throughput virtual screening simulations (Glide/HTVS) to find potent hit molecules. In addition, virtual screening of around 18 million small drug-like compounds from ZINC database were screened at the binding pocket of the AT1 receptor via Glide/HTVS method. Filtered structures were then used in more sophisticated molecular docking simulations protocols (i.e., Glide/SP; Glide/XP; Glide/IFD; Glide/QPLD, and GOLD). However, the K+ ion channel/drug interactions should also be considered in studies implemented in molecular level against their cardiovascular risks. Thus, selected compounds with high docking scores via all diverse docking algorithms are also screened at the pore domain regions of human ether-a-go-go-related gene (hERG1) K+ channel to remove the high affinity hERG1 blocking compounds. High docking scored compounds at the AT1 with low hERG1 affinity is considered for long molecular dynamics (MD) simulations. Post-processing analysis of MD simulations assisted for better understanding of molecular mechanism of studied compounds at the binding cavity of AT1 receptor. Results of this study can be useful for designing of novel and safe AT1 inhibitors.
Collapse
Affiliation(s)
- Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Isik Kantarcioglu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey.
| |
Collapse
|
7
|
QSAR study of 2,4-dihydro-3H-1,2,4-triazol-3-ones derivatives as angiotensin II AT1 receptor antagonists based on the Monte Carlo method. Struct Chem 2017. [DOI: 10.1007/s11224-017-1041-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Publisher's note. J Mol Graph Model 2017; 77:240-249. [DOI: 10.1016/j.jmgm.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/17/2022]
|
9
|
Vauquelin G, Van Liefde I, Swinney DC. On the different experimental manifestations of two-state 'induced-fit' binding of drugs to their cellular targets. Br J Pharmacol 2016; 173:1268-85. [PMID: 26808227 DOI: 10.1111/bph.13445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/03/2015] [Accepted: 01/12/2016] [Indexed: 01/17/2023] Open
Abstract
'Induced-fit' binding of drugs to a target may lead to high affinity, selectivity and a long residence time, and this mechanism has been proposed to apply to many drugs with high clinical efficacy. It is a multistep process that initially involves the binding of a drug to its target to form a loose RL complex and a subsequent isomerization/conformational change to yield a tighter binding R'L state. Equations with the same mathematical form may also describe the binding of bivalent antibodies and related synthetic drugs. Based on a selected range of 'microscopic' rate constants and variables such as the ligand concentration and incubation time, we have simulated the experimental manifestations that may go along with induced-fit binding. Overall, they validate different experimental procedures that have been used over the years to identify such binding mechanisms. However, they also reveal that each of these manifestations only becomes perceptible at particular combinations of rate constants. The simulations also show that the durable nature of R'L and the propensity of R'L to be formed repeatedly before the ligand dissociates will increase the residence time. This review may help pharmacologists and medicinal chemists obtain preliminary indications for identifying an induced-fit mechanism.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Van Liefde
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | - David C Swinney
- Institute for Rare and Neglected Diseases Drug Discovery, Mountain View, CA, USA
| |
Collapse
|
10
|
Han XF, He X, Wang M, Xu D, Hao LP, Liang AH, Zhang J, Zhou ZM. Discovery of novel, potent and low-toxicity angiotensin II receptor type 1 (AT1) blockers: Design, synthesis and biological evaluation of 6-substituted aminocarbonyl benzimidazoles with a chiral center. Eur J Med Chem 2015; 103:473-87. [DOI: 10.1016/j.ejmech.2015.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/28/2015] [Accepted: 09/06/2015] [Indexed: 10/23/2022]
|
11
|
Takezako T, Unal H, Karnik SS, Node K. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor. Mol Pharmacol 2015; 88:488-501. [PMID: 26121982 PMCID: PMC4551048 DOI: 10.1124/mol.115.099176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/29/2015] [Indexed: 01/05/2023] Open
Abstract
Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R.
Collapse
Affiliation(s)
- Takanobu Takezako
- Department of Advanced Heart Research, Saga University, Saga, Japan (T.T.); Department of Cardiovascular Medicine, Saga University, Saga, Japan (K.N.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio (H.U., S.S.K.); Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Japan (T.T.); and Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey (H.U.)
| | - Hamiyet Unal
- Department of Advanced Heart Research, Saga University, Saga, Japan (T.T.); Department of Cardiovascular Medicine, Saga University, Saga, Japan (K.N.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio (H.U., S.S.K.); Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Japan (T.T.); and Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey (H.U.)
| | - Sadashiva S Karnik
- Department of Advanced Heart Research, Saga University, Saga, Japan (T.T.); Department of Cardiovascular Medicine, Saga University, Saga, Japan (K.N.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio (H.U., S.S.K.); Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Japan (T.T.); and Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey (H.U.)
| | - Koichi Node
- Department of Advanced Heart Research, Saga University, Saga, Japan (T.T.); Department of Cardiovascular Medicine, Saga University, Saga, Japan (K.N.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio (H.U., S.S.K.); Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Japan (T.T.); and Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey (H.U.)
| |
Collapse
|
12
|
Investigations on Synperiplanar and Antiperiplanar Isomers of Losartan: Theoretical and Experimental NMR Studies. Molecules 2015; 20:11875-90. [PMID: 26132909 PMCID: PMC6332005 DOI: 10.3390/molecules200711875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022] Open
Abstract
Losartan inhibits the renin-angiotensin-aldosterone system by blocking the angiotensin II receptor. It is commonly used in cardiovascular diseases, such as hypertension. Several publications applied the ab initio and density functional theory methods to investigate the molecule of losartan. Only in one of them were the nuclear magnetic resonance spectra calculations carried out, and their results were correlated with the experimental values. The authors focused their attention on calculations of the anion form of losartan, taking into consideration both its synperiplanar and antiperiplanar configurations. Coefficients of determination and mean absolute deviation parameters were calculated for the experimental and calculated chemical shifts for every used basis set. They showed a noticeably stronger correlation for the anti-isomers than for the syn-isomers. Moreover, the solvation model increased the value of this parameter. The results of calculations confirmed that an anti-conformation of the analyte seems to be the preferred one, and such an orientation might be most potent within the receptor cavity, which is in agreement with the results of previous studies.
Collapse
|
13
|
|
14
|
Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol 2014; 53:R71-92. [PMID: 25013233 DOI: 10.1530/jme-14-0125] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Gowraganahalli Jagadeesh
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
15
|
Sharma MC. Molecular modelling studies for the discovery of new substituted pyridines derivatives with angiotensin II AT1 receptor antagonists. Interdiscip Sci 2014; 6:197-207. [PMID: 25205497 DOI: 10.1007/s12539-013-0201-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/16/2013] [Accepted: 09/26/2013] [Indexed: 11/26/2022]
Abstract
A QSAR study has been performed on a series of pyridines derivatives with potent angiotensin II AT1 receptor antagonists. Structural features responsible for the activity of the compounds were characterized by using topological, electrotopological, group based and 3D descriptors, calculated from the Molecular Design Suite software (V-life MDS 3.5). To elucidate the structural properties required for antihypertensive activity, four different molecular modeling techniques; two-dimensional, Group-based (G-QSAR), k-nearest neighbour and pharmacophore approach. A suitable set of molecular descriptors was calculated and stepwise - partial component regression (SW-PCR) was employed to select the descriptors that resulted in the models with the best fit to the data. This study was performed with twenty two compounds using sphere exclusion algorithm method for the division of the data set into training and test set. The statistically significant 2D QSAR model having r(2) = 0.8407 and q(2) = 0.7395 with pred_r(2) = 0.7971 was developed by stepwise-partial component regression (SW-PCR) and best Group based QSAR model having R(2) = 0.8132 and Q(2) = 0.6804 with pred_r(2) = 0.7661 was developed by SW-PCR. The analyzed k-nearest neighbour MFA model revealed a good fit, having q(2) value of 0.7635. The predictive power of the model generated was validated using a test set molecules with pred _r(2) value of 0.7314. The generated k-nearest neighbour models suggest that steric and electrostatic interactions play an important role in describing the variation in binding affinity. Additionally the pharmacophore model well corraborated with k-nearest neighbour studies as the contours of later were in good agreement with the 3D orientation of the pharmacophoric features. The present analysis has shown that the antihypertensive activity can be improved with the presence of specific steric substituent and electro-donating and electro-withdrawing groups nearby the pyridine moiety. The Pharmacophore information shows that the four features used were two AroC feature, one HAc, one AlaC features. The structural variations in the molecular fields at particular regions in the space provide underlying structural requirements and 3D-QSAR models generated give good predictive ability and aid in the design of potent antihypertensive activity.
Collapse
Affiliation(s)
- Mukesh C Sharma
- Drug Research Laboratory, School of Pharmacy, Devi Ahilya University, Takshila Campus, Khandwa Road, Indore, M.P, 452 001, India,
| |
Collapse
|
16
|
Insight into the structural requirement of substituted quinazolinone biphenyl acylsulfonamides derivatives as Angiotensin II AT1 receptor antagonist: 2D and 3D QSAR approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2014. [DOI: 10.1016/j.jscs.2011.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Insights into the molecular basis of action of the AT1 antagonist losartan using a combined NMR spectroscopy and computational approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1031-46. [PMID: 24374319 DOI: 10.1016/j.bbamem.2013.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 01/11/2023]
Abstract
The drug:membrane interactions for the antihypertensive AT1 antagonist losartan, the prototype of the sartans class, are studied herein using an integrated approach. The pharmacophore arrangement of the drug was revealed by rotating frame nuclear Overhauser effect spectroscopy (2D ROESY) NMR spectroscopy in three different environments, namely water, dimethyl sulfoxide (DMSO), and sodium dodecyl sulfate (SDS) micellar solutions mimicking conditions of biological transport fluids and membrane lipid bilayers. Drug association with micelles was monitored by diffusion ordered spectroscopy (2D DOSY) and drug:micelle intermolecular interactions were characterized by ROESY spectroscopy. The localisation of the drug in the micellar environment was investigated by introducing 5-doxyl and 16-doxyl stearic acids. The use of spin labels confirmed that losartan resides close to the micelle:water interface with the hydroxymethyl group and the tetrazole heterocyclic aromatic ring facing the polar surface with the potential to interact with SDS charged polar head groups in order to increase amphiphilic interactions. The spontaneous insertion, the diffusion pathway and the conformational features of losartan were monitored by Molecular Dynamics (MD) simulations in a modeled SDS micellar aggregate environment and a long exploratory MD run (580ns) in a phospholipid dipalmitoylphosphatidylcholine (DPPC) bilayer with the AT1 receptor embedded. MD simulations were in excellent agreement with experimental results and further revealed the molecular basis of losartan:membrane interactions in atomic-level detail. This applied integrated approach aims to explore the role of membranes in losartan's pathway towards the AT1 receptor.
Collapse
|
18
|
Reassessment of the unique mode of binding between angiotensin II type 1 receptor and their blockers. PLoS One 2013; 8:e79914. [PMID: 24260317 PMCID: PMC3832659 DOI: 10.1371/journal.pone.0079914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022] Open
Abstract
While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding.
Collapse
|
19
|
Nonpeptidic angiotensin II AT1 receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles. Eur J Med Chem 2013; 69:44-54. [DOI: 10.1016/j.ejmech.2013.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022]
|
20
|
Sharma MC, Sharma S, Sharma P, Kumar A, Bhadoriya KS. Comparative QSAR and pharmacophore analysis for a series of 2,4-dihydro-3H-1,2,4-triazol-3-ones derivatives as angiotensin II AT1 receptor antagonists. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0831-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Facile and efficient syntheses of a series of N-benzyl and N-biphenylmethyl substituted imidazole derivatives based on (E)-urocanic acid, as angiotensin II AT1 receptor blockers. Molecules 2013; 18:7510-32. [PMID: 23807577 PMCID: PMC6270370 DOI: 10.3390/molecules18077510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 11/16/2022] Open
Abstract
In the present work, a facile and efficient route for the synthesis of a series of N-substituted imidazole derivatives is described. Docking studies have revealed that N-substituted imidazole derivatives based on (E)-urocanic acid may be potential antihypertensive leads. Therefore, new AT1 receptor blockers bearing either the benzyl or the biphenylmethyl moiety at the N-1 or N-3 position, either the (E)-acrylate or the propanoate fragment and their related acids at the C-4 position as well as a halogen atom at the C-5 position of the imidazole ring, were synthesized. The newly synthesized analogues were evaluated for binding to human AT1 receptor. The biological results showed that this class of molecules possesses moderate or no activity, thus not always confirming high docking scores. Nonetheless, important conclusions can be derived for their molecular basis of their mode of action and help medicinal chemists to design and synthesize more potent ones. An aliphatic group as in losartan seems to be important for enhancing binding affinity and activity.
Collapse
|
22
|
Improvement of the antihypertensive capacity of candesartan and trityl candesartan by their SOD mimetic copper(II) complexes. J Inorg Biochem 2013; 123:23-33. [DOI: 10.1016/j.jinorgbio.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 12/11/2022]
|
23
|
Fei F, Zhou Z. New substituted benzimidazole derivatives: a patent review (2010 – 2012). Expert Opin Ther Pat 2013; 23:1157-79. [DOI: 10.1517/13543776.2013.800857] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Molecular insights into the AT1 antagonism based on biophysical and in silico studies of telmisartan. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0464-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Agelis G, Resvani A, Koukoulitsa C, Tůmová T, Slaninová J, Kalavrizioti D, Spyridaki K, Afantitis A, Melagraki G, Siafaka A, Gkini E, Megariotis G, Grdadolnik SG, Papadopoulos MG, Vlahakos D, Maragoudakis M, Liapakis G, Mavromoustakos T, Matsoukas J. Rational design, efficient syntheses and biological evaluation of N,N'-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers. Eur J Med Chem 2013; 62:352-70. [PMID: 23376252 DOI: 10.1016/j.ejmech.2012.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
A series of symmetrically bis-substituted imidazole analogs bearing at the N-1 and N-3 two biphenyl moieties ortho substituted either with tetrazole or carboxylate functional groups was designed based on docking studies and utilizing for the first time an extra hydrophobic binding cleft of AT1 receptor. The synthesized analogs were evaluated for their in vitro antagonistic activities (pA2 values) and binding affinities (-logIC50 values) to the Angiotensin II AT1 receptor. Among them, the potassium (-logIC50 = 9.04) and the sodium (-logIC50 = 8.54) salts of 4-butyl-N,N'-bis{[2'-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (12a and 12b, respectively) as well as its free acid 11 (-logIC50 = 9.46) and the 4-butyl-2-hydroxymethyl-N,N'-bis{[2'-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (14) (-logIC50 = 8.37, pA2 = 8.58) showed high binding affinity to the AT1 receptor and high antagonistic activity (potency). The potency was similar or even superior to that of Losartan (-logIC50 = 8.25, pA2 = 8.25). On the contrary, 2-butyl-N,N'-bis{[2'-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (27) (-logIC50 = 5.77) and 2-butyl-4-chloro-5-hydroxymethyl-N,N'-bis{[2'-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (30) (-logIC50 = 6.38) displayed very low binding affinity indicating that the orientation of the n-butyl group is of primary importance. Docking studies of the representative highly active 12b clearly showed that this molecule has an extra hydrophobic binding feature compared to prototype drug Losartan and it fits to the extra hydrophobic cavity. These results may contribute to the discovery and development of a new class of biologically active molecules through bis-alkylation of the imidazole ring by a convenient and cost effective synthetic strategy.
Collapse
Affiliation(s)
- George Agelis
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Molecular Modeling Studies of Substituted 2,4,5-Trisubstituted Triazolinones Aryl and Nonaryl Derivatives as Angiotensin II AT1Receptor Antagonists. J CHEM-NY 2013. [DOI: 10.1155/2013/427181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of new therapies to treat hypertension and cardiovascular diseases. A series of 2,4,5-trisubstituted triazolinones aryl and nonaryl derivatives were subjected toGroup-based QSAR,k-nearest neighbourmolecular field analysis, and pharmacophore mapping. Multiple linear regression (MLR) methodology coupled with feature selection method namely simulated annealing, was applied to derive Group based QSAR models which were further validated for statistical significance and predictive ability by internal and external validation. The best physicochemical descriptors, namely, R1chiV1, R2T_N_O_3, R2chlorines count, R2T_C_N_4, and R2SssNHE index, contribute significantly to the biological activity. The statistically significant best Group-based QSAR model hasr2=0.8357andq2=0.7266with pred_r2=0.8138. The 3D-QSAR studies were performed using the simulated annealing selectionk-nearest neighbormolecular field analysis approach; a leave-one-out cross-validated correlation coefficientq2=0.7461and predicate activity pred_r2=0.7790were obtained. Contour maps using this approach showed that steric, electrostatic, and hydrophobic effects dominantly determine binding affinities. Pharmacophore hypotheses were generated by the mol sign module and found to contain common features like hydrogen bond donor acceptor, donor, positive, negative ionizable, and hydrophobic features. This model can be used for preliminary screening of large number of substituted 3H-1,-2,-4 triazolinone aryl and nonaryl derivatives. The information rendered by 3D-QSAR models may lead to a better understanding of structural requirements of triazolinone aryl and nonaryl derivatives and also aid in designing novel potent antihypertensive molecules.
Collapse
|
27
|
Vyas VK, Ukawala RD, Ghate M, Chintha C. Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 2012. [PMID: 23204616 PMCID: PMC3507339 DOI: 10.4103/0250-474x.102537] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery.
Collapse
Affiliation(s)
- V K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382 481, India
| | | | | | | |
Collapse
|
28
|
Sharma MC, Kohli DV. Comprehensive structure–activity relationship analysis of substituted 5-(biphenyl-4-ylmethyl) pyrazoles derivatives as AT1 selective angiotensin II receptor antagonists: 2D and kNNMFA QSAR approach. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0206-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT1 receptor antagonists. Bioorg Med Chem 2012; 20:4208-16. [DOI: 10.1016/j.bmc.2012.05.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 01/23/2023]
|
30
|
Pal M, Paliwal S. In silico identification of novel lead compounds with AT1 receptor antagonist activity: successful application of chemical database screening protocol. Org Med Chem Lett 2012; 2:7. [PMID: 22380004 PMCID: PMC3349973 DOI: 10.1186/2191-2858-2-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/01/2012] [Indexed: 11/17/2022] Open
Abstract
Background AT1 receptor antagonists are clinically effective drugs for the treatment of hypertension, cardiovascular, and related disorders. In an attempt to identify new AT1 receptor antagonists, a pharmacophore-based virtual screening protocol was applied. The pharmacophore models were generated from 30 training set compounds. The best model was chosen on the basis of squared correlation coefficient of training set and internal test set. The validity of the developed model was also ensured using catScramble validation method and external test set prediction. Results The final model highlighted the importance of hydrogen bond acceptor, hydrophobic aliphatic, hydrophobic, and ring aromatic features. The model satisfied all the statistical criteria such as cost function analysis and correlation coefficient. The result of estimated activity for internal and external test set compounds reveals that the generated model has high prediction capability. The validated pharmacophore model was further used for mining of 56000 compound database (MiniMaybridge). Total 141 hits were obtained and all the hits were checked for druggability, this led to the identification of two active druggable AT1 receptor antagonists with diverse structure. Conclusion A highly validated pharmacophore model generated in this study identified two novel druggable AT1 receptor antagonists. The developed model can also be further used for mining of other virtual database.
Collapse
Affiliation(s)
- Mahima Pal
- Department of Pharmacy, Banasthali University, Banasthali, Tonk, Rajasthan, India.
| | | |
Collapse
|
31
|
Wang JL, Zhang J, Zhou ZM, Li ZH, Xue WZ, Xu D, Hao LP, Han XF, Fei F, Liu T, Liang AH. Design, synthesis and biological evaluation of 6-substituted aminocarbonyl benzimidazole derivatives as nonpeptidic angiotensin II AT1 receptor antagonists. Eur J Med Chem 2012; 49:183-90. [DOI: 10.1016/j.ejmech.2012.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/29/2011] [Accepted: 01/05/2012] [Indexed: 01/26/2023]
|
32
|
WITHDRAWN: Quantitative structure–activity analysis studies on triazolinone aryl and nonaryl substituents as angiotensin II receptor antagonists. JOURNAL OF SAUDI CHEMICAL SOCIETY 2012. [DOI: 10.1016/j.jscs.2011.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
34
|
Insight into the structural requirement of aryltriazolinone derivatives as angiotensin II AT1 receptor: 2D and 3D-QSAR k-Nearest Neighbor Molecular Field Analysis approach. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9815-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Sharma MC, Kohli D. WITHDRAWN: Two dimensional and k-nearest neighbor molecular field analysis approach on substituted Triazolone derivatives: An insight into the structural requirement for the angiotensin II receptor antagonist. JOURNAL OF SAUDI CHEMICAL SOCIETY 2011. [DOI: 10.1016/j.jscs.2011.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
36
|
WITHDRAWN: Predicting substituted 2-butylbenzimidazoles derivatives as angiotensin II receptor antagonists: 3D-QSAR and pharmacophore modeling. JOURNAL OF SAUDI CHEMICAL SOCIETY 2011. [DOI: 10.1016/j.jscs.2011.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Paliwal S, Pal M, Yadav D, Singh S, Yadav R. Ligand-based drug design studies using predictive pharmacophore model generation on 4H-1,2,4-triazoles as AT1 receptor antagonists. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9756-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Ohno K, Amano Y, Kakuta H, Niimi T, Takakura S, Orita M, Miyata K, Sakashita H, Takeuchi M, Komuro I, Higaki J, Horiuchi M, Kim-Mitsuyama S, Mori Y, Morishita R, Yamagishi SI. Unique “delta lock” structure of telmisartan is involved in its strongest binding affinity to angiotensin II type 1 receptor. Biochem Biophys Res Commun 2011; 404:434-7. [DOI: 10.1016/j.bbrc.2010.11.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
39
|
Naik P, Murumkar P, Giridhar R, Yadav MR. Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists—A perspective. Bioorg Med Chem 2010; 18:8418-56. [DOI: 10.1016/j.bmc.2010.10.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
|
40
|
Ortore G, Tuccinardi T, Orlandini E, Martinelli A. Different Binding Modes of Structurally Diverse Ligands for Human D3DAR. J Chem Inf Model 2010; 50:2162-75. [DOI: 10.1021/ci100290f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Ortore
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Adriano Martinelli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
41
|
Multiple templates-based homology modeling enhances structure quality of AT1 receptor: validation by molecular dynamics and antagonist docking. J Mol Model 2010; 17:1565-77. [DOI: 10.1007/s00894-010-0860-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
|
42
|
Tintori C, Veljkovic N, Veljkovic V, Botta M. Computational studies of the interaction between the HIV-1 integrase tetramer and the cofactor LEDGF/p75: Insights from molecular dynamics simulations and the Informational spectrum method. Proteins 2010; 78:3396-408. [DOI: 10.1002/prot.22847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/22/2010] [Accepted: 08/03/2010] [Indexed: 01/05/2023]
|
43
|
A small difference in the molecular structure of angiotensin II receptor blockers induces AT₁ receptor-dependent and -independent beneficial effects. Hypertens Res 2010; 33:1044-52. [PMID: 20668453 DOI: 10.1038/hr.2010.135] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Angiotensin II (Ang II) type 1 (AT₁) receptor blockers (ARBs) induce multiple pharmacological beneficial effects, but not all ARBs have the same effects and the molecular mechanisms underlying their actions are not certain. In this study, irbesartan and losartan were examined because of their different molecular structures (irbesartan has a cyclopentyl group whereas losartan has a chloride group). We analyzed the binding affinity and production of inositol phosphate (IP), monocyte chemoattractant protein-1 (MCP-1) and adiponectin. Compared with losartan, irbesartan showed a significantly higher binding affinity and slower dissociation rate from the AT₁ receptor and a significantly higher degree of inverse agonism and insurmountability toward IP production. These effects of irbesartan were not seen with the AT₁-Y113A mutant receptor. On the basis of the molecular modeling of the ARBs-AT₁ receptor complex and a mutagenesis study, the phenyl group at Tyr(113) in the AT₁ receptor and the cyclopentyl group of irbesartan may form a hydrophobic interaction that is stronger than the losartan-AT₁ receptor interaction. Interestingly, irbesartan inhibited MCP-1 production more strongly than losartan. This effect was mediated by the inhibition of nuclear factor-kappa B activation that was independent of the AT₁ receptor in the human coronary endothelial cells. In addition, irbesartan, but not losartan, induced significant adiponectin production that was mediated by peroxisome proliferator-activated receptor-γ activation in 3T3-L1 adipocytes, and this effect was not mediated by the AT₁ receptor. In conclusion, irbesartan induced greater beneficial effects than losartan due to small differences between their molecular structures, and these differential effects were both dependent on and independent of the AT₁ receptor.
Collapse
|
44
|
Agelis G, Roumelioti P, Resvani A, Durdagi S, Androutsou ME, Kelaidonis K, Vlahakos D, Mavromoustakos T, Matsoukas J. An efficient synthesis of a rationally designed 1,5 disubstituted imidazole AT(1) angiotensin II receptor antagonist: reorientation of imidazole pharmacophore groups in losartan reserves high receptor affinity and confirms docking studies. J Comput Aided Mol Des 2010; 24:749-58. [PMID: 20623162 DOI: 10.1007/s10822-010-9371-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/17/2010] [Indexed: 11/25/2022]
Abstract
A new 1,5 disubstituted imidazole AT(1) Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity (V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT(1) receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.
Collapse
Affiliation(s)
- George Agelis
- Department of Chemistry, University of Patras, Patras 26500, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Towards non-peptide ANG II AT1 receptor antagonists based on urocanic acid: rational design, synthesis and biological evaluation. Amino Acids 2010; 40:411-20. [PMID: 20607324 DOI: 10.1007/s00726-010-0651-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
A series of o-, m- and p-benzyl tetrazole derivatives 11a-c has been designed, synthesized and evaluated as potential Angiotensin II AT1 receptor antagonists, based on urocanic acid. Compound 11b with tetrazole moiety at the m-position showed moderate, however, higher activity compared to the o- and p-counterpart analogues. Molecular modelling techniques were performed in order to extract their putative bioactive conformations and explore their binding modes.
Collapse
|
46
|
Miura SI, Karnik SS, Saku K. Review: angiotensin II type 1 receptor blockers: class effects versus molecular effects. J Renin Angiotensin Aldosterone Syst 2010; 12:1-7. [PMID: 20603272 DOI: 10.1177/1470320310370852] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Highly selective angiotensin II (Ang II) type 1 (AT(1)) receptor blockers (ARBs) are now available. The AT(1) receptor is a member of the G protein-coupled receptor (GPCR) superfamily and block the diverse effects of Ang II. Several ARBs are available for clinical use. Most ARBs have common molecular structures (biphenyl-tetrazol and imidazole groups) and it is clear that ARBs have 'class effects'. On the other hand, recent clinical studies have demonstrated that not all ARBs have the same effects, and some benefits conferred by ARBs may not be class effects, and instead may be 'molecular effects'. In addition, each ARB has been clearly shown to have specific molecular effects in basic experimental studies, and these effects may be due to small differences in the molecular structure of each ARB. However, it is controversial whether ARBs have molecular effects in a clinical setting. Although the presence of molecular effects for each ARB based on experimental studies may not directly influence the clinical outcome, this possibility has not been adequately evaluated. This review focuses on the class effects versus molecular effects of ARBs from bench to bedside.
Collapse
Affiliation(s)
- Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.
| | | | | |
Collapse
|
47
|
A single-nucleotide polymorphism of alanine to threonine at position 163 of the human angiotensin II type 1 receptor impairs Losartan affinity. Pharmacogenet Genomics 2010; 20:377-88. [DOI: 10.1097/fpc.0b013e32833a6d4a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Li J, Zhu X, Yang C, Shi R. Characterization of the binding of angiotensin II receptor blockers to human serum albumin using docking and molecular dynamics simulation. J Mol Model 2009; 16:789-98. [DOI: 10.1007/s00894-009-0612-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/07/2009] [Indexed: 11/25/2022]
|
49
|
Tuccinardi T, Ortore G, Santos MA, Marques SM, Nuti E, Rossello A, Martinelli A. Multitemplate Alignment Method for the Development of a Reliable 3D-QSAR Model for the Analysis of MMP3 Inhibitors. J Chem Inf Model 2009; 49:1715-24. [DOI: 10.1021/ci900118v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tiziano Tuccinardi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, and Centro de Química Estrutural, Instituto Superior Técnico, Rua Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Gabriella Ortore
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, and Centro de Química Estrutural, Instituto Superior Técnico, Rua Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M. Amélia Santos
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, and Centro de Química Estrutural, Instituto Superior Técnico, Rua Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Sérgio M. Marques
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, and Centro de Química Estrutural, Instituto Superior Técnico, Rua Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Elisa Nuti
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, and Centro de Química Estrutural, Instituto Superior Técnico, Rua Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Armando Rossello
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, and Centro de Química Estrutural, Instituto Superior Técnico, Rua Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Adriano Martinelli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, and Centro de Química Estrutural, Instituto Superior Técnico, Rua Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
50
|
Quantitative structure activity relationship analysis of angiotensin II AT1 receptor antagonists. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|