1
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
2
|
Mohamed Sofian Z, Harun N, Mahat MM, Nor Hashim NA, Jones SA. Investigating how amine structure influences drug-amine ion-pair formation and uptake via the polyamine transporter in A549 lung cells. Eur J Pharm Biopharm 2021; 168:53-61. [PMID: 34455038 DOI: 10.1016/j.ejpb.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022]
Abstract
Transiently associating amines with therapeutic agents through the formation of ion-pairs has been established both in vitro and in vivo as an effective means to systemically direct drug delivery to the lung via the polyamine transport system (PTS). However, there remains a need to better understand the structural traits required for effective PTS uptake of drug ion-pairs. This study aimed to use a structurally related series of amine counterions to investigate how they influenced the stability of theophylline ion-pairs and their active uptake in A549 cells. Using ethylamine (mono-amine), ethylenediamine (di-amine), spermidine (tri-amine) and spermine (tetra-amine) as counterions the ion-pair affinity was shown to increase as the number of protonated amine groups in the counterion structure increased. The mono and diamines generated a single hydrogen bond and the weakest ion-pair affinities (pKFTIR: 1.32 ± 0.04 and 1.43 ± 0.02) whereas the polyamines produced two hydrogen bonds and thus the strongest ion-pair affinities (pKFTIR: 1.93 ± 0.05 and 1.96 ± 0.04). In A549 cells depleted of endogenous polyamines using α-difluoromethylornithine (DFMO), the spermine-theophylline uptake was significantly increased (p < 0.05) compared to non-amine depleted cells and this evidenced the active PTS sequestering of the ion-pair. The mono-amine and di-amine failed to enhance theophylline uptake in these A549 cells, but the tri-amine and tetra-amine both almost doubled the theophylline uptake into the cells when compared to the uptake of free drug. As the data indicated that polyamines with at least 3 amines were required to form ion-pairs that could enhance A549 cell uptake, it suggested that at least two amines were required to physically stabilise the ion-pair and one to interact with the PTS.
Collapse
Affiliation(s)
- Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Insitute of Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40000 Shah Alam, Selangor, Malaysia
| | - Nikman Adli Nor Hashim
- Centre for Drug Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Stuart A Jones
- Insitute of Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
3
|
Della Rosa G, Di Corato R, Carpi S, Polini B, Taurino A, Tedeschi L, Nieri P, Rinaldi R, Aloisi A. Tailoring of silica-based nanoporous pod by spermidine multi-activity. Sci Rep 2020; 10:21142. [PMID: 33273530 PMCID: PMC7712788 DOI: 10.1038/s41598-020-77957-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
Ubiquitous in nature, polyamines (PAs) are a class of low-molecular aliphatic amines critically involved in cell growth, survival and differentiation. The polycation behavior is validated as a successful strategy in delivery systems to enhance oligonucleotide loading and cellular uptake. In this study, the chemical features and the functional roles of the PA spermidine are synergistically exploited in the synthesis and bioactive functionalization of SiO2-based structures. Inspired by biosilicification, the role of spermidine is assessed both as catalyst and template in a biomimetic one-pot synthesis of dense silica-based particles (SPs) and as a competitive agent in an interfacial reassembly strategy, to empty out SPs and generate spermidine-decorated hollow silica nanoporous pods (spd-SNPs). Spermidine bioactivity is then employed for targeting tumor cell over-expressed polyamine transport system (PTS) and for effective delivery of functional miRNA into melanoma cells. Spermidine decoration promotes spd-SNP cell internalization mediated by PTS and along with hollow structure enhances oligonucleotide loading. Accordingly, the functional delivery of the tumor suppressor miR-34a 3p resulted in intracellular accumulation of histone-complexed DNA fragments associated with apoptosis. Overall, the results highlight the potential of spd-SNP as a multi-agent anticancer therapy.
Collapse
Affiliation(s)
- Giulia Della Rosa
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Arnesano, 73100, Lecce, Italy
- Department of Neuroscience and Brain Technologies (NBT), Istituto Italiano di Tecnologia (IIT), Via Morego, 16163, Genova, Italy
| | - Riccardo Di Corato
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Arnesano, 73100, Lecce, Italy
- Center for Biomolecular Nanotechnologies (CBN), Istituto Italiano di Tecnologia (IIT), Via Barsanti, Arnesano, 73010, Lecce, Italy
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
- Centro Interdipartimentale di Farmacologia Marina, MARine PHARMA Center, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
| | - Antonietta Taurino
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Lorena Tedeschi
- Oligonucleotides Laboratory, Institute of Clinical Physiology (IFC), CNR, Via Moruzzi, 56124, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
- Centro Interdipartimentale di Farmacologia Marina, MARine PHARMA Center, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
| | - Rosaria Rinaldi
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Arnesano, 73100, Lecce, Italy
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
- ISUFI, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Alessandra Aloisi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
4
|
Zhao W, Cong Y, Li HM, Li S, Shen Y, Qi Q, Zhang Y, Li YZ, Tang YJ. Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat Prod Rep 2020; 38:470-488. [PMID: 32895676 DOI: 10.1039/d0np00041h] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Iron‐Catalyzed, Iminyl Radical‐Triggered Cascade 1,5‐Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five‐Atom Assembling Unit. Angew Chem Int Ed Engl 2020; 59:19222-19228. [DOI: 10.1002/anie.202007825] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Wu Liang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Fei Du
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Jie Yang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Li Shuai
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ying‐Chun Chen
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy Army Medical University Chongqing 400038 China
| |
Collapse
|
6
|
Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Iron‐Catalyzed, Iminyl Radical‐Triggered Cascade 1,5‐Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five‐Atom Assembling Unit. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wu Liang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Fei Du
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Jie Yang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Li Shuai
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ying‐Chun Chen
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy Army Medical University Chongqing 400038 China
| |
Collapse
|
7
|
Wang Y, Wu Q, Zhou Z, Xiang S, Cui Y, Yu P, Tan B. Asymmetric Construction of Axially Chiral 2‐Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angew Chem Int Ed Engl 2019; 58:13443-13447. [DOI: 10.1002/anie.201907470] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/21/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yong‐Bin Wang
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Quan‐Hao Wu
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Zhi‐Peng Zhou
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Shao‐Hua Xiang
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Yuan Cui
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Peiyuan Yu
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Bin Tan
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| |
Collapse
|
8
|
Wang Y, Wu Q, Zhou Z, Xiang S, Cui Y, Yu P, Tan B. Asymmetric Construction of Axially Chiral 2‐Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yong‐Bin Wang
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Quan‐Hao Wu
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Zhi‐Peng Zhou
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Shao‐Hua Xiang
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Yuan Cui
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Peiyuan Yu
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Bin Tan
- Shenzhen Grubbs InstituteDepartment of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| |
Collapse
|
9
|
Alliot J, Theodorou I, Ducongé F, Gravel E, Doris E. Polyamine transport system-targeted nanometric micelles assembled from epipodophyllotoxin-amphiphiles. Chem Commun (Camb) 2019; 55:14968-14971. [DOI: 10.1039/c9cc07883e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Micelle-forming amphiphilic drug conjugates were synthesized starting from a biologically active epipodophyllotoxin derivative which was covalently inserted in between a hydrophilic targeting spermine unit, and a hydrophobic stearyl chain.
Collapse
Affiliation(s)
- Julien Alliot
- Service de Chimie Bioorganique et de Marquage (SCBM)
- CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Ioanna Theodorou
- Molecular Imaging Research Center (MIRCen)
- CEA
- Université Paris-Saclay
- URA2210
- 92265 Fontenay-aux-Roses
| | - Frédéric Ducongé
- Molecular Imaging Research Center (MIRCen)
- CEA
- Université Paris-Saclay
- URA2210
- 92265 Fontenay-aux-Roses
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM)
- CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM)
- CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| |
Collapse
|
10
|
Chen Y, Yang C, Mao J, Li H, Ding J, Zhou W. Spermine modified polymeric micelles with pH-sensitive drug release for targeted and enhanced antitumor therapy. RSC Adv 2019; 9:11026-11037. [PMID: 35520220 PMCID: PMC9063029 DOI: 10.1039/c9ra00834a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022] Open
Abstract
Tumor targeting delivery of chemotherapeutic drugs by nanocarriers has been demonstrated to be a promising strategy for cancer therapy with improved therapeutic efficacy. In this work, we reported a novel type of active targeting micelle with pH-responsive drug release by using biodegradable poly(lactide)-poly(2-ethyl-2-oxazoline) di-block copolymers functionalized with spermine (SPM). SPM has been considered as a tumor binding ligand through its specific interaction with the polyamine transport system (PTS), a transmembrane protein overexpressed on various types of cancer cell, while its application in nano-drug delivery systems has rarely been explored. The micelles with spherical shape (∼110 nm) could load hydrophobic paclitaxel (PTX) with high capacity, and release the payload much faster at acidic pH (4.5–6.5) than at pH 7.4. This pH-responsive property assisted the rapid escape of drug from the endo/lysosome after internalization as demonstrated by confocal laser scanning microscopy images using coumarin-6 (Cou-6) as a fluorescent probe. With surface SPM modification, the micelles displayed much higher cellular uptake than SPM lacking micelles in various types of cancer cells, demonstrating tumor targeting ability. The uptake mechanism of SPM modified micelles was explored by flow cytometry, which suggested an energy-consuming sag vesicle-mediated endocytosis pathway. As expected, the micelles displayed significantly enhanced anti-cancer activity. This work demonstrates that SPM modified pH-sensitive micelles may be potential drug delivery vehicles for targeting and effective cancer therapy. Tumor targeting delivery of SPM functionalized micelles via PTS binding and their endocytosis and pH-triggered endo/lysosome drug release for anti-cancer therapy.![]()
Collapse
Affiliation(s)
- Yang Chen
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Cejun Yang
- Department of Radiology
- The Third Xiangya Hospital
- Central South University
- Changsha
- P. R. China
| | - Juan Mao
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Haigang Li
- School of Pharmaceutical Sciences
- Changsha Medical University
- Changsha
- China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| |
Collapse
|
11
|
Chen KQ, Gao ZH, Ye S. Bifunctional N-heterocyclic carbene catalyzed [3 + 4] annulation of enals with azadienes: enantioselective synthesis of benzofuroazepinones. Org Chem Front 2019. [DOI: 10.1039/c8qo01302k] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bifunctional N-heterocyclic carbene catalyzed [3 + 4] annulation of enals with aurone-derived azadienes was developed to afford benzofuroazepinones with excellent enantioselectivities.
Collapse
Affiliation(s)
- Kun-Quan Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
12
|
Li J, Tian R, Ge C, Chen Y, liu X, Wang Y, Yang Y, Luo W, Dai F, Wang S, Chen S, Xie S, Wang C. Discovery of the Polyamine Conjugate with Benzo[cd]indol-2(1H)-one as a Lysosome-Targeted Antimetastatic Agent. J Med Chem 2018; 61:6814-6829. [DOI: 10.1021/acs.jmedchem.8b00694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Benaouda F, Jones SA, Chana J, Dal Corno BM, Barlow DJ, Hider RC, Page CP, Forbes B. Ion-Pairing with Spermine Targets Theophylline To the Lungs via the Polyamine Transport System. Mol Pharm 2018; 15:861-870. [DOI: 10.1021/acs.molpharmaceut.7b00715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Faiza Benaouda
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Stuart A. Jones
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jasminder Chana
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Benedetta M. Dal Corno
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - David J. Barlow
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Robert C. Hider
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Clive P. Page
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Sackler Institute of Pulmonary Pharmacology, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
14
|
Tang J, Li J, Li G, Zhang H, Wang L, Li D, Ding J. Spermidine-mediated poly(lactic- co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int J Nanomedicine 2017; 12:6687-6704. [PMID: 28932114 PMCID: PMC5598552 DOI: 10.2147/ijn.s140569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, fatal lung disease with poor survival. The advances made in deciphering this disease have led to the approval of different antifibrotic molecules, such as pirfenidone and nintedanib. An increasing number of studies with particles (liposomes, nanoparticles [NPs], microspheres, nanopolymersomes, and nanoliposomes) modified with different functional groups have demonstrated improvement in lung-targeted drug delivery. In the present study, we prepared, characterized, and evaluated spermidine (Spd)-modified poly(lactic-co-glycolic acid) (PLGA) NPs as carriers for fluorofenidone (AKF) to improve the antifibrotic efficacy of this drug in the lung. Spd-AKF-PLGA NPs were prepared and functionalized by modified solvent evaporation with Spd and polyethylene glycol (PEG)-PLGA groups. The size of Spd-AKF-PLGA NPs was 172.5±4.3 nm. AKF release from NPs was shown to fit the Higuchi model. A549 cellular uptake of an Spd-coumarin (Cou)-6-PLGA NP group was found to be almost twice as high as that of the Cou-6-PLGA NP group. Free Spd and difluoromethylornithine (DFMO) were preincubated in A549 cells to prove uptake of Spd-Cou-6-PLGA NPs via a polyamine-transport system. As a result, the uptake of Spd-Cou-6-PLGA NPs significantly decreased with increased Spd concentrations in incubation. At higher Spd concentrations of 50 and 500 µM, uptake of Spd-Cou-6-PLGA NPs reduced 0.34- and 0.49-fold from that without Spd pretreatment. After pretreatment with DFMO for 36 hours, cellular uptake of Spd-Cou-6-PLGA NPs reached 1.26-fold compared to the untreated DFMO group. In a biodistribution study, the drug-targeting index of Spd-AKF-PLGA NPs in the lung was 3.62- and 4.66-fold that of AKF-PLGA NPs and AKF solution, respectively. This suggested that Spd-AKF-PLGA NPs accumulated effectively in the lung. Lung-histopathology changes and collagen deposition were observed by H&E staining and Masson staining in an efficacy study. In the Spd-AKF-PLGA NP group, damage was further improved compared to the AKF-PLGA NP group and AKF-solution group. The results indicated that Spd-AKF-PLGA NPs are able to be effective nanocarriers for anti-pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Jing Tang
- School of Pharmaceutical Sciences, Changsha Medical University
| | - Jianming Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Guo Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Haitao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Ling Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu
| | - Dai Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| |
Collapse
|
15
|
Li J, Mao J, Tang J, Li G, Fang F, Tang Y, Ding J. Surface spermidine functionalized PEGylated poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery. RSC Adv 2017. [DOI: 10.1039/c7ra02447a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SPD functionalized nanoparticles could target the delivery of a drug into tumor cells by binding specifically with PTS.
Collapse
Affiliation(s)
- Jianming Li
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Juan Mao
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Jing Tang
- Department of Pharmaceutics
- Changsha Medical University
- Changsha 410219
- China
| | - Guo Li
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Fengling Fang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Yana Tang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| |
Collapse
|
16
|
Li M, Wang Y, Zhang J, Xie S, Wang C, Wu Y. Synthesis and Biological Evaluation of Novel Aromatic Imide-Polyamine Conjugates. Molecules 2016; 21:molecules21121637. [PMID: 27916902 PMCID: PMC6273765 DOI: 10.3390/molecules21121637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 11/16/2022] Open
Abstract
Three types of conjugates in which aromatic imide scaffolds were coupled to diverse amine/polyamine motifs were synthesized, and their antitumor activities were evaluated in vitro and in vivo. Results showed that the conjugate 11e of 1,8-naphthilimide with spermine had pronounced effects on inhibiting tumor cell proliferation and inducing tumor cell apoptosis via ROS-mediated mitochondrial pathway. The in vivo assays on three H22 tumor transplant models revealed that compound 11e exerted potent ability in preventing lung cancer metastasis and extending lifespan. Furthermore, the efficacy of 11e in inhibiting tumor growth and improving body weight index were better than that of positive control, amonafide. Our study demonstrates that compound 11e is a valuable lead compound for further investigation.
Collapse
Affiliation(s)
- Ming Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, China.
| | - Jianying Zhang
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Songqiang Xie
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Kaifeng 475001, China.
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
17
|
Corcé V, Gouin SG, Renaud S, Gaboriau F, Deniaud D. Recent advances in cancer treatment by iron chelators. Bioorg Med Chem Lett 2015; 26:251-256. [PMID: 26684852 DOI: 10.1016/j.bmcl.2015.11.094] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 01/19/2023]
Abstract
The development of new therapeutic alternatives for cancers is a major public health priority. Among the more promising approaches, the iron depletion strategy based on metal chelation in the tumoral environment has been particularly studied in recent decades. After a short description of the importance of iron for cancer cell proliferation, we will review the different iron chelators developed as potential chemotherapeutics. Finally, the recent efforts to vectorize the chelating agents specifically in the microtumoral environment will be discussed in detail.
Collapse
Affiliation(s)
- Vincent Corcé
- LUNAM Université, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Sébastien G Gouin
- LUNAM Université, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Stéphanie Renaud
- INSERM, UMR 991, CHRU Pontchaillou, 35033 Rennes, France; Université de Rennes 1, 35043 Rennes, France
| | - François Gaboriau
- INSERM, UMR 991, CHRU Pontchaillou, 35033 Rennes, France; Université de Rennes 1, 35043 Rennes, France
| | - David Deniaud
- LUNAM Université, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
18
|
Renaud S, Corcé V, Cannie I, Ropert M, Lepage S, Loréal O, Deniaud D, Gaboriau F. Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect. Biochem Pharmacol 2015; 96:179-89. [DOI: 10.1016/j.bcp.2015.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022]
|
19
|
Kim S, Mo J, Kim J, Ryu T, Lee PH. Aza-[4+3] and Aza-[3+2] Annulations for Synthesis of Dihydroazepines and Dihydropyrroles from Alkynes, Sulfonyl Azides, and 1,3-Dienes. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402071] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Zhou MB, Song RJ, Li JH. Hexafluoroantimonic Acid Catalysis: Formal [3+2+2] Cycloaddition of Aziridines with Two Alkynes. Angew Chem Int Ed Engl 2014; 53:4196-9. [DOI: 10.1002/anie.201310944] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Indexed: 12/14/2022]
|
21
|
Zhou MB, Song RJ, Li JH. Hexafluoroantimonic Acid Catalysis: Formal [3+2+2] Cycloaddition of Aziridines with Two Alkynes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310944] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Corcé V, Renaud S, Cannie I, Julienne K, Gouin SG, Loréal O, Gaboriau F, Deniaud D. Synthesis and Biological Properties of Quilamines II, New Iron Chelators with Antiproliferative Activities. Bioconjug Chem 2014; 25:320-34. [DOI: 10.1021/bc4004734] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vincent Corcé
- LUNAM Université, CEISAM, Chimie Et Interdisciplinarité,
Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR
des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
- INSERM,
UMR 991,
CHRU Pontchaillou, 35033 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
| | - Stéphanie Renaud
- INSERM,
UMR 991,
CHRU Pontchaillou, 35033 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
| | - Isabelle Cannie
- INSERM,
UMR 991,
CHRU Pontchaillou, 35033 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
| | - Karine Julienne
- LUNAM Université, CEISAM, Chimie Et Interdisciplinarité,
Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR
des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Sébastien G. Gouin
- LUNAM Université, CEISAM, Chimie Et Interdisciplinarité,
Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR
des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Olivier Loréal
- INSERM,
UMR 991,
CHRU Pontchaillou, 35033 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
| | - François Gaboriau
- INSERM,
UMR 991,
CHRU Pontchaillou, 35033 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
| | - David Deniaud
- LUNAM Université, CEISAM, Chimie Et Interdisciplinarité,
Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR
des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
23
|
Zhou MB, Song RJ, Wang CY, Li JH. Synthesis of Azepine Derivatives by Silver-Catalyzed [5+2] Cycloaddition ofγ-Amino Ketones with Alkynes. Angew Chem Int Ed Engl 2013; 52:10805-8. [DOI: 10.1002/anie.201304902] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/18/2013] [Indexed: 11/10/2022]
|
24
|
Zhou MB, Song RJ, Wang CY, Li JH. Synthesis of Azepine Derivatives by Silver-Catalyzed [5+2] Cycloaddition ofγ-Amino Ketones with Alkynes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304902] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Cui S, Zhang Y, Wu Q. Rh(iii)-catalyzed C–H activation/cycloaddition of benzamides and methylenecyclopropanes: divergence in ring formation. Chem Sci 2013. [DOI: 10.1039/c3sc51424b] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Lizzi F, Veronesi G, Belluti F, Bergamini C, López-Sánchez A, Kaiser M, Brun R, Krauth-Siegel RL, Hall DG, Rivas L, Bolognesi ML. Conjugation of Quinones with Natural Polyamines: Toward an Expanded Antitrypanosomatid Profile. J Med Chem 2012; 55:10490-500. [DOI: 10.1021/jm301112z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Federica Lizzi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Giacomo Veronesi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Almudena López-Sánchez
- Physico-Chemical
Biology, Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - R. Luise Krauth-Siegel
- Biochemistry Center (BZH), Heidelberg University, Im, Neuenheimer Feld 328, 69120
Heidelberg, Germany
| | - Dennis G. Hall
- Department
of Chemistry, University of Alberta, Edmonton,
Alberta, T6G 2G2,
Canada
| | - Luis Rivas
- Physico-Chemical
Biology, Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| |
Collapse
|
27
|
Corcé V, Morin E, Guihéneuf S, Renault E, Renaud S, Cannie I, Tripier R, Lima LMP, Julienne K, Gouin SG, Loréal O, Deniaud D, Gaboriau F. Polyaminoquinoline Iron Chelators for Vectorization of Antiproliferative Agents: Design, Synthesis, and Validation. Bioconjug Chem 2012; 23:1952-68. [DOI: 10.1021/bc300324c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vincent Corcé
- LUNAM Université, CEISAM,
Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques,
2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France
- INSERM, UMR991, CHRU Pontchaillou, 35033 Rennes, France; Université de Rennes1,
35043 Rennes, France
| | - Emmanuelle Morin
- LUNAM Université, CEISAM,
Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques,
2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France
| | - Solène Guihéneuf
- LUNAM Université, CEISAM,
Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques,
2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France
| | - Eric Renault
- LUNAM Université, CEISAM,
Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques,
2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France
| | - Stéphanie Renaud
- INSERM, UMR991, CHRU Pontchaillou, 35033 Rennes, France; Université de Rennes1,
35043 Rennes, France
| | - Isabelle Cannie
- INSERM, UMR991, CHRU Pontchaillou, 35033 Rennes, France; Université de Rennes1,
35043 Rennes, France
| | - Raphaël Tripier
- CNRS, UMR 6521, Université de Brest, Laboratoire
de Chimie, Electrochimie
Moléculaires et Chimie Analytique, 6 Avenue Victor Le Gorgeu,
29200 Brest, France
| | - Luís M. P. Lima
- CNRS, UMR 6521, Université de Brest, Laboratoire
de Chimie, Electrochimie
Moléculaires et Chimie Analytique, 6 Avenue Victor Le Gorgeu,
29200 Brest, France
| | - Karine Julienne
- LUNAM Université, CEISAM,
Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques,
2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France
| | - Sébastien G. Gouin
- LUNAM Université, CEISAM,
Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques,
2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France
| | - Olivier Loréal
- INSERM, UMR991, CHRU Pontchaillou, 35033 Rennes, France; Université de Rennes1,
35043 Rennes, France
| | - David Deniaud
- LUNAM Université, CEISAM,
Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques,
2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France
| | - François Gaboriau
- INSERM, UMR991, CHRU Pontchaillou, 35033 Rennes, France; Université de Rennes1,
35043 Rennes, France
| |
Collapse
|
28
|
Wang Y, Zhang X, Zhao J, Xie S, Wang C. Nonhematotoxic Naphthalene Diimide Modified by Polyamine: Synthesis and Biological Evaluation. J Med Chem 2012; 55:3502-12. [DOI: 10.1021/jm300168w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuxia Wang
- Institute
of Chemical Biology, ‡Department of Chemistry, and §Key Lab of Natural Medicine and Immune Engineering, Henan University, Henan, China
| | - Xingbo Zhang
- Institute
of Chemical Biology, ‡Department of Chemistry, and §Key Lab of Natural Medicine and Immune Engineering, Henan University, Henan, China
| | - Jin Zhao
- Institute
of Chemical Biology, ‡Department of Chemistry, and §Key Lab of Natural Medicine and Immune Engineering, Henan University, Henan, China
| | - Songqiang Xie
- Institute
of Chemical Biology, ‡Department of Chemistry, and §Key Lab of Natural Medicine and Immune Engineering, Henan University, Henan, China
| | - Chaojie Wang
- Institute
of Chemical Biology, ‡Department of Chemistry, and §Key Lab of Natural Medicine and Immune Engineering, Henan University, Henan, China
| |
Collapse
|
29
|
Ciepluch K, Ziemba B, Janaszewska A, Appelhans D, Klajnert B, Bryszewska M, Fogel WA. Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats. J Physiol Biochem 2012; 68:447-54. [DOI: 10.1007/s13105-012-0158-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/15/2012] [Indexed: 02/02/2023]
|
30
|
Yin G, Zhu Y, Lu P, Wang Y. Lewis Acid-Promoted Three-Component Reactions of Propargylic Alcohols with 2-Butynedioates and Secondary Amines. J Org Chem 2011; 76:8922-9. [DOI: 10.1021/jo2016407] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guangwei Yin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuanxun Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
31
|
Klobukowski ER, Mueller ML, Angelici RJ, Woo LK. Conversions of Cyclic Amines to Nylon Precursor Lactams Using Bulk Gold and Fumed Silica Catalysts. ACS Catal 2011. [DOI: 10.1021/cs200120c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Erik R. Klobukowski
- Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Mallory L. Mueller
- Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Robert J. Angelici
- Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - L. Keith Woo
- Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|