1
|
Luesch H, Ellis EK, Chen QY, Ratnayake R. Progress in the discovery and development of anticancer agents from marine cyanobacteria. Nat Prod Rep 2025; 42:208-256. [PMID: 39620500 PMCID: PMC11610234 DOI: 10.1039/d4np00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 12/11/2024]
Abstract
Covering 2010-April 2024There have been tremendous new discoveries and developments since 2010 in anticancer research based on marine cyanobacteria. Marine cyanobacteria are prolific sources of anticancer natural products, including the tubulin agents dolastatins 10 and 15 which were originally isolated from a mollusk that feeds on cyanobacteria. Decades of research have culminated in the approval of six antibody-drug conjugates (ADCs) and many ongoing clinical trials. Antibody conjugation has been enabling for several natural products, particularly cyanobacterial cytotoxins. Targeting tubulin dynamics has been a major strategy, leading to the discovery of the gatorbulin scaffold, acting on a new pharmacological site. Cyanobacterial compounds with different mechanisms of action (MOA), targeting novel or validated targets in a range of organelles, also show promise as anticancer agents. Important advances include the development of compounds with novel MOA, including apratoxin and coibamide A analogues, modulating cotranslational translocation at the level of Sec61 in the endoplasmic reticulum, largazole and santacruzamate A targeting class I histone deacetylases, and proteasome inhibitors based on carmaphycins, resembling the approved drug carfilzomib. The pipeline extends with SERCA inhibitors, mitochondrial cytotoxins and membrane-targeting agents, which have not yet advanced clinically since the biology is less understood and selectivity concerns remain to be addressed. In addition, efforts have also focused on the identification of chemosensitizing and antimetastatic agents. The review covers the state of current knowledge of marine cyanobacteria as anticancer agents with a focus on the mechanism, target identification and potential for drug development. We highlight the importance of solving the supply problem through chemical synthesis as well as illuminating the biological activity and in-depth mechanistic studies to increase the value of cyanobacterial natural products to catalyze their development.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Emma K Ellis
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
2
|
Qiu X, Zhu L, Wang H, Tan Y, Yang Z, Yang L, Wan L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg Med Chem 2021; 52:116510. [PMID: 34826681 DOI: 10.1016/j.bmc.2021.116510] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) play a key role in the homeostasis of protein acetylation in histones and have recently emerged as a therapeutic target for numerous diseases. The inhibition of HDACs may block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumour cells. Thus, HDAC inhibitors (HDACi) have received increasing attention and many of which are developed from natural sources. In the past few decades, naturally occurring HDACi have been identified to have potent anticancer activities, some of which have demonstrated promising therapeutic effects on haematological malignancies. In this review, we summarized the discovery and modification of HDAC inhibitors from natural sources, novel drug design that uses natural products as parent nuclei, and dual target design strategies that combine HDAC with non-HDAC targets.
Collapse
Affiliation(s)
- Xiang Qiu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lv Zhu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wu L, Ye K, Jiang S, Zhou G. Marine Power on Cancer: Drugs, Lead Compounds, and Mechanisms. Mar Drugs 2021; 19:md19090488. [PMID: 34564150 PMCID: PMC8472172 DOI: 10.3390/md19090488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin's disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.
Collapse
Affiliation(s)
- Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China;
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- Correspondence: (S.J.); (G.Z.)
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.J.); (G.Z.)
| |
Collapse
|
5
|
Su M, Gong X, Liu F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin Drug Discov 2021; 16:745-761. [PMID: 33530771 DOI: 10.1080/17460441.2021.1877656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION HDACs catalyze the removal of acetyl groups from the ε-N-acetylated lysine residues of various protein substrates including both histone and nonhistone proteins. Different HDACs have distinct biological functions and are recruited to specific regions of the genome. HDAC inhibitors have attracted much attention in recent decades; indeed, there have been more than thirty HDAC inhibitors investigated in clinic trials with five approvals being achieved. AREAS COVERED This review covers the emerging approaches for HDAC inhibitor drug discovery from the past five years and includes discussion of structure-based rational design, isoform selectivity, and dual mechanism/multi-targeting. Chemical structures in addition to the in vitro and in vivo inhibiting activity of these compounds have also been discussed. EXPERT OPINION The exact role and biological functions of HDACs is still under investigation with a variety of HDAC inhibitors having been designed and evaluated. HDAC inhibitors have shown promise in treating cancer, AD, metabolic disease, viral infection, and multiple sclerosis, but there is still a lot of room for clinical improvement. In the future, more efforts should be put into (i) HDAC isoform identification (ii) the optimization of selectivity, activity, and pharmacokinetics; and (iii) unconventional approaches for discovering different effective scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Xingyu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| |
Collapse
|
6
|
Borgini M, Zamperini C, Poggialini F, Ferrante L, Summa V, Botta M, Fabio RD. Synthesis and Antiproliferative Activity of Nitric Oxide-Donor Largazole Prodrugs. ACS Med Chem Lett 2020; 11:846-851. [PMID: 32435394 PMCID: PMC7236235 DOI: 10.1021/acsmedchemlett.9b00643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
The marine natural product Largazole is the most potent Class I HDAC inhibitor identified to date. Since its discovery, many research groups have been attracted by the structural complexity and the peculiar anticancer activity, due to its capability to discriminate between tumor cells and normal cells. Herein, we discuss the synthesis and the in vitro biological profile of hybrid analogues of Largazole, as dual HDAC inhibitor and nitric oxide (NO) donors, potentially useful as anticancer agents. In particular, the metabolic stability of the modified thioester moiety of Largazole, bearing the NO-donor function/s, the in vitro release of NO, and the antiproliferative activity in tumor cell lines are presented.
Collapse
Affiliation(s)
- Matteo Borgini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Zamperini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
| | - Federica Poggialini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | - Vincenzo Summa
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| | - Maurizio Botta
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
- Biotechnology
College of Science and Technology, Temple
University, BioLife Science
Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132 Milano, Italy
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| |
Collapse
|
7
|
Zhang Y, Fu T, Ren Y, Li F, Zheng G, Hong J, Yao X, Xue W, Zhu F. Selective Inhibition of HDAC1 by Macrocyclic Polypeptide for the Treatment of Glioblastoma: A Binding Mechanistic Analysis Based on Molecular Dynamics. Front Mol Biosci 2020; 7:41. [PMID: 32219100 PMCID: PMC7078330 DOI: 10.3389/fmolb.2020.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intracranial malignant brain tumor, and the abnormal expression of HDAC1 is closely correlated to the progression, recurrence and metastasis of GBM cells, making selective inhibition of HDAC1 a promising strategy for GBM treatments. Among all available selective HDAC1 inhibitors, the macrocyclic peptides have gained great attention due to their remarkable inhibitory selectivity on HDAC1. However, the binding mechanism underlying this selectivity is still elusive, which increases the difficulty of designing and synthesizing the macrocyclic peptide-based anti-GBM drug. Herein, multiple computational approaches were employed to explore the binding behaviors of a typical macrocyclic peptide FK228 in both HDAC1 and HDAC6. Starting from the docking conformations of FK228 in the binding pockets of HDAC1&6, relatively long MD simulation (500 ns) shown that the hydrophobic interaction and hydrogen bonding of E91 and D92 in the Loop2 of HDAC1 with the Cap had a certain traction effect on FK228, and the sub-pocket formed by Loop1 and Loop2 in HDAC1 could better accommodate the Cap group, which had a positive effect on maintaining the active conformation of FK228. While the weakening of the interactions between FK228 and the residues in the Loop2 of HDAC6 during the MD simulation led to the large deflection of FK228 in the binding site, which also resulted in the decrease in the interactions between the Linker region of FK228 and the previously identified key amino acids (H134, F143, H174, and F203). Therefore, the residues located in Loop1 and Loop2 contributed in maintaining the active conformation of FK228, which would provide valuable hints for the discovery and design of novel macrocyclic polypeptide HDAC inhibitors.
Collapse
Affiliation(s)
- Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Tingting Fu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yuxiang Ren
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guoxun Zheng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Jiajun Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Zhang B, Liu J, Gao D, Yu X, Wang J, Lei X. A fluorine scan on the Zn2+-binding thiolate side chain of HDAC inhibitor largazole: Synthesis, biological evaluation, and molecular modeling. Eur J Med Chem 2019; 182:111672. [DOI: 10.1016/j.ejmech.2019.111672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
9
|
Zhang B, Shan G, Zheng Y, Yu X, Ruan ZW, Li Y, Lei X. Synthesis and Preliminary Biological Evaluation of Two Fluoroolefin Analogs of Largazole Inspired by the Structural Similarity of the Side Chain Unit in Psammaplin A. Mar Drugs 2019; 17:md17060333. [PMID: 31163697 PMCID: PMC6628159 DOI: 10.3390/md17060333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Largazole, isolated from a marine Cyanobacterium of the genus Symploca, is a potent and selective Class I HDAC (histone deacetylation enzymes) inhibitor. This natural 16-membered macrocyclic depsipeptide features an interesting side chain unit, namely 3-hydroxy-7-mercaptohept-4-enoic acid, which occurs in many other natural sulfur-containing HDAC inhibitors. Notably, one similar fragment, where the amide moiety replaces the trans alkene moiety, appears in Psammaplin A, another marine natural product with potent HDAC inhibitory activities. Inspired by such a structural similarity, we hypothesized the fluoroolefin moiety would mimic both the alkene moiety in Largazole and the amide moiety in Psammaplin A, and thus designed and synthesized two novel fluoro olefin analogs of Largazole. The preliminary biological assays showed that the fluoro analogs possessed comparable Class I HDAC inhibitory effects, indicating that this kind of modification on the side chain of Largazole was tolerable.
Collapse
Affiliation(s)
- Bingbing Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Guangsheng Shan
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yinying Zheng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xiaolin Yu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhu-Wei Ruan
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yang Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
10
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
11
|
Abstract
This review describes a selection of macrocyclic natural products and structurally modified analogs containing peptidic and non-peptidic elements as structural features that potentially modulate cellular permeability. Examples range from exclusively peptidic structures like cyclosporin A or phepropeptins to compounds with mostly non-peptidic character, such as telomestatin or largazole. Furthermore, semisynthetic approaches and synthesis platforms to generate general and focused libraries of compounds at the interface of cyclic peptides and non-peptidic macrocycles are discussed.
Collapse
|
12
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
13
|
Yu X, Zhang B, Shan G, Wu Y, Yang FL, Lei X. Synthesis of the molecular hybrid inspired by Largazole and Psammaplin A. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Chen QY, Chaturvedi PR, Luesch H. Process Development and Scale-up Total Synthesis of Largazole, a Potent Class I Histone Deacetylase Inhibitor. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00352] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi-Yin Chen
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| | - Pravin R. Chaturvedi
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| | - Hendrik Luesch
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| |
Collapse
|
15
|
Poli G, Di Fabio R, Ferrante L, Summa V, Botta M. Largazole Analogues as Histone Deacetylase Inhibitors and Anticancer Agents: An Overview of Structure-Activity Relationships. ChemMedChem 2017; 12:1917-1926. [PMID: 29117473 DOI: 10.1002/cmdc.201700563] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Indexed: 12/18/2022]
Abstract
Since the time of its identification, the natural compound largazole rapidly caught the attention of the medicinal chemistry community for its impressive potency as an inhibitor of histone deacetylases (HDACs) and its strong antiproliferative activity against a broad panel of cancer cell lines. The design of largazole analogues is an expanding field of study, due to their remarkable potential as novel anticancer therapeutics. At present, a large ensemble of largazole analogues has been reported, allowing the identification of important structure-activity relationships (SAR) that can guide the design of novel compounds with improved HDAC inhibitory profiles, anticancer activity, and pharmacokinetic properties. The aim of this review is to concisely summarize the information obtained by biological evaluations of the various largazole analogues reported to date, with particular attention given to the latest analogues, as well as to analyze the various SAR obtained from this data, with the purpose of providing useful guidelines for the development of novel potent and selective HDAC inhibitors to be used as anticancer agents.
Collapse
Affiliation(s)
- Giulio Poli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132, Milano, Italy.,IRBM Science Park, Via Pontina Km 30 600, 00070, Pomezia, Italy
| | | | - Vincenzo Summa
- IRBM Science Park, Via Pontina Km 30 600, 00070, Pomezia, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
16
|
Kim B, Ratnayake R, Lee H, Shi G, Zeller SL, Li C, Luesch H, Hong J. Synthesis and biological evaluation of largazole zinc-binding group analogs. Bioorg Med Chem 2017; 25:3077-3086. [PMID: 28416100 DOI: 10.1016/j.bmc.2017.03.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 11/24/2022]
Abstract
Histone acetylation is an extensively investigated post-translational modification that plays an important role as an epigenetic regulator. It is controlled by histone acetyl transferases (HATs) and histone deacetylases (HDACs). The overexpression of HDACs and consequent hypoacetylation of histones have been observed in a variety of different diseases, leading to a recent focus of HDACs as attractive drug targets. The natural product largazole is one of the most potent natural HDAC inhibitors discovered so far and a number of largazole analogs have been prepared to define structural requirements for its HDAC inhibitory activity. However, previous structure-activity relationship studies have heavily investigated the macrocycle region of largazole, while there have been only limited efforts to probe the effect of various zinc-binding groups (ZBGs) on HDAC inhibition. Herein, we prepared a series of largazole analogs with various ZBGs and evaluated their HDAC inhibition and cytotoxicity. While none of the analogs tested were as potent or selective as largazole, the Zn2+-binding affinity of each ZBG correlated with HDAC inhibition and cytotoxicity. We expect that our findings will aid in building a deeper understanding of the role of ZBGs in HDAC inhibition as well as provide an important basis for the future development of new largazole analogs with non-thiol ZBGs as novel therapeutics for cancer.
Collapse
Affiliation(s)
- Bumki Kim
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Hyunji Lee
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Guqin Shi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Sabrina L Zeller
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States.
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, United States; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
17
|
Qin HT, Li HQ, Liu F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives. Expert Opin Ther Pat 2016; 27:621-636. [PMID: 28033734 DOI: 10.1080/13543776.2017.1276565] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Since the first pan-HDAC inhibitor SAHA was approved by U.S. FDA 10 years ago, HDACs including SIRT1-7 have received significant attention due to the fact that aberrant histone deacetylase activtiy has been implicated in a variety of human diseases, such as cancers, virus infection, and neurodegenerative diseases. During the past years, a considerable achievement of development of isoform- or class-selective HDAC inhibitors has been made, yielding many drug candidates for further clinical studies, which represents a state-of-the-art technology in the drug discovery arena. Areas covered: This review covers new patents and articles about isoform- or class-selective HDAC inhibitors during the last four years, as well as the therapeutic potential of these compounds. Expert opinion: HDACs represent one of the most promising therapeutic targets, particularly for tumor therapy though their roles in cancer are still blurry. From 2012 to present, along with the advances of structural biology and homology models, lots of isoform- or class-selective HDAC inhibitors, such as hydroxamic acids and benzamides with various capping groups were found, providing a promising way to circumvent drug toxicity and side-effect issues, as well as providing chemical probes for further better understanding of the biological process related to specific isoform.
Collapse
Affiliation(s)
- Hai-Tao Qin
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Medicinal Chemistry , College of Pharmaceutical Sciences, Soochow University , Suzhou , PR China
| | - Huan-Qiu Li
- b Department of Medicinal Chemistry , College of Pharmaceutical Sciences, Soochow University , Suzhou , PR China
| | - Feng Liu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Medicinal Chemistry , College of Pharmaceutical Sciences, Soochow University , Suzhou , PR China
| |
Collapse
|
18
|
Maolanon AR, Kristensen HME, Leman LJ, Ghadiri MR, Olsen CA. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 2016; 18:5-49. [DOI: 10.1002/cbic.201600519] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alex R. Maolanon
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Helle M. E. Kristensen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luke J. Leman
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - M. Reza Ghadiri
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Christian A. Olsen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
19
|
Almaliti J, Al-Hamashi AA, Negmeldin AT, Hanigan CL, Perera L, Pflum MKH, Casero RA, Tillekeratne LMV. Largazole Analogues Embodying Radical Changes in the Depsipeptide Ring: Development of a More Selective and Highly Potent Analogue. J Med Chem 2016; 59:10642-10660. [PMID: 27809521 DOI: 10.1021/acs.jmedchem.6b01271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of analogues of the marine-derived histone deacetylase inhibitor largazole incorporating major structural changes in the depsipeptide ring were synthesized. Replacing the thiazole-thiazoline fragment of largazole with a bipyridine group gave analogue 7 with potent cell growth inhibitory activity and an activity profile similar to that of largazole, suggesting that conformational change accompanying switching hybridization from sp3 to sp2 at C-7 is well tolerated. Analogue 7 was more class I selective compared to largazole, with at least 464-fold selectivity for class I HDAC proteins over class II HDAC6 compared to a 22-fold selectivity observed with largazole. To our knowledge 7 represents the first example of a potent and highly cytotoxic largazole analogue not containing a thiazoline ring. The elimination of a chiral center derived from the unnatural amino acid R-α-methylcysteine makes the molecule more amenable to chemical synthesis, and coupled with its increased class I selectivity, 7 could serve as a new lead compound for developing selective largazole analogues.
Collapse
Affiliation(s)
- Jehad Almaliti
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , 2801, W. Bancroft Street, Toledo, Ohio 43606, United States.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan , Amman, 11942, Jordan
| | - Ayad A Al-Hamashi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Ahmed T Negmeldin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Christin L Hanigan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine , Bunting/Blaustein Cancer Research Building 1, Room 551, 1650 Orleans Street, Baltimore, Maryland 21231, United States
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine , Bunting/Blaustein Cancer Research Building 1, Room 551, 1650 Orleans Street, Baltimore, Maryland 21231, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
20
|
Kotapati HK, Lawrence DR, Thames SO, Masterson DS. Enzyme mediated concise synthesis of NH-Fmoc-S-Trityl-Cα-Methyl Cysteine. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
22
|
Cyanobacterial Metabolite Calothrixins: Recent Advances in Synthesis and Biological Evaluation. Mar Drugs 2016; 14:17. [PMID: 26771620 PMCID: PMC4728514 DOI: 10.3390/md14010017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/30/2022] Open
Abstract
The marine environment is host to unparalleled biological and chemical diversity, making it an attractive resource for the discovery of new therapeutics for a plethora of diseases. Compounds that are extracted from cyanobacteria are of special interest due to their unique structural scaffolds and capacity to produce potent pharmaceutical and biotechnological traits. Calothrixins A and B are two cyanobacterial metabolites with a structural assembly of quinoline, quinone, and indole pharmacophores. This review surveys recent advances in the synthesis and evaluation of the biological activities of calothrixins. Due to the low isolation yields from the marine source and the promise this scaffold holds for anticancer and antimicrobial drugs, organic and medicinal chemists around the world have embarked on developing efficient synthetic routes to produce calothrixins. Since the first review appeared in 2009, 11 novel syntheses of calothrixins have been published in the efforts to develop methods that contain fewer steps and higher-yielding reactions. Calothrixins have shown their potential as topoisomerase I poisons for their cytotoxicity in cancer. They have also been observed to target various aspects of RNA synthesis in bacteria. Further investigation into the exact mechanism for their bioactivity is still required for many of its analogs.
Collapse
|
23
|
Yao Y, Tu Z, Liao C, Wang Z, Li S, Yao H, Li Z, Jiang S. Discovery of Novel Class I Histone Deacetylase Inhibitors with Promising in Vitro and in Vivo Antitumor Activities. J Med Chem 2015; 58:7672-80. [DOI: 10.1021/acs.jmedchem.5b01044] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yiwu Yao
- Laboratory of
Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhengchao Tu
- Laboratory of
Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chenzhong Liao
- School
of Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhen Wang
- Laboratory of
Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shang Li
- Laboratory of
Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hequan Yao
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Li
- Department
of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, Texas 77030, United States
| | - Sheng Jiang
- Laboratory of
Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
24
|
Predicting the unpredictable: Recent structure–activity studies on peptide-based macrocycles. Bioorg Chem 2015; 60:74-97. [DOI: 10.1016/j.bioorg.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022]
|
25
|
Design, synthesis, and biological evaluation of largazole derivatives: alteration of the zinc-binding domain. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Bhansali P, Hanigan CL, Perera L, Casero RA, Tillekeratne LMV. Synthesis and biological evaluation of largazole analogues with modified surface recognition cap groups. Eur J Med Chem 2014; 86:528-41. [PMID: 25203782 DOI: 10.1016/j.ejmech.2014.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/25/2014] [Accepted: 09/03/2014] [Indexed: 01/02/2023]
Abstract
Several largazole analogues with modified surface recognition cap groups were synthesized and their HDAC inhibitory activities were determined. The C7-epimer 12 caused negligible inhibition of HDAC activity, failed to induce global histone 3 (H3) acetylation in the HCT116 colorectal cancer cell line and demonstrated minimal effect on growth. Although previous studies have shown some degree of tolerance of structural changes at C7 position of largazole, these data show the negative effect of conformational change accompanying change of configuration at this position. Similarly, analogue 16a with D-1-naphthylmethyl side chain at C2 too had negligible inhibition of HDAC activity, failed to induce global histone 3 (H3) acetylation in the HCT116 colorectal cancer cell line and demonstrated minimal effect on growth. In contrast, the L-allyl analogue 16b and the L-1-naphthylmethyl analogue 16c were potent HDAC inhibitors, showing robust induction of global H3 acetylation and significant effect on cell growth. The data suggest that even bulky substituents are tolerated at this position, provided the stereochemistry at C2 is retained. With bulky substituents, inversion of configuration at C2 results in loss of inhibitory activity. The activity profiles of 16b and 16c on Class I HDAC1 vs Class II HDAC6 are similar to those of largazole and, taken together with x-ray crystallography information of HDAC8-largazole complex, may suggest that the C2 position of largazole is not a suitable target for structural optimization to achieve isoform selectivity. The results of these studies may guide the synthesis of more potent and selective HDAC inhibitors.
Collapse
Affiliation(s)
- Pravin Bhansali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, OH 43606, United States
| | - Christin L Hanigan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Bunting/Blaustein Cancer Research Building 1, 1650 Orleans Street, Room 551, Baltimore, MD 21231, United States
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Bunting/Blaustein Cancer Research Building 1, 1650 Orleans Street, Room 551, Baltimore, MD 21231, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, OH 43606, United States.
| |
Collapse
|
27
|
Schnekenburger M, Dicato M, Diederich M. Epigenetic modulators from “The Big Blue”: A treasure to fight against cancer. Cancer Lett 2014; 351:182-97. [DOI: 10.1016/j.canlet.2014.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/01/2014] [Accepted: 06/04/2014] [Indexed: 01/14/2023]
|
28
|
Kim B, Park H, Salvador LA, Serrano PE, Kwan JC, Zeller SL, Chen QY, Ryu S, Liu Y, Byeon S, Luesch H, Hong J. Evaluation of class I HDAC isoform selectivity of largazole analogues. Bioorg Med Chem Lett 2014; 24:3728-31. [PMID: 25070421 DOI: 10.1016/j.bmcl.2014.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
Largazole is a potent class I selective histone deacetylase (HDAC) inhibitor. The majority of largazole analogues to date have modified the thiazole-thiazoline and the warhead moiety. In order to elucidate class I-specific structure-activity relationships, a series of analogues with modifications in the valine or the linker region were prepared and evaluated for their class I isoform selectivity. The inhibition profile showed that the C2 position of largazole has an optimal steric requirement for efficient HDAC inhibition and that substitution of the trans-alkene in the linker with an aromatic group results in complete loss of activity. This data will aid the design of class I isoform selective HDAC inhibitors.
Collapse
Affiliation(s)
- Bumki Kim
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Heekwang Park
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Lilibeth A Salvador
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1100, Philippines
| | - Patrick E Serrano
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Jason C Kwan
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Sabrina L Zeller
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Soyoung Ryu
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Yanxia Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Seongrim Byeon
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States.
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, United States; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
29
|
Chen F, Chai H, Su MB, Zhang YM, Li J, Xie X, Nan FJ. Potent and orally efficacious bisthiazole-based histone deacetylase inhibitors. ACS Med Chem Lett 2014; 5:628-33. [PMID: 24944733 DOI: 10.1021/ml400470s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/04/2014] [Indexed: 01/18/2023] Open
Abstract
Inspired by the thiazole-thiazoline cap group in natural product largazole, a series of structurally simplified bisthiazole-based histone deacetylase inhibitors were prepared and evaluated. Compound 8f was evaluated in vivo in an experimental autoimmune encephalomyelitis (EAE) model and found to be orally efficacious in ameliorating clinical symptoms of EAE mice.
Collapse
Affiliation(s)
- Fei Chen
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Hui Chai
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Ming-Bo Su
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Yang-Ming Zhang
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Jia Li
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Xin Xie
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Fa-Jun Nan
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| |
Collapse
|
30
|
Schotes C, Ostrovskyi D, Senger J, Schmidtkunz K, Jung M, Breit B. Total synthesis of (18S)- and (18R)-homolargazole by rhodium-catalyzed hydrocarboxylation. Chemistry 2014; 20:2164-8. [PMID: 24478039 DOI: 10.1002/chem.201303300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 11/05/2022]
Abstract
Homolargazole derivatives, in which the macrocycle of natural largazole is extended by one methylene group, were prepared by the recently developed rhodium-catalyzed hydrocarboxylation reaction onto allenes. This strategy gives access to both the (18S)- and (18R)-stereoisomers in high stereoselectivity under ligand control.
Collapse
Affiliation(s)
- Christoph Schotes
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg i. Bg. (Germany), Fax: (+49) 761-203-8715
| | | | | | | | | | | |
Collapse
|
31
|
Huang X, Jiang X, Fu C, Ma S. Palladium(0)-Catalyzed Regioselective Synthesis of Macrocycles from Allenes with a Nucleophilic Functionality and Organic Iodides. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Ahmed S, Riegsecker S, Beamer M, Rahman A, Bellini JV, Bhansali P, Tillekeratne LMV. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts. Toxicol Appl Pharmacol 2013; 270:87-96. [PMID: 23632129 DOI: 10.1016/j.taap.2013.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/24/2022]
Abstract
In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1-5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5-5 μM) inhibited the constitutive expression of HDAC1 (0-30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ~220% with a concomitant decrease in HDAC5 [30-58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α+LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA.
Collapse
Affiliation(s)
- Salahuddin Ahmed
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, The University of Toledo, Health Science Campus, Toledo, OH 43614, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 2013; 18:3641-73. [PMID: 23529027 PMCID: PMC6270579 DOI: 10.3390/molecules18043641] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Cancer continues to be a major public health problem despite the efforts that have been made in the search for novel drugs and treatments. The current sources sought for the discovery of new molecules are plants, animals and minerals. During the past decade, the search for anticancer agents of marine origin to fight chemo-resistance has increased greatly. Each year, several novel anticancer molecules are isolated from marine organisms and represent a renewed hope for cancer therapy. The study of structure-function relationships has allowed synthesis of analogues with increased efficacy and less toxicity. In this report, we aim to review 42 compounds of marine origin and their derivatives that were published in 2011 as promising anticancer compounds.
Collapse
|
34
|
Li X, Tu Z, Li H, Liu C, Li Z, Sun Q, Yao Y, Liu J, Jiang S. Biological evaluation of new largazole analogues: alteration of macrocyclic scaffold with click chemistry. ACS Med Chem Lett 2013; 4:132-6. [PMID: 24900575 DOI: 10.1021/ml300371t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/05/2012] [Indexed: 02/02/2023] Open
Abstract
We report the design, synthesis, and biological evaluation of a new series of largazole analogues in which a 4-methylthiazoline moiety was replaced with a triazole and tetrazole ring, respectively. Compound 7 bearing a tetrazole ring was identified to show much better selectivity for HDAC1 over HDAC9 than largazole (10-fold). This work could serve as a foundation for further exploration of selective HDAC inhibitors using a largazole molecular scaffold.
Collapse
Affiliation(s)
- Xianlin Li
- Laboratory of Regenerative Biology,
Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhenchao Tu
- Laboratory of Regenerative Biology,
Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hua Li
- Laboratory of Regenerative Biology,
Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chunping Liu
- Laboratory of Regenerative Biology,
Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zheng Li
- The Methodist Hospital Research Institute, Houston, Texas, 77030, United States
| | - Qiao Sun
- Laboratory of Regenerative Biology,
Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yiwu Yao
- Laboratory of Regenerative Biology,
Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinsong Liu
- Laboratory of Regenerative Biology,
Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sheng Jiang
- Laboratory of Regenerative Biology,
Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| |
Collapse
|
35
|
Abstract
The cyclic depsipeptide largazole from a cyanobacterium of the genus Symploca is a marine natural product with a novel chemical scaffold and potently inhibits class I histone deacetylases (HDACs). Largazole possesses highly differential growth-inhibitory activity, preferentially targeting transformed over non-transformed cells. The intriguing structure and biological activity of largazole have attracted strong interest from the synthetic chemistry community to establish synthetic routes to largazole and to investigate its potential as a cancer therapeutic. This Highlight surveys recent advances in this area with a focus on the discovery, synthesis, target identification, structure-activity relationships, HDAC8-largazole thiol crystal structure, and biological studies, including in vivo anticancer and osteogenic activities.
Collapse
Affiliation(s)
- Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|