1
|
The chronological evolution of fluorescent GPCR probes for bioimaging. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
2
|
Li W, Ma Z, Du L, Li M. Development and Characterization of a Highly Selective Turn-On Fluorescent Ligand for β 3-Adrenergic Receptor. Anal Chem 2023; 95:2848-2856. [PMID: 36700797 DOI: 10.1021/acs.analchem.2c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For the precise visualization of GPCR, subtype selectivity of turn-on fluorescent ligands is of major relevance. Although there are many thriving β-adrenergic receptors (β-ARs) probes, none of them are selective to the β3-subtype, which severely limits the development of β3-AR investigations. Using a polyethylene glycol (PEG) chain to conjugate the Py-5 fluorophore with mirabegron, we present here a highly selective fluorescent ligand, H2, for β3-AR. It was established by the radioligand and NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) binding experiments that molecule H2 has a substantially higher affinity for β3-AR than the other two subtypes (1/3, 45-fold; 2/3, 16-fold). More crucially, when molecule H2 was incubated with β3-AR, the turn-on fluorescent signals could be quickly released. The subsequent investigations, which included cell imaging, tissue imaging, and flow-cytometry analysis, proved that molecule H2 may make it possible to quickly and accurately fluorescently identify β3-AR at different levels. We offer a prospective fluorescent turn-on ligand with exceptional selectivity for β3-AR as a result of our combined efforts.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Tricomi J, Landini L, Nieddu V, Cavallaro U, Baker JG, Papakyriakou A, Richichi B. Rational design, synthesis, and pharmacological evaluation of a cohort of novel beta-adrenergic receptors ligands enables an assessment of structure-activity relationships. Eur J Med Chem 2023; 246:114961. [PMID: 36495629 DOI: 10.1016/j.ejmech.2022.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Biomedical applications of molecules that are able to modulate β-adrenergic signaling have become increasingly attractive over the last decade, revealing that β-adrenergic receptors (β-ARs) are key targets for a plethora of therapeutic interventions, including cancer. Despite successes in β-AR drug discovery, identification of β-AR ligands that are useful as selective chemical tools in pharmacological studies of the three β-AR subtypes, or lead compounds for drug development is still a highly challenging task. This is mainly due to the intrinsic plasticity of β-ARs as G protein-coupled receptors in conjunction with the requirement for functional receptor subtype selectivity, tissue specificity and minimal off-target effects. With the aim to provide insight into structure-activity relationships for the three β-AR subtypes, we have synthesized and obtained the pharmacological profile of a series of structurally diverse compounds (named MC) that were designed based on the aryloxy-propanolamine scaffold of SR59230A. Comparative analysis of their predicted binding mode within the active and inactive states of the receptors in combination with their pharmacological profile revealed key structural elements that control their activity as agonists or antagonists, in addition to clues about substituents that mediate selectivity for one receptor subtype over the others. We anticipate that these results will facilitate selective β-AR drug development efforts.
Collapse
Affiliation(s)
- Jacopo Tricomi
- Department of Chemistry, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy
| | - Luca Landini
- Department of Chemistry, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy; Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Valentina Nieddu
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, Milan, Italy
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, Milan, Italy
| | - Jillian G Baker
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece.
| | - Barbara Richichi
- Department of Chemistry, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
4
|
Farmer JP, Mistry SN, Laughton CA, Holliday ND. Development of fluorescent peptide G protein-coupled receptor activation biosensors for NanoBRET characterization of intracellular allosteric modulators. FASEB J 2022; 36:e22576. [PMID: 36183332 DOI: 10.1096/fj.202201024r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are widely therapeutically targeted, and recent advances in allosteric modulator development at these receptors offer further potential for exploitation. Intracellular allosteric modulators (IAM) represent a class of ligands that bind to the receptor-effector interface (e.g., G protein) and inhibit agonist responses noncompetitively. This potentially offers greater selectivity between receptor subtypes compared to classical orthosteric ligands. However, while examples of IAM ligands are well described, a more general methodology for assessing compound interactions at the IAM site is lacking. Here, fluorescent labeled peptides based on the Gα peptide C terminus are developed as novel binding and activation biosensors for the GPCR-IAM site. In TR-FRET binding studies, unlabeled peptides derived from the Gαs subunit were first characterized for their ability to positively modulate agonist affinity at the β2 -adrenoceptor. On this basis, a tetramethylrhodamine (TMR) labeled tracer was synthesized based on the 19 amino acid Gαs peptide (TMR-Gαs19cha18, where cha = cyclohexylalanine). Using NanoBRET technology to detect binding, TMR-Gαs19cha18 was recruited to Gs coupled β2 -adrenoceptor and EP2 receptors in an agonist-dependent manner, but not the Gi-coupled CXCR2 receptor. Moreover, NanoBRET competition binding assays using TMR-Gαs19cha18 enabled direct assessment of the affinity of unlabeled ligands for β2 -adrenoceptor IAM site. Thus, the NanoBRET platform using fluorescent-labeled G protein peptide mimetics offers novel potential for medium-throughput screens to identify IAMs, applicable across GPCRs coupled to a G protein class. Using the same platform, Gs peptide biosensors also represent useful tools to probe orthosteric agonist efficacy and the dynamics of receptor activation.
Collapse
Affiliation(s)
- James P Farmer
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | | | | | - Nicholas D Holliday
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Excellerate Bioscience, Biocity, Nottingham, UK
| |
Collapse
|
5
|
Kok ZY, Stoddart LA, Mistry SJ, Mocking TAM, Vischer HF, Leurs R, Hill SJ, Mistry SN, Kellam B. Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H 1 Receptor. J Med Chem 2022; 65:8258-8288. [PMID: 35734860 PMCID: PMC9234962 DOI: 10.1021/acs.jmedchem.2c00125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.
Collapse
Affiliation(s)
- Zhi Yuan Kok
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Leigh A Stoddart
- Division of Physiology, Pharmacology & Neuroscience, Medical School, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Sarah J Mistry
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Tamara A M Mocking
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Stephen J Hill
- Division of Physiology, Pharmacology & Neuroscience, Medical School, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Shailesh N Mistry
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K
| | - Barrie Kellam
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| |
Collapse
|
6
|
Li W, Ma Z, Chen J, Dong G, Du L, Li M. Discovery of Environment-Sensitive Fluorescent Ligands of β-Adrenergic Receptors for Cell Imaging and NanoBRET Assay. Anal Chem 2022; 94:7021-7028. [PMID: 35504022 DOI: 10.1021/acs.analchem.1c05646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
By fusing several environment-sensitive fluorophores to the pharmacophore mirabegron, a series of new fluorescent ligands for β-adrenergic receptors (β-ARs) were produced with a turn-on mechanism and high binding affinity to β-ARs efficiently. Compound L5 with the pyridinium moiety possessed the most favorable combination of properties after systematic comparison and optimization, including high affinity and acceptable cytotoxicity, remarkable fluorescence enhancement (up to 30-fold) upon binding with β-ARs, and feasible visualizing ability of β-ARs in living cells under no-wash conditions. Furthermore, a NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) binding assay based on compound L5 was developed and may be used in high-throughput screening (HTS) in the drug discovery of β-ARs due to its unique fluorescence spectroscopic features. Overall, as the first environment-sensitive fluorescent ligand, molecule L5 could be a useful tool for understanding the pharmacology of β-ARs.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jiwei Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
7
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
8
|
Goulding J, Mistry SJ, Soave M, Woolard J, Briddon SJ, White CW, Kellam B, Hill SJ. Subtype selective fluorescent ligands based on ICI 118,551 to study the human β2-adrenoceptor in CRISPR/Cas9 genome-edited HEK293T cells at low expression levels. Pharmacol Res Perspect 2021; 9:e00779. [PMID: 34003582 PMCID: PMC8130569 DOI: 10.1002/prp2.779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Fluorescent ligand technologies have proved to be powerful tools to improve our understanding of ligand‐receptor interactions. Here we have characterized a small focused library of nine fluorescent ligands based on the highly selective β2‐adrenoceptor (β2AR) antagonist ICI 118,551. The majority of fluorescent ICI 118,551 analogs had good affinity for the β2AR (pKD >7.0) with good selectivity over the β1AR (pKD <6.0). The most potent and selective ligands being 8c (ICI 118,551‐Gly‐Ala‐BODIPY‐FL‐X; β2AR pKD 7.48), 9c (ICI 118,551‐βAla‐βAla‐BODIPY‐FL‐X; β2AR pKD 7.48), 12a (ICI 118,551‐PEG‐BODIPY‐X‐630/650; β2AR pKD 7.56), and 12b (ICI 118,551‐PEG‐BODIPY‐FL; β2AR pKD 7.42). 9a (ICI 118,551‐βAla‐βAla‐BODIPY‐X‐630/650) had the highest affinity at recombinant β2ARs (pKD 7.57), but also exhibited significant binding affinity to the β1AR (pKD 6.69). Nevertheless, among the red fluorescent ligands, 9a had the best imaging characteristics in recombinant HEK293 T cells and labeling was mostly confined to the cell surface. In contrast, 12a showed the highest propensity to label intracellular β2ARs in HEK293 T cell expressing exogenous β2ARs. This suggests that a combination of the polyethylene glycol (PEG) linker and the BODIPY‐X‐630/650 makes this ICI 118,551 derivative particularly susceptible to crossing the cell membrane to access the intracellular β2ARs. We have also used these ligands in combination with CRISPR/Cas9 genome‐edited HEK293 T cells to undertake for the first time real‐time ligand binding to native HEK293 T β2ARs at low native receptor expression levels. These studies provided quantitative data on ligand‐binding characteristics but also allowed real‐time visualization of the ligand‐binding interactions in genome‐edited cells using NanoBRET luminescence imaging.
Collapse
Affiliation(s)
- Joëlle Goulding
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Sarah J Mistry
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Carl W White
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
9
|
Biselli S, Alencastre I, Tropmann K, Erdmann D, Chen M, Littmann T, Maia AF, Gomez-Lazaro M, Tanaka M, Ozawa T, Keller M, Lamghari M, Buschauer A, Bernhardt G. Fluorescent H 2 Receptor Squaramide-Type Antagonists: Synthesis, Characterization, and Applications. ACS Med Chem Lett 2020; 11:1521-1528. [PMID: 32832018 DOI: 10.1021/acsmedchemlett.0c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
Fluorescence labeled ligands have been gaining importance as molecular tools, enabling receptor-ligand-binding studies by various fluorescence-based techniques. Aiming at red-emitting fluorescent ligands for the hH2R, a series of squaramides labeled with pyridinium or cyanine fluorophores (19-27) was synthesized and characterized. The highest hH2R affinities in radioligand competition binding assays were obtained in the case of pyridinium labeled antagonists 19-21 (pK i: 7.71-7.76) and cyanine labeled antagonists 23 and 25 (pK i: 7.67, 7.11). These fluorescent ligands proved to be useful tools for binding studies (saturation and competition binding as well as kinetic experiments), using confocal microscopy, flow cytometry, and high content imaging. Saturation binding experiments revealed pK d values comparable to the pK i values. The fluorescent probes 21, 23, and 25 could be used to localize H2 receptors in HEK cells and to determine the binding affinities of unlabeled compounds.
Collapse
Affiliation(s)
- Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Inês Alencastre
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Katharina Tropmann
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Daniela Erdmann
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Mengya Chen
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Timo Littmann
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - André F. Maia
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Miho Tanaka
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Bunkyo-ku, Hongo, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Bunkyo-ku, Hongo, Tokyo 113-0033, Japan
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
10
|
Gaiser BI, Danielsen M, Marcher-Rørsted E, Røpke Jørgensen K, Wróbel TM, Frykman M, Johansson H, Bräuner-Osborne H, Gloriam DE, Mathiesen JM, Sejer Pedersen D. Probing the Existence of a Metastable Binding Site at the β 2-Adrenergic Receptor with Homobivalent Bitopic Ligands. J Med Chem 2019; 62:7806-7839. [PMID: 31298548 DOI: 10.1021/acs.jmedchem.9b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we report the development of bitopic ligands aimed at targeting the orthosteric binding site (OBS) and a metastable binding site (MBS) within the same receptor unit. Previous molecular dynamics studies on ligand binding to the β2-adrenergic receptor (β2AR) suggested that ligands pause at transient, less-conserved MBSs. We envisioned that MBSs can be regarded as allosteric binding sites and targeted by homobivalent bitopic ligands linking two identical pharmacophores. Such ligands were designed based on docking of the antagonist (S)-alprenolol into the OBS and an MBS and synthesized. Pharmacological characterization revealed ligands with similar potency and affinity, slightly increased β2/β1AR-selectivity, and/or substantially slower β2AR off-rates compared to (S)-alprenolol. Truncated bitopic ligands suggested the major contribution of the metastable pharmacophore to be a hydrophobic interaction with the β2AR, while the linkers alone decreased the potency of the orthosteric fragment. Altogether, the study underlines the potential of targeting MBSs for improving the pharmacological profiles of ligands.
Collapse
Affiliation(s)
- Birgit I Gaiser
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Mia Danielsen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Emil Marcher-Rørsted
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Kira Røpke Jørgensen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Tomasz M Wróbel
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy , Medical University of Lublin , 4A Chodźki 20093 Lublin , Poland
| | - Mikael Frykman
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Henrik Johansson
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Jesper Mosolff Mathiesen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| |
Collapse
|
11
|
Richardson PL, Marin VL, Koeniger SL, Baranczak A, Wilsbacher JL, Kovar PJ, Bacon-Trusk PE, Cheng M, Hopkins TA, Haman ST, Vasudevan A. Controlling cellular distribution of drugs with permeability modifying moieties. MEDCHEMCOMM 2019; 10:974-984. [PMID: 31303996 PMCID: PMC6595965 DOI: 10.1039/c8md00412a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
Abstract
Phenotypic screening provides compounds with very limited target cellular localization data. In order to select the most appropriate target identification methods, determining if a compound acts at the cell-surface or intracellularly can be very valuable. In addition, controlling cell-permeability of targeted therapeutics such as antibody-drug conjugates (ADCs) and targeted nanoparticle formulations can reduce toxicity from extracellular release of drug in undesired tissues or direct activity in bystander cells. By incorporating highly polar, anionic moieties via short polyethylene glycol linkers into compounds with known intracellular, and cell-surface targets, we have been able to correlate the cellular activity of compounds with their subcellular site of action. For compounds with nuclear (Brd, PARP) or cytosolic (dasatinib, NAMPT) targets, addition of the permeability modifying group (small sulfonic acid, polycarboxylic acid, or a polysulfonated fluorescent dye) results in near complete loss of biological activity in cell-based assays. For cell-surface targets (H3, 5HT1A, β2AR) significant activity was maintained for all conjugates, but the results were more nuanced in that the modifiers impacted binding/activity of the resulting conjugates. Taken together, these results demonstrate that small anionic compounds can be used to control cell-permeability independent of on-target activity and should find utility in guiding target deconvolution studies and controlling drug distribution of targeted therapeutics.
Collapse
Affiliation(s)
- Paul L Richardson
- Drug Discovery Science and Technologies , 1 North Waukegan Rd , North Chicago , IL 60064 , USA .
| | - Violeta L Marin
- Drug Discovery Science and Technologies , 1 North Waukegan Rd , North Chicago , IL 60064 , USA .
| | - Stormy L Koeniger
- Drug Discovery Science and Technologies , 1 North Waukegan Rd , North Chicago , IL 60064 , USA .
| | - Aleksandra Baranczak
- Drug Discovery Science and Technologies , 1 North Waukegan Rd , North Chicago , IL 60064 , USA .
| | | | | | | | - Min Cheng
- Discovery Oncology , AbbVie Inc. , USA
| | | | | | - Anil Vasudevan
- Drug Discovery Science and Technologies , 1 North Waukegan Rd , North Chicago , IL 60064 , USA .
| |
Collapse
|
12
|
Iliopoulos-Tsoutsouvas C, Kulkarni RN, Makriyannis A, Nikas SP. Fluorescent probes for G-protein-coupled receptor drug discovery. Expert Opin Drug Discov 2018; 13:933-947. [DOI: 10.1080/17460441.2018.1518975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Rohit N. Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center. Department of Medicine, Brigham and Women’s Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Spyros P. Nikas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Alcobia DC, Ziegler AI, Kondrashov A, Comeo E, Mistry S, Kellam B, Chang A, Woolard J, Hill SJ, Sloan EK. Visualizing Ligand Binding to a GPCR In Vivo Using NanoBRET. iScience 2018; 6:280-288. [PMID: 30240618 PMCID: PMC6137713 DOI: 10.1016/j.isci.2018.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic action of a drug depends on its ability to engage with its molecular target in vivo. However, current drug discovery strategies quantify drug levels within organs rather than determining the binding of drugs directly to their specific molecular targets in vivo. This is a particular problem for assessing the therapeutic potential of drugs that target malignant tumors where access and binding may be impaired by disrupted vasculature and local hypoxia. Here we have used triple-negative human breast cancer cells expressing β2-adrenoceptors tagged with the bioluminescence protein NanoLuc to provide a bioluminescence resonance energy transfer approach to directly quantify ligand binding to a G protein-coupled receptor in vivo using a mouse model of breast cancer.
Collapse
Affiliation(s)
- Diana C Alcobia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alexandra I Ziegler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alexander Kondrashov
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eleonora Comeo
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sarah Mistry
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aeson Chang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, Jonsson Comprehensive Cancer Center, and UCLA AIDS Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
14
|
Gherbi K, Briddon SJ, Charlton SJ. Micro-pharmacokinetics: Quantifying local drug concentration at live cell membranes. Sci Rep 2018; 8:3479. [PMID: 29472588 PMCID: PMC5823863 DOI: 10.1038/s41598-018-21100-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Fundamental equations for determining pharmacological parameters, such as the binding affinity of a ligand for its target receptor, assume a homogeneous distribution of ligand, with concentrations in the immediate vicinity of the receptor being the same as those in the bulk aqueous phase. It is, however, known that drugs are able to interact directly with the plasma membrane, potentially increasing local ligand concentrations around the receptor. We have previously reported an influence of ligand-phospholipid interactions on ligand binding kinetics at the β2-adrenoceptor, which resulted in distinct "micro-pharmacokinetic" ligand profiles. Here, we directly quantified the local concentration of BODIPY630/650-PEG8-S-propranolol (BY-propranolol), a fluorescent derivative of the classical β-blocker propranolol, at various distances above membranes of single living cells using fluorescence correlation spectroscopy. We show for the first time a significantly increased ligand concentration immediately adjacent to the cell membrane compared to the bulk aqueous phase. We further show a clear role of both the cell membrane and the β2-adrenoceptor in determining high local BY-propranolol concentrations at the cell surface. These data suggest that the true binding affinity of BY-propranolol for the β2-adrenoceptor is likely far lower than previously reported and highlights the critical importance of understanding the "micro-pharmacokinetic" profiles of ligands for membrane-associated proteins.
Collapse
Affiliation(s)
- Karolina Gherbi
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.,Excellerate Bioscience Ltd, MediCity, Nottingham, NG90 6BH, UK
| | - Stephen J Briddon
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Steven J Charlton
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK. .,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK. .,Excellerate Bioscience Ltd, MediCity, Nottingham, NG90 6BH, UK.
| |
Collapse
|
15
|
High-Affinity Functional Fluorescent Ligands for Human β-Adrenoceptors. Sci Rep 2017; 7:12319. [PMID: 28951558 PMCID: PMC5614969 DOI: 10.1038/s41598-017-12468-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/08/2017] [Indexed: 01/14/2023] Open
Abstract
Visualization of the G-protein coupled receptor (GPCR) is of great importance for studying its function in a native cell. We have synthesized a series of red-emitting fluorescent probes targeting β-adrenergic receptor (βAR) that are compatible with confocal and Stimulated Emission Depletion (STED) microscopy as well as with Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) binding assay in living cells. The probe based on the agonist BI-167107 and fluorescent dye KK114 demonstrates nanomolar binding affinity and up to nine-fold β2AR selectivity over β1AR. Carazolol-derived probes are fluorogenic and allow no-wash imaging experiments. STED microscopy of β2ARs stained at the native expression level on pancreatic CAPAN cells provides two-fold improvement in lateral optical resolution over confocal mode and reveals the formation of receptor microdomains. These probes retain their functional (agonist or antagonist) properties, allowing simultaneous modulation of cyclic adenosine monophosphate (cAMP) levels and receptor internalization as well as imaging receptor localization.
Collapse
|
16
|
Yu C, Miao W, Wang J, Hao E, Jiao L. PyrrolylBODIPYs: Syntheses, Properties, and Application as Environment-Sensitive Fluorescence Probes. ACS OMEGA 2017; 2:3551-3561. [PMID: 31457674 PMCID: PMC6641347 DOI: 10.1021/acsomega.7b00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 05/26/2023]
Abstract
Four pyrrole B-ring-functionalized pyrrolylBODIPYs and their B-ring unsubstituted analogues were synthesized from easily accessible starting 5-halo-2-formylpyrroles and were characterized by nuclear magnetic resonance, high-resolution mass spectrometry, X-ray analysis, and optical/electronic properties. In great contrast to the substitution(s) at the other two pyrrolic units, electron-donating substituent(s) at pyrrole B-ring bring significant blue shift of the absorption and emission bands. Cyclic voltammetry and density functional theory calculations indicate that this blue shift may be attributed to the increased highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels and the overall increase in the energy band gaps. These pyrrolylBODIPYs generally show intense absorption (centered at 570-624 nm) and fluorescence emission (582-654 nm) in nonpolar solvents. A gradual decrease in the fluorescence intensity was observed for these dyes with the increase in solvent dipolar moment, which combines with the red to far-red absorption/emission, rendering these pyrrolylBODIPYs potential applications as environment-sensitive fluorescence probes as demonstrated in this work for bovine serum albumin.
Collapse
|
17
|
Fahy D, Sanad MNME, Duscha K, Lyons M, Liu F, Bozhkov P, Kunz HH, Hu J, Neuhaus HE, Steel PG, Smertenko A. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY. Sci Rep 2017; 7:39069. [PMID: 28145408 PMCID: PMC5286434 DOI: 10.1038/srep39069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
- Department of Genetics and Cytology, National Research Center, Giza, Egypt
| | - Kerstin Duscha
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Madison Lyons
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Fuquan Liu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Peter Bozhkov
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala, SE-75007, Sweden
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, 48824, MI, USA
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Patrick G Steel
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK.
| |
Collapse
|
18
|
Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KDG. Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol 2016; 173:3028-37. [PMID: 26317175 PMCID: PMC5125978 DOI: 10.1111/bph.13316] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/01/2015] [Accepted: 08/20/2015] [Indexed: 01/15/2023] Open
Abstract
Ligand binding is a vital component of any pharmacologist's toolbox and allows the detailed investigation of how a molecule binds to its receptor. These studies enable the experimental determination of binding affinity of labelled and unlabelled compounds through kinetic, saturation (Kd ) and competition (Ki ) binding assays. Traditionally, these studies have used molecules labelled with radioisotopes; however, more recently, fluorescent ligands have been developed for this purpose. This review will briefly cover receptor ligand binding theory and then discuss the use of fluorescent ligands with some of the different technologies currently employed to examine ligand binding. Fluorescent ligands can be used for direct measurement of receptor-associated fluorescence using confocal microscopy and flow cytometry as well as in assays such as fluorescence polarization, where ligand binding is monitored by changes in the free rotation when a fluorescent ligand is bound to a receptor. Additionally, fluorescent ligands can act as donors or acceptors for fluorescence resonance energy transfer (FRET) with the development of assays based on FRET and time-resolved FRET (TR-FRET). Finally, we have recently developed a novel bioluminescence resonance energy transfer (BRET) ligand binding assay utilizing a small (19 kDa), super-bright luciferase subunit (NanoLuc) from a deep sea shrimp. In combination with fluorescent ligands, measurement of RET now provides an array of methodologies to study ligand binding. While each method has its own advantages and drawbacks, binding studies using fluorescent ligands are now a viable alternative to the use of radioligands. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Carl W White
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Kim Nguyen
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
19
|
Soave M, Stoddart LA, Brown A, Woolard J, Hill SJ. Use of a new proximity assay (NanoBRET) to investigate the ligand-binding characteristics of three fluorescent ligands to the human β1-adrenoceptor expressed in HEK-293 cells. Pharmacol Res Perspect 2016; 4:e00250. [PMID: 27588207 PMCID: PMC4988514 DOI: 10.1002/prp2.250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/12/2022] Open
Abstract
Previous research has indicated that allosteric interactions across the dimer interface of β1‐adrenoceptors may be responsible for a secondary low affinity binding conformation. Here we have investigated the potential for probe dependence, in the determination of antagonist pKi values at the human β1‐adenoceptor, which may result from such allosterism interactions. Three fluorescent β1‐adrenoceptor ligands were used to investigate this using bioluminescence energy transfer (BRET) between the receptor‐bound fluorescent ligand and the N‐terminal NanoLuc tag of a human β1‐adrenoceptor expressed in HEK 293 cells (NanoBRET). This proximity assay showed high‐affinity‐specific binding to the NanoLuc‐ β1‐adrenoceptor with each of the three fluorescent ligands yielding KD values of 87.1 ± 10 nmol/L (n = 8), 38.1 ± 12 nmol/L (n = 7), 13.4 ± 2 nmol/L (n = 14) for propranolol‐Peg8‐BY630, propranolol‐ β(Ala‐Ala)‐BY630 and CGP‐12177‐TMR, respectively. Parallel radioligand‐binding studies with 3H‐CGP12177 and TIRF microscopy, to monitor NanoLuc bioluminescence, confirmed a high cell surface expression of the NanoLuc‐ β1‐adrenoceptor in HEK 293 cells (circa 1500 fmol.mg protein−1). Following a 1 h incubation with fluorescent ligands and β1‐adrenoceptor competing antagonists, there were significant differences (P < 0.001) in the pKi values obtained for CGP20712a and CGP 12177 with the different fluorescent ligands and 3H‐CGP 12177. However, increasing the incubation time to 2 h removed these significant differences. The data obtained show that the NanoBRET assay can be applied successfully to study ligand‐receptor interactions at the human β1‐adrenoceptor. However, the study also emphasizes the importance of ensuring that both the fluorescent and competing ligands are in true equilibrium before interpretations regarding probe dependence can be made.
Collapse
Affiliation(s)
- Mark Soave
- Cell Signalling and Pharmacology Research Group School of Life Sciences University of Nottingham Nottingham NG7 2UH United Kingdom
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group School of Life Sciences University of Nottingham Nottingham NG7 2UH United Kingdom
| | - Alastair Brown
- Heptares Therapeutics Ltd. Bio Park Welwyn Garden City AL7 3AX United Kingdom
| | - Jeanette Woolard
- Cell Signalling and Pharmacology Research Group School of Life Sciences University of Nottingham Nottingham NG7 2UH United Kingdom
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group School of Life Sciences University of Nottingham Nottingham NG7 2UH United Kingdom
| |
Collapse
|
20
|
Sakamoto R, Iwashima T, Kögel JF, Kusaka S, Tsuchiya M, Kitagawa Y, Nishihara H. Dissymmetric Bis(dipyrrinato)zinc(II) Complexes: Rich Variety and Bright Red to Near-Infrared Luminescence with a Large Pseudo-Stokes Shift. J Am Chem Soc 2016; 138:5666-77. [DOI: 10.1021/jacs.6b02128] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ryota Sakamoto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiki Iwashima
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Julius F. Kögel
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinpei Kusaka
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mizuho Tsuchiya
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasutaka Kitagawa
- Division
of Chemical Engineering, Department of Materials Engineering Science,
Graduate School of Engineering Science, Osaka University, 1-3,
Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Nishihara
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Yu C, Wu Q, Wang J, Wei Y, Hao E, Jiao L. Red to Near-Infrared Isoindole BODIPY Fluorophores: Synthesis, Crystal Structures, and Spectroscopic and Electrochemical Properties. J Org Chem 2016; 81:3761-70. [DOI: 10.1021/acs.joc.6b00414] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Changjiang Yu
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qinghua Wu
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jun Wang
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yun Wei
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
22
|
Betancourt-Mendiola L, Valois-Escamilla I, Arbeloa T, Bañuelos J, López Arbeloa I, Flores-Rizo JO, Hu R, Lager E, Gómez-Durán CFA, Belmonte-Vázquez JL, Martínez-González MR, Arroyo IJ, Osorio-Martínez CA, Alvarado-Martínez E, Urías-Benavides A, Gutiérrez-Ramos BD, Tang BZ, Peña-Cabrera E. Scope and Limitations of the Liebeskind–Srogl Cross-Coupling Reactions Involving the Biellmann BODIPY. J Org Chem 2015; 80:5771-82. [DOI: 10.1021/acs.joc.5b00731] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Ismael Valois-Escamilla
- Departamento
de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato 36050, Mexico
| | - Teresa Arbeloa
- Departamento
de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
| | - Jorge Bañuelos
- Departamento
de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
| | - Iñigo López Arbeloa
- Departamento
de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
| | - Juan O. Flores-Rizo
- Departamento
de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato 36050, Mexico
| | - Rongrong Hu
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Erik Lager
- Departamento
de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato 36050, Mexico
| | - César F. A. Gómez-Durán
- Departamento
de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato 36050, Mexico
| | - José L. Belmonte-Vázquez
- Departamento
de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato 36050, Mexico
| | | | - Ismael J. Arroyo
- Departamento
de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato 36050, Mexico
| | | | | | - Arlette Urías-Benavides
- Departamento
de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato 36050, Mexico
| | | | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Eduardo Peña-Cabrera
- Departamento
de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato 36050, Mexico
| |
Collapse
|
23
|
Zhang W, Ma Z, Li W, Li G, Chen L, Liu Z, Du L, Li M. Discovery of Quinazoline-Based Fluorescent Probes to α1-Adrenergic Receptors. ACS Med Chem Lett 2015; 6:502-6. [PMID: 26005522 DOI: 10.1021/ml5004298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/30/2015] [Indexed: 11/28/2022] Open
Abstract
α1-Adrenergic receptors (α1-ARs), as the essential members of G protein-coupled receptors (GPCRs), can mediate numerous physiological responses in the sympathetic nervous system. In the current research, a series of quinazoline-based small-molecule fluorescent probes to α1-ARs (1a-1e), including two parts, a pharmacophore for α1-AR recognition and a fluorophore for visualization, were well designed and synthesized. The biological evaluation results displayed that these probes held reasonable fluorescent properties, high affinity, accepted cell toxicity, and excellent subcellular localization imaging potential for α1-ARs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Wenhua Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Geng Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Laizhong Chen
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
24
|
Stoddart LA, Kilpatrick LE, Briddon SJ, Hill SJ. Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology 2015; 98:48-57. [PMID: 25979488 DOI: 10.1016/j.neuropharm.2015.04.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors control a wide range of physiological processes and are the target for many clinically used drugs. Understanding the way in which receptors bind agonists and antagonists, their organisation in the membrane and their regulation after agonist binding are important properties which are key to developing new drugs. One way to achieve this knowledge is through the use of fluorescent ligands, which have been used to study the expression and function of receptors in endogenously expressing systems. Fluorescent ligands with appropriate imaging properties can be used in conjunction with confocal microscopy to investigate the regulation of receptors after activation. Alternatively, through the use of single molecule microscopy, they can probe the spatial organisation of receptors within the membrane. This review focuses on the techniques in which fluorescent ligands have been used and the novel aspects of G protein-coupled receptor pharmacology which have been uncovered. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Laura E Kilpatrick
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
25
|
Stoddart LA, Vernall AJ, Briddon SJ, Kellam B, Hill SJ. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. Neuropharmacology 2015; 98:68-77. [PMID: 25937210 DOI: 10.1016/j.neuropharm.2015.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/19/2015] [Accepted: 04/14/2015] [Indexed: 11/25/2022]
Abstract
Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK
| | - Andrea J Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephen J Briddon
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK.
| |
Collapse
|
26
|
Ni Y, Wu J. Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 2015; 12:3774-91. [PMID: 24781214 DOI: 10.1039/c3ob42554a] [Citation(s) in RCA: 450] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Far-red and near infrared (NIR) emissive dyes have advantages in the development of fluorescent probes and labelling for bio-imaging in living systems since fluorescence in the long-wavelength region would generate minimum photo-toxicity to biological components, deep tissue penetration and minimal background from auto-fluorescence by bio-molecules. BODIPY dyes are attractive due to their excellent photo-physical properties and potential for fluorescence-based sensing and bio-imaging applications. Thus, numerous research papers have emerged to develop BODIPY-based dyes with absorption and emission in the long-wavelength spectral region (650-900 nm). This review summarizes the general strategies to obtain far-red and NIR BODIPYs. Moreover, their applications for fluorescent pH probes and imaging or labelling in living systems are highlighted.
Collapse
Affiliation(s)
- Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore.
| | | |
Collapse
|
27
|
Vernall AJ, Hill SJ, Kellam B. The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. Br J Pharmacol 2014; 171:1073-84. [PMID: 23734587 DOI: 10.1111/bph.12265] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 01/15/2023] Open
Abstract
The past decade has witnessed fluorescently tagged drug molecules gaining significant attraction in their use as pharmacological tools with which to visualize and interrogate receptor targets at the single-cell level. Additionally, one can generate detailed pharmacological information, such as affinity measurements, down to almost single-molecule detection limits. The now accepted utilization of fluorescence-based readouts in high-throughput/high-content screening provides further evidence that fluorescent molecules offer a safer and more adaptable substitute to radioligands in molecular pharmacology and drug discovery. One such drug-target family that has received considerable attention are the GPCRs; this review therefore summarizes the most recent developments in the area of fluorescent ligand design for this important drug target. We assess recently reported fluorescent conjugates by adopting a receptor-family-based approach, highlighting some of the strengths and weaknesses of the individual molecules and their subsequent use. This review adds further strength to the arguments that fluorescent ligand design and synthesis requires careful planning and execution; providing examples illustrating that selection of the correct fluorescent dye, linker length/composition and geographic attachment point to the drug scaffold can all influence the ultimate selectivity and potency of the final conjugate when compared with its unlabelled precursor. When optimized appropriately, the resultant fluorescent conjugates have been successfully employed in an array of assay formats, including flow cytometry, fluorescence microscopy, FRET and scanning confocal microscopy. It is clear that fluorescently labelled GPCR ligands remain a developing and dynamic research arena.
Collapse
Affiliation(s)
- Andrea J Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
28
|
Ma Z, Du L, Li M. Toward fluorescent probes for G-protein-coupled receptors (GPCRs). J Med Chem 2014; 57:8187-203. [PMID: 24983484 DOI: 10.1021/jm401823z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
G-protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors that are the targets of about 40% of prescription drugs on the market, can sense numerous critical extracellular signals. Recent breakthroughs in structural biology, especially in holo-form X-ray crystal structures, have contributed to our understanding of GPCR signaling. However, actions of GPCRs at the cellular and molecular level, interactions between GPCRs, and the role of protein dynamics in receptor activities still remain controversial. To overcome these dilemmas, fluorescent probes of GPCRs have been employed, which have advantages of in vivo safety and real-time monitoring. Various probes that depend on specific mechanisms and/or technologies have been used to study GPCRs. The present review focuses on surveying the design and applications of fluorescent probes for GPCRs that are derived from small molecules or using protein-labeling techniques, as well as discussing some design strategies for new probes.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University , Jinan, Shandong 250012, China
| | | | | |
Collapse
|
29
|
Corriden R, Kilpatrick LE, Kellam B, Briddon SJ, Hill SJ. Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism. FASEB J 2014; 28:4211-22. [PMID: 24970394 PMCID: PMC4202110 DOI: 10.1096/fj.13-247270] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 μm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 μm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface
Collapse
Affiliation(s)
- Ross Corriden
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Laura E Kilpatrick
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Stephen J Hill
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| |
Collapse
|
30
|
Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin Ther Pat 2014; 24:485-500. [PMID: 24456081 DOI: 10.1517/13543776.2014.881472] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Although the medicinal use of boron-containing compounds (BCCs) had long been limited to antiseptics, in the last few decades, these compounds have been used as antibiotics or chemotherapeutic agents. In the last few years, boron has been included in the moieties of many known drugs to improve their capacity in binding to their respective target receptors. AREAS COVERED The current review focuses on research and patent literature of the last decade related to the development of BCCs as preventive, diagnostic and therapeutic tools. It explores the possible mechanisms of action of these compounds as well as the advantageous features of their structure and chemico-pharmacological properties. EXPERT OPINION Although uncertainties exist about the mechanism of action of BCCs, increasing evidence about their toxicological profile strongly suggests that many can be safely administered to humans. Even stronger evidence exists regarding the capacity of BCCs to reach multiple targets that are involved in the treatment of common diseases. It seems fair to say that some BCCs will reach the market for medicinal use in the near future, not only for targeting microbial or neoplastic systems but also for acting on cell-signaling processes involved in many other disorders.
Collapse
Affiliation(s)
- Marvin A Soriano-Ursúa
- Departamento de Fisiología and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Miguel Hidalgo, México City, D.F, 11340 , México +52 555 7296000 ; +52 555 7296000-Ext 62751 ;
| | | | | |
Collapse
|
31
|
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:15-33. [PMID: 24055822 PMCID: PMC3926105 DOI: 10.1016/j.bbamem.2013.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
G protein coupled receptors are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remain unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes that can be difficult to extract from X-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of G protein coupled receptors and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in G protein coupled receptors. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, P.O. Box 777, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
32
|
Jaeger WC, Armstrong SP, Hill SJ, Pfleger KDG. Biophysical Detection of Diversity and Bias in GPCR Function. Front Endocrinol (Lausanne) 2014; 5:26. [PMID: 24634666 PMCID: PMC3943086 DOI: 10.3389/fendo.2014.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) function in complexes with a range of molecules and proteins including ligands, G proteins, arrestins, ubiquitin, and other receptors. Elements of these complexes may interact constitutively or dynamically, dependent upon factors such as ligand binding, phosphorylation, and dephosphorylation. They may also be allosterically modulated by other proteins in a manner that changes temporally and spatially within the cell. Elucidating how these complexes function has been greatly enhanced by biophysical technologies that are able to monitor proximity and/or binding, often in real time and in live cells. These include resonance energy transfer approaches such as bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). Furthermore, the use of fluorescent ligands has enabled novel insights into allosteric interactions between GPCRs. Consequently, biophysical approaches are helping to unlock the amazing diversity and bias in G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Werner C. Jaeger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen P. Armstrong
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen J. Hill
- Cell Signalling Research Group, School of Life Sciences, Queen’s Medical Centre, University of Nottingham Medical School, Nottingham, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Dimerix Bioscience Pty Ltd, Perth, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, QQ Block, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia e-mail:
| |
Collapse
|
33
|
Heisig F, Gollos S, Freudenthal SJ, El-Tayeb A, Iqbal J, Müller CE. Synthesis of BODIPY derivatives substituted with various bioconjugatable linker groups: a construction kit for fluorescent labeling of receptor ligands. J Fluoresc 2013; 24:213-30. [PMID: 24052460 DOI: 10.1007/s10895-013-1289-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022]
Abstract
The goal of the present study was to design small, functionalized green-emitting BODIPY dyes, which can readily be coupled to target molecules such as receptor ligands, or even be integrated into their pharmacophores. A simple two-step one-pot procedure starting from 2,4-dimethylpyrrole and ω-bromoalkylcarboxylic acid chlorides was used to obtain new ω-bromoalkyl-substituted BODIPY fluorophores (1a-1f) connected via alkyl spacers of different length to the 8-position of the fluorescent dye. The addition of radical inhibitors reduced the amount of side products. The ω-bromoalkyl-substituted BODIPYs were further converted to introduce various functional groups: iodo-substituted dyes were obtained by Finkelstein reaction in excellent yields; microwave-assisted reaction with methanolic ammonia led to fast and clean conversion to the amino-substituted dyes; a hydroxyl-substituted derivative was prepared by reaction with sodium ethylate, and thiol-substituted BODIPYs were obtained by reaction of 1a-1f with potassium thioacetate followed by alkaline cleavage of the thioesters. Water-soluble derivatives were prepared by introducing sulfonate groups into the 2- and 6-position of the BODIPY core. The synthesized BODIPY derivatives showed high fluorescent yields and appeared to be stable under basic, reducing and oxidative conditions. As a proof of concept, 2-thioadenosine was alkylated with bromoethyl-BODIPY 1b. The resulting fluorescent 2-substituted adenosine derivative 15 displayed selectivity for the A3 adenosine receptor (ARs) over the other AR subtypes, showed agonistic activity, and may thus become a useful tool for studying A3ARs, or a lead structure for further optimization. The new functionalized dyes may be widely used for fluorescent labeling allowing the investigation of biological targets and processes.
Collapse
Affiliation(s)
- Fabian Heisig
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University Bonn, 53121, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Esnal I, Urías‐Benavides A, Gómez‐Durán CFA, Osorio‐Martínez CA, García‐Moreno I, Costela A, Bañuelos J, Epelde N, López Arbeloa I, Hu R, Zhong Tang B, Peña‐Cabrera E. Reaction of Amines with 8‐MethylthioBODIPY: Dramatic Optical and Laser Response to Amine Substitution. Chem Asian J 2013; 8:2691-700. [DOI: 10.1002/asia.201300760] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Ixone Esnal
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU) aptdo. 644, 48080 Bilbao (Spain)
| | - Arlette Urías‐Benavides
- Departamento de Química, Universidad de Guanajuato, Col. Noria Alta S/N. Guanajuato, Gto. Mexico, 36050 (Mexico)
| | - C. F. Azael Gómez‐Durán
- Departamento de Química, Universidad de Guanajuato, Col. Noria Alta S/N. Guanajuato, Gto. Mexico, 36050 (Mexico)
| | - Carlos A. Osorio‐Martínez
- Departamento de Química, Universidad de Guanajuato, Col. Noria Alta S/N. Guanajuato, Gto. Mexico, 36050 (Mexico)
| | - Inmaculada García‐Moreno
- Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química‐Física “Rocasolano”, CSIC. Serrano 119, 28006 Madrid (Spain)
| | - Angel Costela
- Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química‐Física “Rocasolano”, CSIC. Serrano 119, 28006 Madrid (Spain)
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU) aptdo. 644, 48080 Bilbao (Spain)
| | - Nerea Epelde
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU) aptdo. 644, 48080 Bilbao (Spain)
| | - Iñigo López Arbeloa
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU) aptdo. 644, 48080 Bilbao (Spain)
| | - Rongrong Hu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (P.R. China)
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (P.R. China)
| | - Eduardo Peña‐Cabrera
- Departamento de Química, Universidad de Guanajuato, Col. Noria Alta S/N. Guanajuato, Gto. Mexico, 36050 (Mexico)
| |
Collapse
|
35
|
|
36
|
Pal’chikov VA, Svyatenko LK, Plakhotnii IN, Kas’yan LI. Experimental and theoretical study of the reaction between bicyclo[2.2.1]hept-5-en-endo-2-ylmethylamine and 2-[(2-allylphenoxy)methyl]oxirane. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1070428013050084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Kozma E, Jayasekara PS, Squarcialupi L, Paoletta S, Moro S, Federico S, Spalluto G, Jacobson KA. Fluorescent ligands for adenosine receptors. Bioorg Med Chem Lett 2013; 23:26-36. [PMID: 23200243 PMCID: PMC3557833 DOI: 10.1016/j.bmcl.2012.10.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/05/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Lucia Squarcialupi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|