1
|
Mhate M, Mahanta CS, Dhaked DK, Ravichandiran V, Swain SP. Metal-free synthesis of selenoesters directly from carboxylic acids using bifunctional selenoureas under batch and continuous-flow conditions. Chem Commun (Camb) 2023; 59:10920-10923. [PMID: 37581358 DOI: 10.1039/d3cc02872k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A new metal-free method for the synthesis of selenoesters directly from carboxylic acids in a flow reactor is reported. The carboxylic acids, Michael acceptors, and bifunctional selenoureas (source of selenium and nucleophile, activator of carbonyl group) were reacted to obtain selenoesters (up to 70% yield). An evidence-backed plausible mechanism is also presented.
Collapse
Affiliation(s)
- Mouzma Mhate
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India.
| | - Chandra Sekhara Mahanta
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India.
| | - Devendra K Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India
| | - Velyutham Ravichandiran
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India.
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India.
| |
Collapse
|
2
|
Hou W, Xu H. Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. J Med Chem 2022; 65:4436-4456. [PMID: 35244394 DOI: 10.1021/acs.jmedchem.1c01859] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selenium (Se)-containing compounds have emerged as potential therapeutic agents for the treatment of a range of diseases. Through tremendous effort, considerable knowledge has been acquired to understand the complex chemical properties and biological activities of selenium, especially after its incorporation into bioactive molecules. From this perspective, we compiled extensive literature evidence to summarize and critically discuss the relationship between the pharmacological activities and chemical properties of selenium compounds and the strategic incorporation of selenium into organic molecules, especially bioactive heterocycles and natural products. We also provide perspectives regarding the challenges in selenium-based medicinal chemistry and future research directions.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Schaffner AP, Sansilvestri-Morel P, Despaux N, Ruano E, Persigand T, Rupin A, Mennecier P, Vallez MO, Raimbaud E, Desos P, Gloanec P. Phosphinanes and Azaphosphinanes as Potent and Selective Inhibitors of Activated Thrombin-Activatable Fibrinolysis Inhibitor (TAFIa). J Med Chem 2021; 64:3897-3910. [PMID: 33764059 DOI: 10.1021/acs.jmedchem.0c02072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective and potent inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) have the potential to increase endogenous and therapeutic fibrinolysis and to behave like profibrinolytic agents without the risk of major hemorrhage, since they do not interfere either with platelet activation or with coagulation during blood hemostasis. Therefore, TAFIa inhibitors could be used in at-risk patients for the treatment, prevention, and secondary prevention of stroke, venous thrombosis, and pulmonary embolisms. In this paper, we describe the design, the structure-activity relationship (SAR), and the synthesis of novel, potent, and selective phosphinanes and azaphosphinanes as TAFIa inhibitors. Several highly active azaphosphinanes display attractive properties suitable for further in vivo efficacy studies in thrombosis models.
Collapse
Affiliation(s)
- Arnaud-Pierre Schaffner
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Patricia Sansilvestri-Morel
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Nicole Despaux
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Elisabeth Ruano
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Thierry Persigand
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Alain Rupin
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Philippe Mennecier
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Marie-Odile Vallez
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Eric Raimbaud
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Patrice Desos
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Philippe Gloanec
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, et 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| |
Collapse
|
4
|
Sillen M, Declerck PJ. Thrombin Activatable Fibrinolysis Inhibitor (TAFI): An Updated Narrative Review. Int J Mol Sci 2021; 22:ijms22073670. [PMID: 33916027 PMCID: PMC8036986 DOI: 10.3390/ijms22073670] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI), a proenzyme, is converted to a potent attenuator of the fibrinolytic system upon activation by thrombin, plasmin, or the thrombin/thrombomodulin complex. Since TAFI forms a molecular link between coagulation and fibrinolysis and plays a potential role in venous and arterial thrombotic diseases, much interest has been tied to the development of molecules that antagonize its function. This review aims at providing a general overview on the biochemical properties of TAFI, its (patho)physiologic function, and various strategies to stimulate the fibrinolytic system by interfering with (activated) TAFI functionality.
Collapse
|
5
|
Claesen K, Mertens JC, Leenaerts D, Hendriks D. Carboxypeptidase U (CPU, TAFIa, CPB2) in Thromboembolic Disease: What Do We Know Three Decades after Its Discovery? Int J Mol Sci 2021; 22:ijms22020883. [PMID: 33477318 PMCID: PMC7830380 DOI: 10.3390/ijms22020883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/01/2023] Open
Abstract
Procarboxypeptidase U (proCPU, TAFI, proCPB2) is a basic carboxypeptidase zymogen that is converted by thrombin(-thrombomodulin) or plasmin into the active carboxypeptidase U (CPU, TAFIa, CPB2), a potent attenuator of fibrinolysis. As CPU forms a molecular link between coagulation and fibrinolysis, the development of CPU inhibitors as profibrinolytic agents constitutes an attractive new concept to improve endogenous fibrinolysis or to increase the efficacy of thrombolytic therapy in thromboembolic diseases. Furthermore, extensive research has been conducted on the in vivo role of CPU in (the acute phase of) thromboembolic disease, as well as on the hypothesis that high proCPU levels and the Thr/Ile325 polymorphism may cause a thrombotic predisposition. In this paper, an overview is given of the methods available for measuring proCPU, CPU, and inactivated CPU (CPUi), together with a summary of the clinical data generated so far, ranging from the current knowledge on proCPU concentrations and polymorphisms as potential thromboembolic risk factors to the positioning of different CPU forms (proCPU, CPU, and CPUi) as diagnostic markers for thromboembolic disease, and the potential benefit of pharmacological inhibition of the CPU pathway.
Collapse
|
6
|
Lee W, Mulay SV, Shimodaira S, Abdillah A, Palma J, Kim Y, Yudhistira T, Churchill DG. Didactic approach recounting advances and limitations in novel glutathione and cysteine detection (reduced GSH probe) with mixed coumarin, aldehyde, and phenyl-selenium chemistry. Methods Enzymol 2020; 640:267-289. [PMID: 32560802 DOI: 10.1016/bs.mie.2020.04.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the pertinent research steps and analysis, many of which are chemical, to achieve a novel molecular probe for glutathione (GSH) which has been published and patented based on two recent articles: "Exceptional time response, stability and selectivity in doubly-activated phenyl selenium-based glutathione-selective platform" and "Enhanced Doubly Activated Dual Emission Fluorescent Probes for Selective Imaging of Glutathione or Cysteine in Living Systems" (Kim et al., 2015; Mulay et al., 2018). The papers involve coumarin probes. Reaction/detection unfolds with aminothiol attack at an electrophilic ring carbon position. An adjacent -CHO group is heavily involved in resonance aspects of the C-Se position, as well as the binding of the pendant N-group; the coumarin lactone carbonyl also allows for resonance to be achieved (vide infra). The leaving group, -SePh, while precedented in some systems, depends on electronic tuning (Fig. 1). For 1, the response times with GSH was ~100ms; a 100-fold fluorescence increase is observed (Compound 1). The probe also reacts with cysteine (Cys) and homocysteine (Hcy), albeit differently. For glutathione probing, the greater wavelength maxima (1: 550nm, DACP-1: 555nm, DACP-2: 590nm) enabled eventual cell studies (confocal microscopy) and animal studies. The limits of detection (LOD, 1: 270nM DACP-1: 10.1nM DACP-2: 17.0nM), as measured using the 3σ/k method. We provide a didactic presentation from probe conception to probe in vivo testing, etc., with additional considerations presented; a variety of factors/issues (2.1-2.28) help maintain a realistic sequence, a flow from wider to narrower, of the factors that go into developing medical, biological and neurodegenerative disease-related probes, meant to help other researchers follow our intention, gain perspective, and overcome current limitations.
Collapse
Affiliation(s)
- Woohyun Lee
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sandip V Mulay
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jaymee Palma
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Youngsam Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Korea Institute of Science and Technology (KIST), Saarbrücken, Germany
| | - Tesla Yudhistira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Laboratory of Bioimaging and Pathology (UMR-7021), Faculty of Pharmacy, University of Strasbourg, Strasbourg, France
| | - David G Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Itoh T, Yoshimoto N, Hirano Y, Yamamoto K. Structural basis for the selective inhibition of activated thrombin-activatable fibrinolysis inhibitor (TAFIa) by a selenium-containing inhibitor with chloro-aminopyridine as a basic group. Bioorg Med Chem Lett 2018; 28:2256-2260. [DOI: 10.1016/j.bmcl.2018.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/15/2022]
|
8
|
Mulay SV, Kim Y, Choi M, Lee DY, Choi J, Lee Y, Jon S, Churchill DG. Enhanced Doubly Activated Dual Emission Fluorescent Probes for Selective Imaging of Glutathione or Cysteine in Living Systems. Anal Chem 2018; 90:2648-2654. [PMID: 29359562 DOI: 10.1021/acs.analchem.7b04375] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of novel fluorescent probes for monitoring the concentration of various biomolecules in living systems has great potential for eventual early diagnosis and disease intervention. Selective detection of competitive species in biological systems is a great challenge for the design and development of fluorescent probes. To improve on the design of fluorescent coumarin-based biothiol sensing technologies, we have developed herein an enhanced dual emission doubly activated system (DACP-1 and the closely related DACP-2) for the selective detection of glutathione (GSH) through the use of one optical channel and the detection of cysteine (Cys) by another channel. A phenylselenium group present at the 4-position completely quenches the fluorescence of the probe via photoinduced electron transfer to give a nonfluorescent species. Probes are selective for glutathione (GSH) in the red region and for cysteine/homocysteine (Cys/Hcy) in the green region. When they were treated with GSH, DACP-1 and DACP-2 showed strong fluorescence enhancement in comparison to that for closely related species such as amino acids, including Cys/Hcy. Fluorescence quantum yields (ΦF) increased for the red channel (<0.001 to 0.52 (DACP-1) and 0.48 (DACP-2)) and green channel (Cys) (<0.001 to 0.030 (DACP-1) and 0.026 (DACP-2)), respectively. Competing fluorescent enhancements upon addition of closely related species were negligible. Fast responses, improved water solubility, and good cell membrane permeability were all properly established with the use of DACP-1 and DACP-2. Live human lung cancer cells and fibroblasts imaged by confocal microscopy, as well as live mice tumor model imaging, confirmed selective detection.
Collapse
Affiliation(s)
- Sandip V Mulay
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Youngsam Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Minsuk Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Dong Yun Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jonghoon Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - David G Churchill
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
9
|
Sharma N, Kumar S, Kumar S, Mehta SK, Bhasin KK. Synthesis and characterization of fused imidazole heterocyclic selenoesters and their application for chemical detoxification of HgCl2. NEW J CHEM 2018. [DOI: 10.1039/c7nj03908e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenoester derivatives of imidazo[1,2-a]pyridine/imidazo[1,2-a]pyrimidine has been synthesized by the reaction of sodium selenocarboxylates with 2-(chloromethyl)imidazo[1,2-a]pyridine/pyrimidine.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sanjeev Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sangit Kumar
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - S. K. Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|
10
|
Zhou X, Weeks SD, Ameloot P, Callewaert N, Strelkov SV, Declerck PJ. Elucidation of the molecular mechanisms of two nanobodies that inhibit thrombin-activatable fibrinolysis inhibitor activation and activated thrombin-activatable fibrinolysis inhibitor activity. J Thromb Haemost 2016; 14:1629-38. [PMID: 27279497 DOI: 10.1111/jth.13381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/30/2022]
Abstract
UNLABELLED Essentials Thrombin-activatable fibrinolysis inhibitor (TAFI) is a risk factor for cardiovascular disorders. TAFI inhibitory nanobodies represent a promising step in developing profibrinolytic therapeutics. We have solved three crystal structures of TAFI in complex with inhibitory nanobodies. Nanobodies inhibit TAFI through distinct mechanisms and represent novel profibrinolytic leads. SUMMARY Background Thrombin-activatable fibrinolysis inhibitor (TAFI) is converted to activated TAFI (TAFIa) by thrombin, plasmin, or the thrombin-thrombomodulin complex (T/TM). TAFIa is antifibrinolytic, and high levels of TAFIa are associated with an increased risk for cardiovascular disorders. TAFI-inhibitory nanobodies represent a promising approach for developing profibrinolytic therapeutics. Objective To elucidate the molecular mechanisms of inhibition of TAFI activation and TAFIa activity by nanobodies with the use of X-ray crystallography and biochemical characterization. Methods and results We selected two nanobodies for cocrystallization with TAFI. VHH-a204 interferes with all TAFI activation modes, whereas VHH-i83 interferes with T/TM-mediated activation and also inhibits TAFIa activity. The 3.05-Å-resolution crystal structure of TAFI-VHH-a204 reveals that the VHH-a204 epitope is localized to the catalytic moiety (CM) in close proximity to the TAFI activation site at Arg92, indicating that VHH-a204 inhibits TAFI activation by steric hindrance. The 2.85-Å-resolution crystal structure of TAFI-VHH-i83 reveals that the VHH-i83 epitope is located close to the presumptive thrombomodulin-binding site in the activation peptide (AP). The structure and supporting biochemical assays suggest that VHH-i83 inhibits TAFIa by bridging the AP to the CM following TAFI activation. In addition, the 3.00-Å-resolution crystal structure of the triple TAFI-VHH-a204-VHH-i83 complex demonstrates that the two nanobodies can simultaneously bind to TAFI. Conclusions This study provides detailed insights into the molecular mechanisms of TAFI inhibition, and reveals a novel mode of TAFIa inhibition. VHH-a204 and VHH-i83 merit further evaluation as potential profibrinolytic therapeutics.
Collapse
Affiliation(s)
- X Zhou
- Department of Pharmaceutical and Pharmacologic Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Belgium
| | - S D Weeks
- Department of Pharmaceutical and Pharmacologic Sciences, Laboratory for Biocrystallography, KU Leuven, Belgium
| | - P Ameloot
- Flanders Institute for Biotechnology, Medical Biotechnology Center, Ghent, Belgium
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Ghent, Belgium
| | - N Callewaert
- Flanders Institute for Biotechnology, Medical Biotechnology Center, Ghent, Belgium
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Ghent, Belgium
| | - S V Strelkov
- Department of Pharmaceutical and Pharmacologic Sciences, Laboratory for Biocrystallography, KU Leuven, Belgium
| | - P J Declerck
- Department of Pharmaceutical and Pharmacologic Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Belgium
| |
Collapse
|
11
|
Sharma N, Kumar S, Maurya IK, Bhasin KK, Verma A, Wangoo N, Bhasin AKK, Mehta SK, Kumar S, Sharma RK. Synthesis, structural analysis, antimicrobial evaluation and synergistic studies of imidazo[1,2-a]pyrimidine chalcogenides. RSC Adv 2016. [DOI: 10.1039/c6ra24020h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and structural analysis of novel imidazo[1,2-a]pyrimidine chalcogenides exhibiting effective antimicrobial activity and synergistic effects with known antibiotics have been reported.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sanjeev Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Indresh K. Maurya
- Department of Microbial Biotechnology
- Panjab University
- Chandigarh
- India
| | - K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Ajay Verma
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Nishima Wangoo
- Department of Applied Sciences
- University Institute of Engineering and Technology (UIET)
- Panjab University
- Chandigarh
- India
| | - Aman K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - S. K. Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sangit Kumar
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Rohit K. Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|
12
|
Chang WJ, Kulkarni MV, Sun CM. Regioselective one-pot three component synthesis of chiral 2-iminoselenazolines under sonication. RSC Adv 2015. [DOI: 10.1039/c5ra18763j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A one-pot multi component reaction of selenoureas, which are in situ generated from l-amino esters and isoselenocyanates, with α-bromoketone under ultrasonication.
Collapse
Affiliation(s)
- Wong-Jin Chang
- Department of Applied Chemistry
- National Chiao-Tung University
- Hsinchu 300-10
- Taiwan
| | - Manohar V. Kulkarni
- Department of Applied Chemistry
- National Chiao-Tung University
- Hsinchu 300-10
- Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry
- National Chiao-Tung University
- Hsinchu 300-10
- Taiwan
- Department of Medicinal and Applied Chemistry
| |
Collapse
|
13
|
Wyseure T, Declerck PJ. Novel or expanding current targets in fibrinolysis. Drug Discov Today 2014; 19:1476-82. [PMID: 24886765 DOI: 10.1016/j.drudis.2014.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022]
Abstract
Globally the leading cause of long-term disability and mortality stems from cardiovascular diseases, which creates an enormous economic burden. Currently available treatments for intravascular thrombosis consist of a large repertoire of antithrombotic agents targeting coagulation and platelet function. However, the only agents available to enhance fibrinolysis are recombinant or modified forms of plasminogen activators. Their clinical use is limited by low efficacy, life-threatening side-effects (primarily caused by the high systemic dose required) and the inapplicability for prophylactic use. This review provides an update on the latest advances in targeting the antifibrinolytic proteins, plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor, and will highlight novel therapeutic avenues to enhance fibrinolysis.
Collapse
Affiliation(s)
- Tine Wyseure
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul J Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Yoshimoto N, Itoh T, Inaba Y, Ishii H, Yamamoto K. Structural Basis for Inhibition of Carboxypeptidase B by Selenium-Containing Inhibitor: Selenium Coordinates to Zinc in Enzyme. J Med Chem 2013; 56:7527-35. [DOI: 10.1021/jm400816v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nobuko Yoshimoto
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuka Inaba
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hidemi Ishii
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
15
|
Foley JH, Kim PY, Mutch NJ, Gils A. Insights into thrombin activatable fibrinolysis inhibitor function and regulation. J Thromb Haemost 2013; 11 Suppl 1:306-15. [PMID: 23809134 DOI: 10.1111/jth.12216] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibrinolysis is initiated when the zymogen plasminogen is converted to plasmin via the action of plasminogen activators. Proteolytic cleavage of fibrin by plasmin generates C-terminal lysine residues capable of binding both plasminogen and the plasminogen activator, thereby stimulating plasminogen activator-mediated plasminogen activation and propagating fibrinolysis. This positive feedback mechanism is regulated by activated thrombin activatable fibrinolysis inhibitor (TAFIa), which cleaves C-terminal lysine residues from the fibrin surface, thereby decreasing its cofactor activity. TAFI can be activated by thrombin alone, but the rate of activation is accelerated when in complex with thrombomodulin. Plasmin is also known to activate TAFI. TAFIa has no known physiologic inhibitors and consequently, its primary regulatory mechanism involves its intrinsic thermal instability. The rate of TAFI activation and stability of the active form, TAFIa, function in maintaining its concentration above the threshold value required to down-regulate fibrinolysis. Although all methods to quantify TAFI or TAFIa have their limitations, epidemiologic studies have indicated that elevated TAFI levels are correlated with an increased risk of venous thrombosis. Major efforts have been made to develop TAFI inhibitors that can either directly interfere with TAFIa activity or impair its activation. However, the anti-inflammatory properties of TAFIa might complicate the development and application of a TAFIa inhibitor that aims to increase the efficiency of thrombolytic therapy.
Collapse
Affiliation(s)
- J H Foley
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|