1
|
Sahu SN, Shaw R, Yadav S, Althagafi I, Upadhyay MK, Pratap R. A green approach towards the on-water synthesis of multifunctional 3-amino/hydroxy thieno[3,2- c]pyrans. RSC Adv 2025; 15:12117-12124. [PMID: 40248243 PMCID: PMC12004110 DOI: 10.1039/d5ra01296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
An efficient, one-pot, and green synthetic strategy was established for 3-amino/hydroxy thieno[3,2-c]pyrans in water through a reaction of 6-aryl-4-(methylthio)-2-oxo-2H-pyran-3-carbonitriles/carboxylates with methyl thioglycolate, yielding excellent results (65-95%). The present approach was also employed to synthesize benzo[h]thieno[3,2-c]chromene-2-carboxylate derivatives in good yield. This efficient method eliminated the need for tedious purification steps, and the products were purified by simply washing the crude material with lukewarm water. Furthermore, the reaction medium was reusable and could be repeated up to six cycles, producing the desired product with only minimal loss, although the reaction time increased with each cycle. All the synthesized compounds were characterized by spectroscopic analysis, and the structure of one compound was confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Satya Narayan Sahu
- Department of Chemistry, Swami Atmanand Govt. English Medium Model College Ambikapur Surguja Chhattisgarh 497001 India
| | - Ranjay Shaw
- Department of Chemistry, GLA University Chaumuhan Uttar Pradesh 281406 India
| | - Saroj Yadav
- Department of Chemistry, University of Delhi Delhi 110007 India
| | - Ismail Althagafi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Manmohan Krishna Upadhyay
- Department of Chemistry, College-Mahant Avaidyanath Government Degree College Jungle Kaudiya Gorakhpur 273007 Uttar Pradesh India
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
2
|
Ran K, Huang JH, Li Y, Zhang Y, Hu H, Wang Z, Tang DY, Li HY, Xu ZG, Chen ZZ. Design, Synthesis, and Biological Evaluation of Thieno[3,2- d]pyrimidine Derivatives as the First Bifunctional PI3Kδ Isoform Selective/Bromodomain and Extra-Terminal Inhibitors. J Med Chem 2025; 68:3260-3281. [PMID: 39853339 DOI: 10.1021/acs.jmedchem.4c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The concomitant inhibition of PI3Kδ and bromodomain and extra-terminal (BET) that exerts a synergistic effect on the B-cell receptor signaling pathway provides a new strategy for the treatment of aggressive diffuse large B-cell lymphoma (DLBCL). Herein, a merged pharmacophore strategy was utilized to discover a series of thieno[3,2-d]pyrimidine derivatives as the first-in-class bifunctional PI3Kδ-BET inhibitors. Through optimization, a highly potent compound (10b) was identified to possess excellent and balanced activities against PI3Kδ [inhibitory concentration (IC50) = 112 ± 8 nM] and BRD4-BD1 (IC50 = 19 ± 1 nM) and exhibited strong antiproliferative activities in DLBCL cells. Notably, this compound demonstrated good PI3Kδ selectivity over other kinases with minimal cytotoxicity in normal cells. Moreover, 10b has a good oral pharmacokinetic profile in mice and achieves outstanding antitumor activity in the SU-DHL-6 xenograft model. Taken together, these results indicate that targeting PI3Kδ and BET with a bifunctional inhibitor is a promising strategy to treat DLBCL.
Collapse
Affiliation(s)
- Kai Ran
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jiu-Hong Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yimei Zhang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hao Hu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhengyu Wang
- Department of Pharmacology, College of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hong-Yu Li
- Department of Pharmacology, College of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
3
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Das B, Chakraborty N, Dhara HN, Bhattacharyya P, Patel BK. Access to Chromenopyrrole via Tandem [3 + 2] Cycloaddition and Intramolecular C-O Coupling. J Org Chem 2024. [PMID: 38171005 DOI: 10.1021/acs.joc.3c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A mild and concise method for the synthesis of chromenopyrrole from 2'-hydroxychalcone is devised. The reaction proceeds via an initial [3 + 2] cycloaddition on the C═C bond of 2'-hydroxychalcone and 1,3-dipolarophile, generated in situ by the reaction of ethyl isocyanoacetate and AgOAc. This is then followed by an intramolecular C-O bond formation with the -OH group and C5-H of the in situ generated pyrrole, leading to chromenopyrroles.
Collapse
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
- Department of Chemistry, Bagadhar Brahma Kishan College, Jalah, Assam 781327, India
| | - Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Pratip Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
7
|
Lv Y, Chen L, Li K, Yun XH, Yan SJ. Multicomponent Cascade Reaction of 3-Cyanochromones: Highly Site-Selective Synthesis of 2-(1 H-Imidazol-1-yl)-4 H-chromen-4-one Derivatives. J Org Chem 2022; 87:15187-15196. [DOI: 10.1021/acs.joc.2c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ying Lv
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Kun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Han Yun
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
8
|
Cascade reaction of 3-formylchromones: Highly selective synthesis of 4-oxo-3-(1H-pyrrol-3-yl)-4H-chromenes. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Xu X, Guo L, Liu Y, He X, Guo Y, Zeng Y. Silver‐Catalyzed Regioselective Alkylation of Chromones with Carboxylic Acids. ChemistrySelect 2022. [DOI: 10.1002/slct.202202650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao‐Feng Xu
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Lu Guo
- Department of Sports Medicine Affiliated Nanhua Hospital Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Yuan‐Xin Liu
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Xing‐Zi He
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Yu Guo
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Yao‐Fu Zeng
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| |
Collapse
|
10
|
Chen L, Li YD, Lv Y, Lu ZH, Yan SJ. Cu-Catalyzed decarboxylative annulation of N-substituted glycines with 3-formylchromones: synthesis of functionalized chromeno[2,3- b]pyrrol-4(1 H)-ones. Chem Commun (Camb) 2022; 58:10194-10197. [PMID: 36000356 DOI: 10.1039/d2cc03816a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel protocol was developed for preparing functionalized chromeno[2,3-b]pyrrol-4(1H)-ones 3 (CMPOs) from 3-formylchromones with N-substituted glycine derivatives. The method entailed decarboxylative annulation of the acyl group of 3-formylchromones by simply heating a mixture of substrates 1-2 and toluene oxidized by 2-di-tert-butyl peroxide (DTBP) and catalyzed by CuBr. As a result, a series of CMPOs 3 were produced via a cascade reaction. This protocol can be used to synthesize functionalized CMPOs via combinatorial and parallel syntheses in a one-pot reaction rather than a tedious multi-step reaction.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Yuan-Da Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Ying Lv
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Zi-Han Lu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
11
|
Chen L, Liu Z, Li X. Recent Advances in Dual BRD4-Kinase Inhibitors Base on Polypharmacology. ChemMedChem 2022; 17:e202100731. [PMID: 35146935 DOI: 10.1002/cmdc.202100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Epigenetic reader BRD4 is involved in chromatin remodeling and transcriptional regulation, making it a promising therapeutic target. However, during the past decades, the results of many BRD4 inhibitors that have entered clinical trials were, in the main, unsatisfactory, due to some therapeutic limitations such as off-target effects and drug resistance. Combining a BRD4 inhibitor with another drug was expected to be an ideal option to overcome these "bottlenecks" and achieve improved therapeutic outcomes. However, combination therapy might trigger toxicity caused by drug-drug interaction, complex pharmacokinetic and additive effects. Recently, the application of dual-target drugs targeting BRD4 and other kinases has emerged to be an attractive approach to remedy defects of a single BRD4 inhibitor. Herein, this review focuses on recent advances in the discovery of dual BRD4-kinase inhibitors, with emphasis on their co-crystal structures and structure-activity relationships (SARs), as well as perspective prospects in the field.
Collapse
Affiliation(s)
- Li Chen
- Shandong University Cheeloo College of Medicine, Medicinal chemistry, West Wenhua Road 44, 250012, Jinnan, CHINA
| | - Zhaopeng Liu
- Institute of Medicinal Chemistry, Department of Organic Chemistry, School of Pharmaceutical Sciences, Shandong Un, No.44 WhenHua XiLu, 250012, Jinan, CHINA
| | - Xun Li
- Shandong First Medical University, Institute of Materia Medica, CHINA
| |
Collapse
|
12
|
Chen F, Wang Y, Gao Z, Wang S, Liu J, Cui X, Wang Y, Li Z, Qin M, Liu Y, Gong P, Zhao Y, Hou Y. Design, synthesis and biological evaluation of novel pteridinone derivatives possessing a sulfonyl moiety as potent dual inhibitors of PLK1 and BRD4. NEW J CHEM 2022. [DOI: 10.1039/d1nj04916j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop novel simultaneous inhibition of PLK1 and BRD4 bromodomains by a single molecule, a series of novel pteridinone derivatives possessing a sulfonyl moiety were designed, synthesized and evaluated for their biological activity.
Collapse
Affiliation(s)
- Fei Chen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yu Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zhanfeng Gao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shihui Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jiuyu Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xinhua Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yuehan Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zhiwei Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Mingze Qin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yajing Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
13
|
Kumar V, Wang Q, Sethi B, Lin F, Kumar V, Coulter DW, Dong Y, Mahato RI. Polymeric nanomedicine for overcoming resistance mechanisms in hedgehog and Myc-amplified medulloblastoma. Biomaterials 2021; 278:121138. [PMID: 34634662 DOI: 10.1016/j.biomaterials.2021.121138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Chemoresistance and inadequate therapeutics transport across the blood brain barrier (BBB) remain the major barriers to treating medulloblastoma (MB). Hedgehog (Hh) and IGF/PI3K pathways regulate tumor cell proliferation and resistance in MB. Current Hh inhibitors are effective initially to treat SHH-MB but acquire resistance. Herein, we showed that Hh inhibitor MDB5 and BRD4/PI3K dual inhibitor SF2523 synergistically inhibited the proliferation of DAOY and HD-MB03 cells when used in combination. Treatment of these MB cells with the combination of MDB5 and SF2523 significantly decreased colony formation and expression of MYCN, p-AKT, and cyclin D1 but significantly increased in Bax expression, compared to individual drugs. We used our previously reported copolymer mPEG-b-PCC-g-DC copolymer, which showed 8.7 ± 1.0 and 6.5 ± 0.1% loading for MDB5 and SF2523 when formulated into nanoparticles (NPs). There was sustained drug release from NPs, wherein 100% of MDB5 was released in 50 h, but only 60% of SF2523 was released in 80 h. Targeted NPs prepared by mixing 30:70 ratio of COG-133-PEG-b-PBC and mPEG-b-PCC-g-DC copolymer delivered a significantly higher drug concentration in the cerebellum at 6 and 24h after intravenous injection into orthotopic SHH-MB tumor-bearing NSG mice. Moreover, systemic administration of COG-133-NPs loaded with MDB5 and SF2523 resulted in decreased tumor burden compared to non-targeted drug-loaded NPs, without any hepatic toxicity. In conclusion, our nanomedicine of MDB5 and SF2523 offers a novel therapeutic strategy to treat chemoresistant MB.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiyue Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Feng Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinod Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
14
|
Dwivedi GR, Rai R, Pratap R, Singh K, Pati S, Sahu SN, Kant R, Darokar MP, Yadav DK. Drug resistance reversal potential of multifunctional thieno[3,2-c]pyran via potentiation of antibiotics in MDR P. aeruginosa. Biomed Pharmacother 2021; 142:112084. [PMID: 34449308 DOI: 10.1016/j.biopha.2021.112084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
We explored the antibacterial potential (alone and combination) against multidrug resistant (MDR) Pseudomonas aeruginosa isolates KG-P2 using synthesized thieno[3,2-c]pyran-2-ones in combination with different antibiotics. Out of 14 compounds, two compounds (3g and 3l) abridged the MIC of tetracycline (TET) by 16 folds. Compounds was killing the KG-P2 cells, in time dependent manner, lengthened post-antibiotic effect (PAE) of TET and found decreased the mutant prevention concentration (MPC) of TET. In ethidium bromide efflux experiment, two compounds repressed the drug transporter (efflux pumps) which is further supported by molecular docking of these compounds with efflux complex MexAB-OprM. In another study, these compounds inhibited the synthesis of biofilm.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India.
| | - Reeta Rai
- Department of Biochemistry, AIIMS Ansari Nagar, New Delhi 110029, India
| | - Ramendra Pratap
- Department of Chemistry, North campus University of Delhi, Delhi 110007, India.
| | - Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Satya Narayan Sahu
- Government College Balrampur, Balrampur-Ramanujganj, Chhattisgarh 497119, India
| | - Rajni Kant
- Microbiology Department, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, ̥Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21924, Republic of Korea.
| |
Collapse
|
15
|
Zhang S, Chen Y, Tian C, He Y, Tian Z, Wan Y, Liu T. Dual-target Inhibitors Based on BRD4: Novel Therapeutic Approaches for Cancer. Curr Med Chem 2021; 28:1775-1795. [PMID: 32520674 DOI: 10.2174/0929867327666200610174453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, cancer continues being a dramatically increasing and serious threat to public health. Although many anti-tumor agents have been developed in recent years, the survival rate of patients is not satisfactory. The poor prognosis of cancer patients is closely related to the occurrence of drug resistance. Therefore, it is urgent to develop new strategies for cancer treatment. Multi-target therapies aim to have additive or synergistic effects and reduce the potential for the development of resistance by integrating different pharmacophores into a single drug molecule. Given the fact that majority of diseases are multifactorial in nature, multi-target therapies are being exploited with increasing intensity, which has brought improved outcomes in disease models and obtained several compounds that have entered clinical trials. Thus, it is potential to utilize this strategy for the treatment of BRD4 related cancers. This review focuses on the recent research advances of dual-target inhibitors based on BRD4 in the aspect of anti-tumor. METHODS We have searched the recent literatures about BRD4 inhibitors from the online resources and databases, such as pubmed, elsevier and google scholar. RESULTS In the recent years, many efforts have been taken to develop dual-target inhibitors based on BRD4 as anti-cancer agents, such as HDAC/BRD4 dual inhibitors, PLK1/BRD4 dual inhibitors and PI3K/BRD4 dual inhibitors and so on. Most compounds display good anti-tumor activities. CONCLUSION Developing new anti-cancer agents with new scaffolds and high efficiency is a big challenge for researchers. Dual-target inhibitors based on BRD4 are a class of important bioactive compounds. Making structural modifications on the active dual-target inhibitors according to the corresponding structure-activity relationships is of benefit to obtain more potent anti-cancer leads or clinical drugs. This review will be useful for further development of new dual-target inhibitors based on BRD4 as anti-cancer agents.
Collapse
Affiliation(s)
- Sitao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Yanzhao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Yujing He
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| |
Collapse
|
16
|
Augmented Antitumor Activity for Novel Dual PI3K/BDR4 Inhibitors, SF2523 and SF1126 in Ewing Sarcoma. J Pediatr Hematol Oncol 2021; 43:e304-e311. [PMID: 33480647 DOI: 10.1097/mph.0000000000002054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023]
Abstract
Ewing sarcoma (ES) is the second most common pediatric bone cancer. Despite recent advances in the treatment, patients with metastatic tumors have dismal prognosis and hence novel therapies are urgently needed to combat this cancer. A recent study has shown that phosphoinositide-3 kinase (PI3K) inhibitors can synergistically increase sensitivity to bromodomain and extraterminal domain inhibitors in ES cells and therefore combined inhibition of PI3K and bromodomain and extraterminal domain bromodomain proteins might provide benefit in this cancer. Herein, we have investigated the efficacy of dual PI3K/BRD4 inhibitors, SF2523 and SF1126, for their antitumor activity in ES cell lines. The effect of SF1126 and SF2523 on cell viability and PI3K signaling was assessed on a panel of human ES cell lines. To evaluate the antitumor activity of SF1126, A673 cells were injected intrafemorally into RAG-2-/- mice and treated with 50 mg/kg SF1126 6 days per week, for 30 days. Both SF1126 and SF2523 decreased cell survival and inhibited phosphorylation of AKT in human ES cell lines. In vivo, SF1126 showed a significant reduction in tumor volume. These results suggest that dual PI3K/BRD4 inhibitor, SF1126, has antitumor activity in ES models.
Collapse
|
17
|
Acharya A, Pandey K, Thurman M, Challagundala KB, Vann KR, Kutateladze TG, Morales GA, Durden DL, Byrareddy SN. Blockade of SARS-CoV-2 infection in vitro by highly potent PI3K-α/mTOR/BRD4 inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33688653 DOI: 10.1101/2021.03.02.433604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogenic viruses like SARS-CoV-2 and HIV hijack the host molecular machinery to establish infection and survival in infected cells. This has led the scientific community to explore the molecular mechanisms by which SARS-CoV-2 infects host cells, establishes productive infection, and causes life-threatening pathophysiology. Very few targeted therapeutics for COVID-19 currently exist, such as remdesivir. Recently, a proteomic approach explored the interactions of 26 of 29 SARS-CoV-2 proteins with cellular targets in human cells and identified 67 interactions as potential targets for drug development. Two of the critical targets, the bromodomain and extra-terminal domain proteins (BETs): BRD2/BRD4 and mTOR, are inhibited by the dual inhibitory small molecule SF2523 at nanomolar potency. SF2523 is the only known mTOR PI3K-α/(BRD2/BRD4) inhibitor with potential to block two orthogonal pathways necessary for SARS-CoV-2 pathogenesis in human cells. Our results demonstrate that SF2523 effectively blocks SARS-CoV-2 replication in lung bronchial epithelial cells in vitro , showing an IC 50 value of 1.5 µM, comparable to IC 50 value of remdesivir (1.1 µM). Further, we demonstrated that the combination of doses of SF2523 and remdesivir is highly synergistic: it allows for the reduction of doses of SF2523 and remdesivir by 25-fold and 4-fold, respectively, to achieve the same potency observed for a single inhibitor. Because SF2523 inhibits two SARS-CoV-2 driven pathogenesis mechanisms involving BRD2/BRD4 and mTOR signaling, our data suggest that SF2523 alone or in combination with remdesivir could be a novel and efficient therapeutic strategy to block SARS-CoV-2 infection and hence be beneficial in preventing severe COVID-19 disease evolution. One Sentence Summary Evidence of in silico designed chemotype (SF2523) targeting PI3K-α/mTOR/BRD4 inhibits SARS-CoV-2 infection and is highly synergistic with remdesivir.
Collapse
|
18
|
Padhariya KN, Athavale M, Srivastava S, Kharkar PS. A novel series of substituted 1,2,3-triazoles as cancer stem cell inhibitors: Synthesis and biological evaluation. Drug Dev Res 2021; 82:68-85. [PMID: 32783257 DOI: 10.1002/ddr.21723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023]
Abstract
An alarming increase in global death toll resulting from cancer incidents, particularly due to multidrug resistance and reduced efficacy as a consequence of target mutations, has compelled us to look for novel anticancer agents. Cancer stem cells (CSCs), contributing majorly to the chemoresistance and tumor relapse, seem to the main culprits. In the present investigation, new chemical entities (NCEs) belonging to four novel chemical series (A: 4'-allyl-2'-methoxyphenoxymethyl-1,2,3-triazoles; B: 4'-acetamidophenoxymethyl-1,2,3-triazoles; C: naphthalene-1'-yloxymethyl-1,2,3-triazoles, and D: naphthalene-2'-yloxymethyl-1,2,3-triazoles) were synthesized via Copper (I)-catalyzed alkyne-azide cycloaddition reaction and evaluated for in vitro anticancer activity. A total of 30 NCEs (39-68) were screened at 10 μM concentration in cell viability assay against cancer cell lines such as breast (MDA-MB-231), prostate (PC-3), glioma (U87 MG), along with cervical (SiHa) and lung (A549). The NCEs from Series C (56-60) and D (61-68) were more potent than those in Series A (39-45) and Series B (46-55) at the tested concentration. Furthermore, NCEs with >80% inhibition at 10 μM were evaluated for dose response. A total of five NCEs, 48, 56, 61, 65 and 66, were further assessed in soft-agar assay and found to be relatively potent (IC50 < 10 μM). Finally, the hits were screened in sphere assay to identify potential CSC inhibitors against mammospheres (MDA-MB-231) and prostatospheres (PC-3). More so, the hits were also evaluated to understand in vitro cytotoxicity against normal cells using mouse embryonic fibroblast cell line (NIH/3T3) and human peripheral blood mononuclear cells (hPBMCs). Overall, hits 56 and 61 exhibited potent anticancer as well as CSC inhibitory activities with notably less toxicity toward NIH/3T3 and hPBMCs. On the whole, our arduous study led to the identification of potential hits with anticancer and CSC inhibitory activities, with minimal or no toxicity to normal cells.
Collapse
Affiliation(s)
- Komal N Padhariya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, 400056, India
| | - Maithili Athavale
- Department of Cancer Biology, Godavari Biorefineries Ltd, Mumbai, 400001, India
| | - Sangeeta Srivastava
- Department of Cancer Biology, Godavari Biorefineries Ltd, Mumbai, 400001, India
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, 400056, India
| |
Collapse
|
19
|
Burgoyne AM, Vann KR, Joshi S, Morales GA, Vega FM, Singh A, Pal D, Merati AB, Kutateladze TG, Durden DL. A triple action CDK4/6-PI3K-BET inhibitor with augmented cancer cell cytotoxicity. Cell Discov 2020; 6:49. [PMID: 32793389 PMCID: PMC7385619 DOI: 10.1038/s41421-020-0181-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/09/2020] [Indexed: 01/13/2023] Open
Affiliation(s)
- Adam M. Burgoyne
- Division of Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Kendra R. Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO USA
| | - Shweta Joshi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | | | - Francisco M. Vega
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- Department of Cell Biology, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
| | - Alok Singh
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Dhananjaya Pal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Aran B. Merati
- Division of Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | | | - Donald L. Durden
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- SignalRx Pharmaceuticals, San Diego, CA USA
| |
Collapse
|
20
|
Bolchi C, Bavo F, Appiani R, Roda G, Pallavicini M. 1,4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. Eur J Med Chem 2020; 200:112419. [PMID: 32502862 DOI: 10.1016/j.ejmech.2020.112419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
1,4-Benzodioxane has long been a versatile template widely employed to design molecules endowed with diverse bioactivities. Its use spans the last decades of medicinal chemistry until today concerning many strategies of drug discovery, not excluding the most advanced ones. Here, more than fifty benzodioxane-related lead compounds, selected from recent literature, are presented showing the different approaches with which they have been developed. Agonists and antagonists at neuronal nicotinic, α1 adrenergic and serotoninergic receptor subtypes and antitumor and antibacterial agents form the most representative classes, but a variety of other biological targets are addressed by benzodioxane-containing compounds.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy.
| |
Collapse
|
21
|
Joshi S, Liu KX, Zulcic M, Singh AR, Skola D, Glass CK, Sanders PD, Sharabi AB, Pham TV, Tamayo P, Shiang D, Dinh HQ, Hedrick CC, Morales GA, Garlich JR, Durden DL. Macrophage Syk-PI3Kγ Inhibits Antitumor Immunity: SRX3207, a Novel Dual Syk-PI3K Inhibitory Chemotype Relieves Tumor Immunosuppression. Mol Cancer Ther 2020; 19:755-764. [PMID: 31974273 PMCID: PMC7450492 DOI: 10.1158/1535-7163.mct-19-0947] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Macrophages (MΦ) play a critical role in tumor growth, immunosuppression, and inhibition of adaptive immune responses in cancer. Hence, targeting signaling pathways in MΦs that promote tumor immunosuppression will provide therapeutic benefit. PI3Kγ has been recently established by our group and others as a novel immuno-oncology target. Herein, we report that an MΦ Syk-PI3K axis drives polarization of immunosuppressive MΦs that establish an immunosuppressive tumor microenvironment in in vivo syngeneic tumor models. Genetic or pharmacologic inhibition of Syk and/or PI3Kγ in MΦs promotes a proinflammatory MΦ phenotype, restores CD8+ T-cell activity, destabilizes HIF under hypoxia, and stimulates an antitumor immune response. Assay for transposase-accessible Chromatin using Sequencing (ATAC-seq) analyses on the bone marrow-derived macrophages (BMDM) show that inhibition of Syk kinase promotes activation and binding of NF-κB motif in SykMC-KO BMDMs, thus stimulating immunostimulatory transcriptional programming in MΦs to suppress tumor growth. Finally, we have developed in silico the "first-in-class" dual Syk/PI3K inhibitor, SRX3207, for the combinatorial inhibition of Syk and PI3K in one small molecule. This chemotype demonstrates efficacy in multiple tumor models and represents a novel combinatorial approach to activate antitumor immunity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/enzymology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Cell Proliferation
- Class Ib Phosphatidylinositol 3-Kinase/chemistry
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/enzymology
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Cytokines/metabolism
- Humans
- Immune Tolerance
- Immunosuppression Therapy
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
- Signal Transduction
- Syk Kinase/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California.
| | - Kevin X Liu
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
| | - Alok R Singh
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
| | - Dylan Skola
- UCSD School of Medicine, University of California, San Diego, San Diego, California
| | - Christopher K Glass
- UCSD School of Medicine, University of California, San Diego, San Diego, California
| | - P Dominick Sanders
- Moores Cancer Center, Department of Radiation Medicine and Applied Sciences, University of California, San Diego, San Diego, California
| | - Andrew B Sharabi
- Moores Cancer Center, Department of Radiation Medicine and Applied Sciences, University of California, San Diego, San Diego, California
| | - Timothy V Pham
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
- Office of Cancer Genomics, University of California, San Diego, San Diego, California
| | - Pablo Tamayo
- Office of Cancer Genomics, University of California, San Diego, San Diego, California
| | - Daniel Shiang
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
| | - Huy Q Dinh
- La Jolla Institute of Allergy and Immunology, La Jolla, California
| | | | | | | | - Donald L Durden
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California.
- SignalRx Pharmaceuticals, Omaha, Nebraska
| |
Collapse
|
22
|
Tarantelli C, Lupia A, Stathis A, Bertoni F. Is There a Role for Dual PI3K/mTOR Inhibitors for Patients Affected with Lymphoma? Int J Mol Sci 2020; 21:E1060. [PMID: 32033478 PMCID: PMC7037719 DOI: 10.3390/ijms21031060] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of the PI3K/AKT/mTOR pathway is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells, and, for this reason, represents an attractive target for developing targeted anti-cancer drugs. There are plenty of preclinical data sustaining the anti-tumor activity of dual PI3K/mTOR inhibitors as single agents and in combination in lymphomas. Clinical responses, including complete remissions (especially in follicular lymphoma patients), are also observed in the very few clinical studies performed in patients that are affected by relapsed/refractory lymphomas or chronic lymphocytic leukemia. In this review, we summarize the literature on dual PI3K/mTOR inhibitors focusing on the lymphoma setting, presenting both the three compounds still in clinical development and those with a clinical program stopped or put on hold.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
| | - Antonio Lupia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
| |
Collapse
|
23
|
Yang X, Deng M, Zhang X, Wang Y, Song K, Cong R, Meng L, Zhang J. Design, synthesis, and biological evaluation of thieno[3,2‐d]pyrimidine derivatives as potential simplified phosphatidylinositol 3‐kinase alpha inhibitors. Chem Biol Drug Des 2019; 94:2013-2022. [DOI: 10.1111/cbdd.13425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Xiuyan Yang
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Meng Deng
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xi Zhang
- Division of Anti‐tumor PharmacologyShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
| | - Yi Wang
- Division of Anti‐tumor PharmacologyShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
| | - Kun Song
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Ruan Cong
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Linghua Meng
- Division of Anti‐tumor PharmacologyShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
| | - Jian Zhang
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
- Basic Clinical Research CenterRenji HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
24
|
Determination of comprehensive in silico determinants as a strategy for identification of novel PI3Kα inhibitors. Struct Chem 2019. [DOI: 10.1007/s11224-019-01303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Joshi S, Singh AR, Liu KX, Pham TV, Zulcic M, Skola D, Chun HB, Glass CK, Morales GA, Garlich JR, Durden DL. SF2523: Dual PI3K/BRD4 Inhibitor Blocks Tumor Immunosuppression and Promotes Adaptive Immune Responses in Cancer. Mol Cancer Ther 2019; 18:1036-1044. [PMID: 31018997 DOI: 10.1158/1535-7163.mct-18-1206] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Macrophages (MΘs) are key immune infiltrates in solid tumors and serve as major drivers behind tumor growth, immune suppression, and inhibition of adaptive immune responses in the tumor microenvironment (TME). Bromodomain and extraterminal (BET) protein, BRD4, which binds to acetylated lysine on histone tails, has recently been reported to promote gene transcription of proinflammatory cytokines but has rarely been explored for its role in IL4-driven MΘ transcriptional programming and MΘ-mediated immunosuppression in the TME. Herein, we report that BET bromodomain inhibitor, JQ1, blocks association of BRD4 with promoters of arginase and other IL4-driven MΘ genes, which promote immunosuppression in TME. Pharmacologic inhibition of BRD4 using JQ1 and/or PI3K using dual PI3K/BRD4 inhibitor SF2523 (previously reported by our group as a potent inhibitor to block tumor growth and metastasis in various cancer models) suppresses tumor growth in syngeneic and spontaneous murine cancer models; reduces infiltration of myeloid-derived suppressor cells; blocks polarization of immunosuppressive MΘs; restores CD8+ T-cell activity; and stimulates antitumor immune responses. Finally, our results suggest that BRD4 regulates the immunosuppressive myeloid TME, and BET inhibitors and dual PI3K/BRD4 inhibitors are therapeutic strategies for cancers driven by the MΘ-dependent immunosuppressive TME.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California.
| | - Alok R Singh
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Kevin X Liu
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Timothy V Pham
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Dylan Skola
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | - Hyun Bae Chun
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | - Christopher K Glass
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | | | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California.
- SignalRx Pharmaceuticals, San Diego, California
| |
Collapse
|
26
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
27
|
Joshi S, Durden DL. Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. JOURNAL OF ONCOLOGY 2019; 2019:5245034. [PMID: 30853982 PMCID: PMC6377965 DOI: 10.1155/2019/5245034] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy, including immune checkpoint blockade and adoptive CAR T-cell therapy, has clearly established itself as an important modality to treat melanoma and other malignancies. Despite the tremendous clinical success of immunotherapy over other cancer treatments, this approach has shown substantial benefit to only some of the patients while the rest of the patients have not responded due to immune evasion. In recent years, a combination of cancer immunotherapy together with existing anticancer treatments has gained significant attention and has been extensively investigated in preclinical or clinical studies. In this review, we discuss the therapeutic potential of novel regimens combining immune checkpoint inhibitors with therapeutic interventions that (1) increase tumor immunogenicity such as chemotherapy, radiotherapy, and epigenetic therapy; (2) reverse tumor immunosuppression such as TAMs, MDSCs, and Tregs targeted therapy; and (3) reduce tumor burden and increase the immune effector response with rationally designed dual or triple inhibitory chemotypes.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Donald L. Durden
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
- SignalRx Pharmaceuticals, Inc., San Diego, CA, USA
| |
Collapse
|
28
|
B591, a novel specific pan-PI3K inhibitor, preferentially targets cancer stem cells. Oncogene 2019; 38:3371-3386. [PMID: 30635656 PMCID: PMC6756013 DOI: 10.1038/s41388-018-0674-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) have been implicated in metastasis, relapse, and therapeutic resistance of cancer, so successful cancer therapy may therefore require the development of drugs against CSCs or combining anti-CSCs drugs with conventional therapies. The phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most frequently activated signaling pathways in human cancer, playing a central role in tumorigenesis as well as the maintenance of CSCs. Here, we designed and identified B591, a dihydrobenzofuran-imidazolium salt, as a novel specific pan-PI3K inhibitor with potent inhibitory activity against class I PI3K isoforms, which showed effective inhibition of cellular PI3K/mTOR signaling pathway and robust antitumor activity in a set of cancer cell lines. Notably, compared with bulk tumor cell populations, B591 exhibited more potency in suppressing CSCs survival and inducing CSCs apoptosis, and presence of B591 effectively eliminated paclitaxel-enriched CSCs. B591 diminished self-renewal capacity and decreased the expression of epithelial-mesenchymal transition (EMT) markers of CSCs. In vivo, B591 preferentially decreased CSCs levels in mouse xenograft model of human breast cancer as evidenced especially by remarkable reduction of tumor-initiating ability. Consistent with the preferential targeting of CSCs, B591 effectively inhibited breast tumor metastasis and delayed tumor regrowth following paclitaxel treatment. Taken together, our findings establish B591, a novel PI3K inhibitor, as a strong candidate for clinical evaluation as a CSCs targeting agent.
Collapse
|
29
|
Campbell GR, Bruckman RS, Herns SD, Joshi S, Durden DL, Spector SA. Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication. J Biol Chem 2018; 293:5808-5820. [PMID: 29475942 DOI: 10.1074/jbc.ra118.002353] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigated the effects of the dual phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/MTOR) inhibitor dactolisib (NVP-BEZ235), the PI3K/MTOR/bromodomain-containing protein 4 (BRD4) inhibitor SF2523, and the bromodomain and extra terminal domain inhibitor JQ1 on the productive infection of primary macrophages with human immunodeficiency type-1 (HIV). These inhibitors did not alter the initial susceptibility of macrophages to HIV infection. However, dactolisib, JQ1, and SF2523 all decreased HIV replication in macrophages in a dose-dependent manner via degradation of intracellular HIV through autophagy. Macrophages treated with dactolisib, JQ1, or SF2523 displayed an increase in LC3B lipidation combined with SQSTM1 degradation without inducing increased cell death. LC3B-II levels were further increased in the presence of pepstatin A suggesting that these inhibitors induce autophagic flux. RNA interference for ATG5 and ATG7 and pharmacological inhibitors of autophagosome-lysosome fusion and of lysosomal hydrolases all blocked the inhibition of HIV. Thus, we demonstrate that the mechanism of PI3K/MTOR and PI3K/MTOR/BRD4 inhibitor suppression of HIV requires the formation of autophagosomes, as well as their subsequent maturation into autolysosomes. These data provide further evidence in support of a role for autophagy in the control of HIV infection and open new avenues for the use of this class of drugs in HIV therapy.
Collapse
Affiliation(s)
- Grant R Campbell
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Rachel S Bruckman
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Shayna D Herns
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Shweta Joshi
- the Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0819.,the Rady Children's Hospital, San Diego, California 92123, and
| | - Donald L Durden
- the Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0819.,the Rady Children's Hospital, San Diego, California 92123, and.,SignalRx Pharmaceuticals, Inc., San Diego, California 92130
| | - Stephen A Spector
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672, .,the Rady Children's Hospital, San Diego, California 92123, and
| |
Collapse
|
30
|
Liu Y, Wan WZ, Li Y, Zhou GL, Liu XG. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents. Oncotarget 2018; 8:7181-7200. [PMID: 27769061 PMCID: PMC5351699 DOI: 10.18632/oncotarget.12742] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China.,Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Wen-Zhu Wan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Yan Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Guan-Lian Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| |
Collapse
|
31
|
Pennington LD, Moustakas DT. The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization. J Med Chem 2017; 60:3552-3579. [PMID: 28177632 DOI: 10.1021/acs.jmedchem.6b01807] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a continued desire in biomedical research to reduce the number and duration of design cycles required to optimize lead compounds into high-quality chemical probes or safe and efficacious drug candidates. The insightful application of impactful molecular design elements is one approach toward achieving this goal. The replacement of a CH group with a N atom in aromatic and heteroaromatic ring systems can have many important effects on molecular and physicochemical properties and intra- and intermolecular interactions that can translate to improved pharmacological profiles. In this Perspective, the "necessary nitrogen atom" is shown to be a versatile high-impact design element for multiparameter optimization, wherein ≥10-, 100-, or 1000-fold improvement in a variety of key pharmacological parameters can be realized.
Collapse
Affiliation(s)
- Lewis D Pennington
- Medicinal Chemistry and ‡Modeling and Informatics, Alkermes, Plc , 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| | - Demetri T Moustakas
- Medicinal Chemistry and ‡Modeling and Informatics, Alkermes, Plc , 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| |
Collapse
|
32
|
Dual-activity PI3K-BRD4 inhibitor for the orthogonal inhibition of MYC to block tumor growth and metastasis. Proc Natl Acad Sci U S A 2017; 114:E1072-E1080. [PMID: 28137841 DOI: 10.1073/pnas.1613091114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MYC is a major cancer driver but is documented to be a difficult therapeutic target itself. Here, we report on the biological activity, the structural basis, and therapeutic effects of the family of multitargeted compounds that simultaneously disrupt functions of two critical MYC-mediating factors through inhibiting the acetyllysine binding of BRD4 and the kinase activity of PI3K. We show that the dual-action inhibitor impairs PI3K/BRD4 signaling in vitro and in vivo and affords maximal MYC down-regulation. The concomitant inhibition of PI3K and BRD4 blocks MYC expression and activation, promotes MYC degradation, and markedly inhibits cancer cell growth and metastasis. Collectively, our findings suggest that the dual-activity inhibitor represents a highly promising lead compound for the development of novel anticancer therapeutics.
Collapse
|
33
|
Kumar D, Sharma P, Singh H, Nepali K, Gupta GK, Jain SK, Ntie-Kang F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Adv 2017. [DOI: 10.1039/c7ra05441f] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pyran-based heterocycles are promising for anticancer drug discovery.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
- Sri Sai College of Pharmacy Manawala
| | - Harmanpreet Singh
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Kunal Nepali
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry
- M. M. College of Pharmacy
- Maharishi Markandeshwer University
- Mullana
- India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Fidele Ntie-Kang
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea
- Cameroon
| |
Collapse
|
34
|
Erdreich-Epstein A, Singh AR, Joshi S, Vega FM, Guo P, Xu J, Groshen S, Ye W, Millard M, Campan M, Morales G, Garlich JR, Laird PW, Seeger RC, Shimada H, Durden DL. Association of high microvessel α vβ 3 and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget 2016; 8:52193-52210. [PMID: 28881723 PMCID: PMC5581022 DOI: 10.18632/oncotarget.13386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Our previous studies showed that the angiogenic integrin αvβ3 was increased in high-risk metastatic (stage 4) NB compared with localized neuroblastomas. Herein, we show that integrin αvβ3 was expressed on 68% of microvessels in MYCN-amplified stage 3 neuroblastomas, but only on 34% (means) in MYCN-non-amplified tumors (p < 0.001; n = 54). PTEN, a tumor suppressor involved in αvβ3 signaling, was expressed in neuroblastomas either diffusely, focally or not at all (immunohistochemistry). Integrin αvβ3 was expressed on 60% of tumor microvessels when PTEN was negative or focal, as compared to 32% of microvessels in tumors with diffuse PTEN expression (p < 0.001). In a MYCN transgenic mouse model, loss of one allele of PTEN promoted tumor growth, illustrating the potential role of PTEN in neuroblastoma pathogenesis. Interestingly, we report the novel dual PI-3K/BRD4 activity of SF1126 (originally developed as an RGD-conjugated pan PI3K inhibitor). SF1126 inhibits BRD4 bromodomain binding to acetylated lysine residues with histone H3 as well as PI3K activity in the MYCN amplified neuroblastoma cell line IMR-32. Moreover, SF1126 suppressed MYCN expression and MYCN associated transcriptional activity in IMR-32 and CHLA136, resulting in overall decrease in neuroblastoma cell viability. Finally, treatment of neuroblastoma tumors with SF1126 inhibited neuroblastoma growth in vivo. These data suggest integrin αvβ3, MYCN/BRD4 and PTEN/PI3K/AKT signaling as biomarkers and hence therapeutic targets in neuroblastoma and support testing of the RGD integrin αvβ3-targeted PI-3K/BRD4 inhibitor, SF1126 as a therapeutic strategy in this specific subgroup of high risk neuroblastoma.
Collapse
Affiliation(s)
- Anat Erdreich-Epstein
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA.,Department of Pathology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Alok R Singh
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA
| | - Shweta Joshi
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA
| | - Francisco M Vega
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA.,Instituto de Biomedicina de Sevilla, IBiS/HUVR/CSIC/Universidad de Sevilla and Department of Medical Physiology and Biophysics, Universidad de Sevilla, Spain
| | - Pinzheng Guo
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jingying Xu
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, California, USA
| | - Wei Ye
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, California, USA
| | - Melissa Millard
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Mihaela Campan
- Department of Surgery University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | | | | | - Peter W Laird
- Department of Surgery University of Southern California, Keck School of Medicine, Los Angeles, California, USA.,USC Epigenome Center, University of Southern California, Keck School of Medicine, Los Angeles, California, USA.,Current Address: Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Robert C Seeger
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Hiroyuki Shimada
- Department of Pathology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Donald L Durden
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA.,SignalRx Pharmaceuticals, San Diego, California, USA.,Department of Pediatrics, UCSD School of Medicine and Rady Children's Hospital San Diego, California, USA
| |
Collapse
|
35
|
Abet V, Filace F, Recio J, Alvarez-Builla J, Burgos C. Prodrug approach: An overview of recent cases. Eur J Med Chem 2016; 127:810-827. [PMID: 27823878 DOI: 10.1016/j.ejmech.2016.10.061] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
Abstract
In this review we highlight the most modern trends in the prodrug strategy. In drug research and development, the prodrug concept has found a number of useful applications. Selected examples of this approach are provided in this paper and they are classified according to the aim of their design.
Collapse
Affiliation(s)
- Valentina Abet
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Fabiana Filace
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Javier Recio
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Julio Alvarez-Builla
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | - Carolina Burgos
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
36
|
Carlino L, Rastelli G. Dual Kinase-Bromodomain Inhibitors in Anticancer Drug Discovery: A Structural and Pharmacological Perspective. J Med Chem 2016; 59:9305-9320. [DOI: 10.1021/acs.jmedchem.6b00438] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luca Carlino
- Department
of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Giulio Rastelli
- Department
of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
37
|
Lu L, Sha S, Wang K, Zhang YH, Liu YD, Ju GD, Wang B, Zhu HL. Discovery of Chromeno[4,3-c]pyrazol-4(2H)-one Containing Carbonyl or Oxime Derivatives as Potential, Selective Inhibitors PI3Kα. Chem Pharm Bull (Tokyo) 2016; 64:1576-1581. [PMID: 27581755 DOI: 10.1248/cpb.c16-00388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of novel chromeno[4,3-c]pyrazol-4(2H)-one containing carbonyl or oxime derivatives (4a-n, 5a-n) have been synthesized and evaluated their biological activities as phosphatidyl inositol 3-kinase (PI3K) inhibitors. Out of them, compound 5l showed the most potent antiproliferative activities against HCT-116 with IC50 of 0.10 µM in vitro, and exhibited the most potent activity for PI3Kα with the value of 0.012 µM. Docking simulation of 5l into PI3Kα active site were performed to determine the probable binding model, and it indicated that compound 5l could be optimized as a potential inhibitor of PI3Kα in the further study.
Collapse
Affiliation(s)
- Liang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ishii Y, Nhiayi MK, Tse E, Cheng J, Massimino M, Durden DL, Vigneri P, Wang JYJ. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release. PLoS One 2015; 10:e0140585. [PMID: 26473951 PMCID: PMC4608728 DOI: 10.1371/journal.pone.0140585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022] Open
Abstract
Knockout serum replacement (KOSR) is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML) cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors—imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.
Collapse
Affiliation(s)
- Yuki Ishii
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - May Keu Nhiayi
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Edison Tse
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Jonathan Cheng
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Michele Massimino
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Donald L. Durden
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Paolo Vigneri
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Jean Y. J. Wang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Xie XX, Li H, Wang J, Mao S, Xin MH, Lu SM, Mei QB, Zhang SQ. Synthesis and anticancer effects evaluation of 1-alkyl-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzo[d]thiazol-2-yl)urea as anticancer agents with low toxicity. Bioorg Med Chem 2015; 23:6477-85. [PMID: 26321603 DOI: 10.1016/j.bmc.2015.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 01/01/2023]
Abstract
As a PI3K and mTOR dual inhibitor, N-(2-chloro-5-(2-acetylaminobenzo[d]thiazol-6-yl)pyridin-3-yl)-4-fluorophenylsulfonamide displays toxicity when orally administrated. In the present study, alkylurea moiety replaced the acetamide group in the compound and a series of 1-alkyl-3-(6-(2,3-disubstituted pyridin-5-yl)benzo[d]thiazol-2-yl)urea derivatives were synthesized. The antiproliferative activities of the synthesized compounds in vitro were evaluated against HCT116, MCF-7, U87 MG and A549 cell lines. The compounds with potent antiproliferative activity were tested for their acute oral toxicity and inhibitory activity against PI3Ks and mTORC1. The results indicate that the compound attached a 2-(dialkylamino)ethylurea moiety at the 2-positeion of benzothiazole can retain the antiproliferative activity and inhibitory activity against PI3K and mTOR. In addition, their acute oral toxicity reduced dramatically. Moreover, compound 2f can effectively inhibit tumor growth in a mice S180 homograft model. These findings suggest that 1-(2-dialkylaminoethyl)-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzo[d]thiazol-2-yl)urea derivatives can serve as potent PI3K inhibitors and anticancer agents with low toxicity.
Collapse
Affiliation(s)
- Xiao-Xiao Xie
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Huan Li
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Juan Wang
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Min-Hang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - She-Min Lu
- Department of Genetics and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Qi-Bing Mei
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
40
|
Liu W, Ning JF, Meng QW, Hu J, Zhao YB, Liu C, Cai L. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3837-51. [PMID: 26229444 PMCID: PMC4517520 DOI: 10.2147/dddt.s85357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB.
Collapse
Affiliation(s)
- Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Jin-Feng Ning
- The Thoracic Surgery Department, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Qing-Wei Meng
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Yan-Bin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Chao Liu
- General Surgery Department, Mudanjiang Guanliju Central Hospital, Mishan, Heilongjiang Province, People's Republic of China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
41
|
Yin Y, Wu X, Han HW, Sha S, Wang SF, Qiao F, Lu AM, Lv PC, Zhu HL. Discovery and synthesis of a novel series of potent, selective inhibitors of the PI3Kα: 2-alkyl-chromeno[4,3-c]pyrazol-4(2H)-one derivatives. Org Biomol Chem 2015; 12:9157-65. [PMID: 25296388 DOI: 10.1039/c4ob01589d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of novel 2-alkyl-chromeno[4,3-c]pyrazol-4(2H)-one derivatives were synthesized and evaluated for their biological activities as PI3K inhibitors. In vitro biological evaluation against four human tumor cell lines revealed that most target compounds showed impressively better antiproliferative activities than that of LY294002. Among these compounds, compound 4l exhibited the most potent and selective activity for PI3Kα, with the value of 0.014 μM, an approximately 30-fold increase in comparison with LY294002. Docking simulation was performed to position compound 4l into the PI3Kα active site and the result showed that compound 4l could bind well at the PI3Kα active site and it indicated that compound 4l could be a potential inhibitor of PI3Kα.
Collapse
Affiliation(s)
- Yong Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ibrahim MA, Abou-Seri SM, Hanna MM, Abdalla MM, El Sayed NA. Design, synthesis and biological evaluation of novel condensed pyrrolo[1,2-c]pyrimidines featuring morpholine moiety as PI3Kα inhibitors. Eur J Med Chem 2015; 99:1-13. [DOI: 10.1016/j.ejmech.2015.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/30/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
|
43
|
Andrs M, Korabecny J, Jun D, Hodny Z, Bartek J, Kuca K. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring. J Med Chem 2014; 58:41-71. [PMID: 25387153 DOI: 10.1021/jm501026z] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 3-kinase-related protein kinases (PIKKs) are two related families of kinases that play key roles in regulation of cell proliferation, metabolism, migration, survival, and responses to diverse stresses including DNA damage. To design novel efficient strategies for treatment of cancer and other diseases, these kinases have been extensively studied. Despite their different nature, these two kinase families have related origin and share very similar kinase domains. Therefore, chemical inhibitors of these kinases usually carry analogous structural motifs. The most common feature of these inhibitors is a critical hydrogen bond to morpholine oxygen, initially present in the early nonspecific PI3K and PIKK inhibitor 3 (LY294002), which served as a valuable chemical tool for development of many additional PI3K and PIKK inhibitors. While several PI3K pathway inhibitors have recently shown promising clinical responses, inhibitors of the DNA damage-related PIKKs remain thus far largely in preclinical development.
Collapse
Affiliation(s)
- Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove , Sokolska 81, 500 05 Hradec Kralove, Czech Republic
| | | | | | | | | | | |
Collapse
|
44
|
Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res 2014; 12:1520-31. [PMID: 25103499 DOI: 10.1158/1541-7786.mcr-13-0682] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Tumor growth, progression, and response to the hypoxic tumor microenvironment involve the action of hypoxia-inducible transcription factors, HIF1 and HIF2. HIF is a heterodimeric transcription factor containing an inducible HIFα subunit and a constitutively expressed HIFβ subunit. The signaling pathways operational in macrophages regulating hypoxia-induced HIFα stabilization remain the subject of intense investigation. Here, it was discovered that the PTEN/PI3K/AKT signaling axis controls hypoxia-induced HIF1α (HIF1A) and HIF2α (EPAS1) stability in macrophages. Using genetic mouse models and pan-PI3K as well as isoform-specific inhibitors, inhibition of the PI3K/AKT pathway blocked the accumulation of HIFα protein and its primary transcriptional target VEGF in response to hypoxia. Moreover, blocking the PI3K/AKT signaling axis promoted the hypoxic degradation of HIFα via the 26S proteasome. Mechanistically, a macrophage-dominant PI3K isoform (p110γ) directed tumor growth, angiogenesis, metastasis, and the HIFα/VEGF axis. Moreover, a pan-PI3K inhibitor (SF1126) blocked tumor-induced angiogenesis and inhibited VEGF and other proangiogenic factors secreted by macrophages. These data define a novel molecular mechanism by which PTEN/PI3K/AKT regulates the proteasome-dependent stability of HIFα under hypoxic conditions, a signaling pathway in macrophages that controls tumor-induced angiogenesis and metastasis. IMPLICATIONS This study indicates that PI3K inhibitors are excellent candidates for the treatment of cancers where macrophages promote tumor progression.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Alok R Singh
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Donald L Durden
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California. Division of Pediatric Hematology-Oncology, UCSD Rady Children's Hospital, San Diego, California. SignalRx Pharmaceuticals, San Diego, California.
| |
Collapse
|
45
|
Narayan R, Antonchick AP. Hypervalent Iodine-Mediated Selective Oxidative Functionalization of (Thio)chromones with Alkanes. Chemistry 2014; 20:4568-72. [DOI: 10.1002/chem.201400186] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 11/11/2022]
|
46
|
Shao T, Wang J, Chen JG, Wang XM, Li H, Li YP, Li Y, Yang GD, Mei QB, Zhang SQ. Discovery of 2-methoxy-3-phenylsulfonamino-5-(quinazolin-6-yl or quinolin-6-yl)benzamides as novel PI3K inhibitors and anticancer agents by bioisostere. Eur J Med Chem 2014; 75:96-105. [PMID: 24530495 DOI: 10.1016/j.ejmech.2014.01.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/17/2013] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
2-Substituted-3-sulfonamino-5-(quinazolin-6-yl or quinolin-6-yl)benzamides have been proposed as novel structures of PI3K inhibitors and anticancer agents based on bioisostere. In the present study, 2-substituted-3-sulfonamino-5-(4-morpholinoquinazolin-6-yl)benzamides and 2-methoxy-3-sulfonamino-5-(4-morpholinoquinolin-6-yl)benzamides were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against four human cancer cell lines, including A549, HCT-116, U-87 MG and KB. The SAR of the title compounds was preliminarily discussed. Compound 1a with potent antiproliferative activity was tested for its inhibitory activity against PI3K and mTOR and its effect on the AKT and p-AKT(473). The anticancer effect of 1a was evaluated in established nude mice U-87 MG xenograft model. The results suggest that compound 1a can significantly inhibit PI3K/AKT/mTOR pathway and tumor growth. These findings strongly support the assumption that title compounds are potent PI3K inhibitors and anticancer agents.
Collapse
Affiliation(s)
- Teng Shao
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Juan Wang
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China
| | - Jian-Gang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiao-Meng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huan Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yi-Ping Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Guang-De Yang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qi-Bing Mei
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China.
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|