1
|
Nie H, Zhang S, Wang L, Wang M, Qiu J, Jia F, Li X, Tian G, An B. Synthesis of novel deuterated EGFR/ALK dual-target inhibitors and their activity against non-small cell lung cancer. Eur J Med Chem 2025; 283:117146. [PMID: 39657459 DOI: 10.1016/j.ejmech.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
EGFR and ALK are common driver genes in NSCLC, and more patients with these mutations are being identified due to medical advances. Thus, developing dual-target EGFR/ALK inhibitors is crucial. In this study, 10 novel small molecules were designed and synthesized. CCK8 experiments revealed that compound (-)-9a exhibited the best anti-tumor activity, with IC50 values of 1.08 ± 0.07 nM for EGFR and 2.395 ± 0.023 nM for ALK mutant tumor cells. Studies show that compound (-)-9a can inhibit phosphorylated proteins in EGFR, ALK, and BRK signaling pathways and halt the cell cycle, leading to reduced mitochondrial membrane potential and apoptosis in tumor cells. Additionally, (-)-9a not only directly targets tumor cells but also exhibits potential immune-enhancing effects. Furthermore, evaluations conducted in animal models have demonstrated that this drug effectively reduces tumor growth in vivo. In summary, (-)-9a boasts dual-targeting, potent antitumor activity, and immune-enhancing potential, presenting vast potential as a next-gen anticancer drug.
Collapse
Affiliation(s)
- Haoran Nie
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, PR China
| | - Shuai Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, PR China
| | - Lihan Wang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, PR China
| | - Mengxuan Wang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, PR China
| | - Jiaqi Qiu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, PR China
| | - Fangyi Jia
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, PR China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, PR China
| | - Baijiao An
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, PR China.
| |
Collapse
|
2
|
Gómez-Bouzó U, Peluso-Iltis C, Santalla H, Quevedo MA, Verlinden L, Verstuyf A, Fall Y, Gómez G, Rochel N. Design, Synthesis, and Biological Evaluation of New Type of Gemini Analogues with a Cyclopropane Moiety in Their Side Chain. J Med Chem 2024; 67:10386-10400. [PMID: 38858308 DOI: 10.1021/acs.jmedchem.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We synthesized two new gemini analogues, UG-480 and UG-481, that incorporate a modified longer side chain containing a cyclopropane group. The evaluation of the bioactivities of the two gemini analogues indicated that the 17,20 threo (20S) compound, UG-480, is the most active one and is as active as 1,25(OH)2D3. Docking and molecular dynamics (MD) data showed that the compounds bind efficiently to vitamin D receptor (VDR) with UG-480 to form an energetically more favorable interaction with His397. Structural analysis indicated that whereas the UG-480 compound efficiently stabilizes the active VDR conformation, it induces conformational changes in the H6-H7 VDR region that are greater than those induced by the parental Gemini and that this is due to the occupancy of the secondary channel by its modified side chain.
Collapse
Affiliation(s)
- Uxía Gómez-Bouzó
- Departamento de Química Orgánica and Instituto de Investigación Sanitaría Galicia Sur (IISGS), Campus Lagoas Marcosende, Universidad de Vigo, Vigo 36310, Spain
| | - Carole Peluso-Iltis
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch 67400, France
- CNRS UMR 7104, Illkirch 67400, France
- Inserm U1258, Illkirch 67400, France
- University of Strasbourg, Illkirch 67400, France
| | - Hugo Santalla
- Departamento de Química Orgánica and Instituto de Investigación Sanitaría Galicia Sur (IISGS), Campus Lagoas Marcosende, Universidad de Vigo, Vigo 36310, Spain
| | - Mario Alfredo Quevedo
- Unidad de Investigación y desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven 3000, Belgium
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven 3000, Belgium
| | - Yagamare Fall
- Departamento de Química Orgánica and Instituto de Investigación Sanitaría Galicia Sur (IISGS), Campus Lagoas Marcosende, Universidad de Vigo, Vigo 36310, Spain
| | - Generosa Gómez
- Departamento de Química Orgánica and Instituto de Investigación Sanitaría Galicia Sur (IISGS), Campus Lagoas Marcosende, Universidad de Vigo, Vigo 36310, Spain
| | - Natacha Rochel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch 67400, France
- CNRS UMR 7104, Illkirch 67400, France
- Inserm U1258, Illkirch 67400, France
- University of Strasbourg, Illkirch 67400, France
| |
Collapse
|
3
|
Belorusova AY, Rovito D, Chebaro Y, Doms S, Verlinden L, Verstuyf A, Metzger D, Rochel N, Laverny G. Vitamin D Analogs Bearing C-20 Modifications Stabilize the Agonistic Conformation of Non-Responsive Vitamin D Receptor Variants. Int J Mol Sci 2022; 23:ijms23158445. [PMID: 35955580 PMCID: PMC9369186 DOI: 10.3390/ijms23158445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
The Vitamin D receptor (VDR) plays a key role in calcium homeostasis, as well as in cell proliferation and differentiation. Among the large number of VDR ligands that have been developed, we have previously shown that BXL-62 and Gemini-72, two C-20-modified vitamin D analogs are highly potent VDR agonists. In this study, we show that both VDR ligands restore the transcriptional activities of VDR variants unresponsive to the natural ligand and identified in patients with rickets. The elucidated mechanisms of action underlying the activities of these C-20-modified analogs emphasize the mutual adaptation of the ligand and the VDR ligand-binding pocket.
Collapse
Affiliation(s)
- Anna Y. Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
| | - Daniela Rovito
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
- OSCAR, French Network for Rare Bone Diseases, 94270 Le Kremlin-Bicêtre, France
| | - Yassmine Chebaro
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
| | - Stefanie Doms
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (S.D.); (L.V.); (A.V.)
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (S.D.); (L.V.); (A.V.)
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (S.D.); (L.V.); (A.V.)
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
- OSCAR, French Network for Rare Bone Diseases, 94270 Le Kremlin-Bicêtre, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
- Correspondence: (N.R.); (G.L.)
| | - Gilles Laverny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
- OSCAR, French Network for Rare Bone Diseases, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (N.R.); (G.L.)
| |
Collapse
|
4
|
Meng Y, Yu B, Huang H, Peng Y, Li E, Yao Y, Song C, Yu W, Zhu K, Wang K, Yi D, Du J, Chang J. Discovery of Dosimertinib, a Highly Potent, Selective, and Orally Efficacious Deuterated EGFR Targeting Clinical Candidate for the Treatment of Non-Small-Cell Lung Cancer. J Med Chem 2021; 64:925-937. [PMID: 33459024 DOI: 10.1021/acs.jmedchem.0c02005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Osimertinib is a highly potent and selective third-generation epidermal growth factor receptor (EGFR) inhibitor, which provides excellent clinical benefits and is now a standard-of-care therapy for advanced EGFR mutation-positive non-small-cell lung cancer (NSCLC). However, AZ5104, a primary toxic metabolite of osimertinib, has caused unwanted toxicities. To address this unmet medical need, we initiated an iterative program focusing on structural optimizations of osimertinib and preclinical characterization, leading to the discovery of a highly potent, selective, and orally efficacious deuterated EGFR-targeting clinical candidate, dosimertinib. Preclinical studies revealed that dosimertinib demonstrated robust in vivo antitumor efficacy and favorable PK profiles, but with lower toxicity than osimertinib. These preclinical data support further clinical development of dosimertinib for the treatment of NSCLC. Dosimertinib has received official approval in China to initiate the phase I clinical trial (registration numbers: CXHL2000060 and CXHL2000061).
Collapse
Affiliation(s)
- Yonggang Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - He Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ertong Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kaikai Zhu
- Henan Metab Biopharma Co., Ltd., Zhengzhou Airport Economy Zone, Taiwan Science Park, Zhengzhou 450006, China
| | - Kai Wang
- Henan Metab Biopharma Co., Ltd., Zhengzhou Airport Economy Zone, Taiwan Science Park, Zhengzhou 450006, China
| | - Dongxu Yi
- Henan Metab Biopharma Co., Ltd., Zhengzhou Airport Economy Zone, Taiwan Science Park, Zhengzhou 450006, China
| | - Jinfa Du
- Henan Genuine Biotech Co., Ltd. 10 Fuxing Road, Xincheng District, Pingdingshan, Henan 467036, China
| | - Junbiao Chang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Vitamin D and its analogs as anticancer and anti-inflammatory agents. Eur J Med Chem 2020; 207:112738. [DOI: 10.1016/j.ejmech.2020.112738] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
|
6
|
Ibe K, Yamada T, Okamoto S. Synthesis and vitamin D receptor affinity of 16-oxa vitamin D 3 analogues. Org Biomol Chem 2019; 17:10188-10200. [PMID: 31769776 DOI: 10.1039/c9ob02339a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 16-oxa-vitamin D3 analogues were synthesized using a tandem Ti(ii)-mediated enyne cyclization/Cu-catalyzed allylation, Ru-catalyzed ring-closing metathesis reaction, and a low-valent titanium (LVT)-mediated stereoselective radical reduction of 8α,14α-epoxide as the key steps for the synthesis of the 16-oxa-C,D ring unit. The vitamin D receptor-binding affinity of the synthesized analogues, 16-oxa-1α,25-(OH)2VD3 and 16-oxa-19-nor-1α,25-(OH)2VD3, was evaluated by fluorescence polarization vitamin D receptor competitor assay and time-resolved fluorescence energy transfer vitamin D receptor co-activator assay.
Collapse
Affiliation(s)
- Kouta Ibe
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Takeshi Yamada
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Sentaro Okamoto
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
7
|
Zhan Z, Peng X, Sun Y, Ai J, Duan W. Evaluation of Deuterium-Labeled JNJ38877605: Pharmacokinetic, Metabolic, and in Vivo Antitumor Profiles. Chem Res Toxicol 2018; 31:1213-1218. [DOI: 10.1021/acs.chemrestox.8b00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhengsheng Zhan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yiming Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jing Ai
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
8
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
9
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
10
|
Belorusova AY, Suh N, Lee HJ, So JY, Maehr H, Rochel N. Structural analysis and biological activities of BXL0124, a gemini analog of vitamin D. J Steroid Biochem Mol Biol 2017; 173:69-74. [PMID: 27650654 PMCID: PMC5357203 DOI: 10.1016/j.jsbmb.2016.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/07/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Gemini analogs of calcitriol, characterized by the extension of the C21-methyl group of calcitriol with a second chain, act as agonists of the vitamin D receptor (VDR). This second side chain of gemini is accommodated in a new cavity inside the VDR created by the structural rearrangement of the protein core. The resulting conformational change preserves the active state of the receptor and bestows gemini compounds with biological activities that exceed those of calcitriol. Of particular interest are gemini's anti-cancer properties, and in this study we demonstrate anti-proliferative and tumor-reducing abilities of BXL0124 and BXL0097, differing only by the presence or absence, respectively, of the methylene group on the A ring. BXL0124 acts as a more potent VDR agonist than its 19-nor counterpart by activating VDR-mediated transcription at lower concentrations. In a similar manner, BXL0124 is more active than BXL0097 in growth inhibition of breast cancer cells and reduction of tumor volume. Structural comparisons of BXL0097 and BXL0124, as their VDR complexes, explain the elevated activity of the latter.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Hong Jin Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jae Young So
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hubert Maehr
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Natacha Rochel
- Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Liang X, Duttwyler S. Efficient Brønsted-Acid-Catalyzed Deuteration of Arenes and Their Transformation to Functionalized Deuterated Products. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xuewei Liang
- Department of Chemistry; Zhejiang University; 38 Zheda Road 310027 Hangzhou P.R. China
| | - Simon Duttwyler
- Department of Chemistry; Zhejiang University; 38 Zheda Road 310027 Hangzhou P.R. China
| |
Collapse
|
12
|
Maestro MA, Molnár F, Mouriño A, Carlberg C. Vitamin D receptor 2016: novel ligands and structural insights. Expert Opin Ther Pat 2016; 26:1291-1306. [PMID: 27454349 DOI: 10.1080/13543776.2016.1216547] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Vitamin D3 activates via its hormonal form 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the transcription factor vitamin D receptor (VDR). VDR is expressed in most human tissues and has more than 1,000 target genes. Thus, 1α,25(OH)2D3 and its synthetic analogs have a broad physiological impact. The crystal structures of the VDR ligand-binding domain (LBD), and its various ligands, allows further the understanding of the receptor's molecular actions. Areas covered: We discuss the most important novel VDR ligands and the further insight derived from new structural information on VDR. Expert opinion: There is an increasing appreciation of the impact of vitamin D and its receptor VDR not only in bone biology, but also for metabolic diseases, immunological disorders, and cancer. Detailed structural analysis of the interaction of additional novel ligands with VDR highlight helices 6 and 7 of the LBD as being most critical for stabilizing the receptor for an efficient interaction with co-activator proteins, i.e. for efficient agonistic action. This permits the design of even more effective VDR agonists. In addition, chemists took more liberty in replacing major parts of the 1α,25(OH)2D3 molecule, such as the A- and CD-rings or the side chain, with significantly different structures, such as carboranes, and still obtained functional VDR agonists.
Collapse
Affiliation(s)
- Miguel A Maestro
- a Departamento de Química Fundamental, Facultad de Ciencias , Universidade da Coruña , Coruña , Spain
| | - Ferdinand Molnár
- b School of Pharmacy, Institute of Biopharmacy , University of Eastern Finland , Kuopio , Finland
| | - Antonio Mouriño
- c Departamento de Química Orgánica, Facultad de Química , Universidad de Santiago , Santiago de Compostela , Spain
| | - Carsten Carlberg
- d School of Medicine, Institute of Biomedicine , University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
13
|
Ge Z, Hao M, Xu M, Su Z, Kang Z, Xue L, Zhang C. Novel nonsecosteroidal VDR ligands with phenyl-pyrrolyl pentane skeleton for cancer therapy. Eur J Med Chem 2016; 107:48-62. [DOI: 10.1016/j.ejmech.2015.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
|
14
|
Malinska M, Kutner A, Woźniak K. Predicted structures of new Vitamin D Receptor agonists based on available X-ray structures. Steroids 2015; 104:220-9. [PMID: 26476188 DOI: 10.1016/j.steroids.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 12/28/2022]
Abstract
Current efforts in the field of vitamin D are to develop 1,25(OH)2D3 analogs that exhibit equal or even increased anti-proliferative activity while possessing a reduced tendency to cause hypercalcemia. The study proposes a new, rational design of vitamin D analogs based on data available in the Protein Data Bank. Undertaken approach was to minimize the electrostatic interaction energies available after the reconstruction of charge density with the aid of the pseudoatom databank, namely the University at Buffalo Pseudoatom Databank (UBDB). Analysis of 24 vitamin D analogs, bearing similar molecular structures complexed with Vitamin D Receptor enabled the design of new agonists forming all advantageous interaction to the receptor, coded TB1, TB2, TB3 and TB4.
Collapse
Affiliation(s)
- Maura Malinska
- Department of Chemistry, University of Warsaw, 1 Pasteura, 02-093 Warsaw, Poland.
| | - Andrzej Kutner
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Krzysztof Woźniak
- Department of Chemistry, University of Warsaw, 1 Pasteura, 02-093 Warsaw, Poland.
| |
Collapse
|
15
|
Belorusova AY, Rochel N. Structural Studies of Vitamin D Nuclear Receptor Ligand-Binding Properties. VITAMINS AND HORMONES 2015; 100:83-116. [PMID: 26827949 DOI: 10.1016/bs.vh.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vitamin D nuclear receptor (VDR) and its natural ligand, 1α,25-dihydroxyvitamin D3 hormone (1,25(OH)2D3, or calcitriol), classically regulate mineral homeostasis and metabolism but also much broader range of biological functions, such as cell growth, differentiation, antiproliferation, apoptosis, adaptive/innate immune responses. Being widely expressed in various tissues, VDR represents an important therapeutic target in the treatment of diverse disorders. Since ligand binding is a key step in VDR-mediated signaling, numerous 1,25(OH)2D3 analogs have been synthesized in order to selectively modulate the receptor activity. Most of the synthetic analogs have been developed by modification of a parental compound and some of them mimic 1,25(OH)2D3 scaffold without being structurally related to it. The ability of ligands that have different size and conformation to bind to VDR and to demonstrate biological effects is intriguing, and therefore, ligand-binding properties of the receptor have been extensively investigated using a variety of biochemical, biophysical, and computational methods. In this chapter, we describe different aspects of the structure-function relationship of VDR in complex with natural and synthetic ligands coming from structural analysis. With the emphasis on the binding modes of the most promising compounds, such as secosteroidal agonists and 1,25(OH)2D3 mimics, we also highlight the action of VDR antagonists and the evidence for the existence of an alternative ligand-binding site within the receptor. Additionally, we describe the crystal structures of VDR mutants associated with hereditary vitamin D-resistant rickets that display impaired ligand-binding function.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
16
|
Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G. Vitamin D in cancer chemoprevention. PHARMACEUTICAL BIOLOGY 2015; 53:1399-1434. [PMID: 25856702 DOI: 10.3109/13880209.2014.988274] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT There is increasing evidence that Vitamin D (Vit D) and its metabolites, besides their well-known calcium-related functions, may also exert antiproliferative, pro-differentiating, and immune modulatory effects on tumor cells in vitro and may also delay tumor growth in vivo. OBJECTIVE The aim of this review is to provide fresh insight into the most recent advances on the role of Vit D and its analogues as chemopreventive drugs in cancer therapy. METHODS A systematic review of experimental and clinical studies on Vit D and cancer was undertaken by using the major electronic health database including ISI Web of Science, Medline, PubMed, Scopus and Google Scholar. RESULTS AND CONCLUSION Experimental and clinical observations suggest that Vit D and its analogues may be effective in preventing the malignant transformation and/or the progression of various types of human tumors including breast cancer, prostate cancer, colorectal cancer, and some hematological malignances. These findings suggest the possibility of the clinical use of these molecules as novel potential chemopreventive and anticancer agents.
Collapse
|
17
|
Abstract
Crystal structures represent the static picture in the life of a molecule giving a sneak preview what it might be in reality. Hence, it is very hard to extrapolate from these photos toward dynamic processes such as transcriptional regulation. Mechanistically VDR may be considered as molecular machine able to perform ligand-, DNA- and protein recognition, and interaction in a multi-task manner. Taking this into account the functional net effect will be the combination of all these processes. The long awaited answer to explain the differences in physiological effects for various ligands was one of the biggest disappointment that crystal structures provided since no substantial distinction could be made for the conformation of the active VDR-ligand complexes. This may have come from the limitation on the complexity of the available ligand-VDR structures. The recent studies with full length VDR-RXRα showed somewhat more comprehensive perspective for the 3D organization and possible function of the VDR-RXRα-cofactor complex. In addition to in vitro approaches, also computational tools had been introduced with the aim to get understanding on the mechanic and dynamic properties of the VDR complexes with some success. Using these methods and based on measurable descriptors such as pocket size and positions of side chains it is possible to note subtle differences between the structures. The meaning of these differences has not been fully understood yet but the possibility of a “butterfly effect” may have more extreme consequences in terms of VDR signaling. In this review, the three functional aspects (ligand-, DNA- and protein recognition, and binding) will be discussed with respect to available data as well as possible implication and questions that may be important to address in the future.
Collapse
Affiliation(s)
- Ferdinand Molnár
- Faculty of Health Sciences, School of Pharmacy, Institute of Biopharmacy, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
18
|
Seoane S, Bermudez MA, Sendon-Lago J, Martinez-Ordoñez A, Abdul-Hadi S, Maestro M, Mouriño A, Perez-Fernandez R. 26,26,26,27,27,27-Hexadeuterated-1,25-Dihydroxyvitamin D3 (1,25D-d6) As Adjuvant of Chemotherapy in Breast Cancer Cell Lines. Cancers (Basel) 2013; 6:67-78. [PMID: 24378752 PMCID: PMC3980618 DOI: 10.3390/cancers6010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that 1,25-dihydroxyvitamin D3 (1,25D) and some of its analogues have antitumor activity. 1,25D labeled with deuterium (26,26,26,27,27,27-hexadeuterated 1α,25-dihydroxyvitamin D3, or 1,25D-d6) is commonly used as internal standard for 1,25D liquid chromatography-mass spectrometry (LC-MS) quantification. In the present study using human breast cancer cell lines, the biological activity of 1,25D-d6 administered alone and in combination with two commonly used antineoplastic agents, 5-fluorouracil and etoposide, was evaluated. Using an MTT assay, flow cytometry, and western blots, our data demonstrated that 1,25D-d6 has effects similar to the natural hormone on cell proliferation, cell cycle, and apoptosis. Furthermore, the combination of 1,25D-d6 and etoposide enhances the antitumoral effects of both compounds. Interestingly, the antitumoral effect is higher in the more aggressive MDA-MB-231 breast cancer cell line. Our data indicate that 1,25D-d6 administered alone or in combination with chemotherapy could be a good experimental method for accurately quantifying active 1,25D levels in cultures or in biological fluids, on both in vitro breast cancer cell lines and in vivo animal experimental models.
Collapse
Affiliation(s)
- Samuel Seoane
- Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Maria A Bermudez
- Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Juan Sendon-Lago
- Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Anxo Martinez-Ordoñez
- Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Soraya Abdul-Hadi
- Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Miguel Maestro
- Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Antonio Mouriño
- Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Roman Perez-Fernandez
- Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|