1
|
Egbujor MC, Tucci P, Onyeije UC, Emeruwa CN, Saso L. NRF2 Activation by Nitrogen Heterocycles: A Review. Molecules 2023; 28:2751. [PMID: 36985723 PMCID: PMC10058096 DOI: 10.3390/molecules28062751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Several nitrogen heterocyclic analogues have been applied to clinical practice, and about 75% of drugs approved by the FDA contain at least a heterocyclic moiety. Thus, nitrogen heterocycles are beneficial scaffolds that occupy a central position in the development of new drugs. The fact that certain nitrogen heterocyclic compounds significantly activate the NRF2/ARE signaling pathway and upregulate the expression of NRF2-dependent genes, especially HO-1 and NQO1, underscores the need to study the roles and pharmacological effects of N-based heterocyclic moieties in NRF2 activation. Furthermore, nitrogen heterocycles exhibit significant antioxidant and anti-inflammatory activities. NRF2-activating molecules have been of tremendous research interest in recent times due to their therapeutic roles in neuroinflammation and oxidative stress-mediated diseases. A comprehensive review of the NRF2-inducing activities of N-based heterocycles and their derivatives will broaden their therapeutic prospects in a wide range of diseases. Thus, the present review, as the first of its kind, provides an overview of the roles and effects of nitrogen heterocyclic moieties in the activation of the NRF2 signaling pathway underpinning their antioxidant and anti-inflammatory actions in several diseases, their pharmacological properties and structural-activity relationship are also discussed with the aim of making new discoveries that will stimulate innovative research in this area.
Collapse
Affiliation(s)
- Melford C. Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Nigeria
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ugomma C. Onyeije
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka 420007, Nigeria
| | | | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
2
|
Zhang QY, Yu Y. Crystal structure of 9-methoxy-2,3,4,4 a,5,6-hexahydro-1 H-pyrido [1′,2′:1,6]pyrazino[2,3- b]quinoxaline, C 15H 18N 4O. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
C15H18N4O, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 6.7562(5) Å, b = 9.5520(6) Å, c = 11.4227(8) Å, α = 97.206(5)°, β = 102.335(6)°, γ = 108.614(7)°, V = 667.39(9) Å3, Z = 2, R
gt
(F) = 0.0480, wR
ref
(F
2) = 0.1388, T = 150 K.
Collapse
Affiliation(s)
- Qiu Yu Zhang
- School of Pharmacy, Chongqing Medical University , Chongqing 400016 , P. R. China
| | - Yu Yu
- School of Pharmacy, Chongqing Medical University , Chongqing 400016 , P. R. China
| |
Collapse
|
3
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
4
|
Wu Y, Lv B, Zhang Y, Gao P, Zhang M, Yuan Y. Ring opening of N-hydroxyphthalimide to construct phenylurea derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1919709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yinhui Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Bin Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yanan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Min Zhang
- Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Xiao H, Wang G, Wang Z, Kuang Y, Song J, Jin J, Ye M, Yang D, Ma M. Generation of Unusual Aromatic Polyketides by Incorporation of Phenylamine Analogues into a C-Ring-Cleaved Angucyclinone. Molecules 2021; 26:molecules26071959. [PMID: 33807235 PMCID: PMC8038006 DOI: 10.3390/molecules26071959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Angucyclinones are aromatic polyketides that possess impressive structural diversity and significant biological activities. The structural diversity of these natural products is attributed to various enzymatic or nonenzymatic modifications on their tetracyclic benz(a)anthracene skeleton. Previously, we discovered an unusual phenylamine-incorporated angucyclinone (1) from a marine Streptomyces sp. PKU-MA00218, and identified that it was produced from the nonenzymatic conversion of a C-ring-cleaved angucyclinone (2) with phenylamine. In this study, we tested the nonenzymatic conversion of 2 with more phenylamine analogues, to expand the utility of this feasible conversion in unusual angucyclinones generation. The (3-ethynyl)phenylamine and disubstituted analogues including (3,4-dimethyl)phenylamine, (3,4-methylenedioxy)phenylamine, and (4-bromo-3-methyl)phenylamine were used in the conversion of 2, which was isolated from the fermentation of Streptomyces sp. PKU-MA00218. All four phenylamine analogues were incorporated into 2 efficiently under mild conditions, generating new compounds 3–6. The activation of 3–6 on nuclear factor erythroid 2-related factor 2 (Nrf2) transcription were tested, which showed that 4 possessing a dimethyl-substitution gave most potent activity. These results evidenced that disubstitutions on phenylamine can be roughly tolerated in the nonenzymatic reactions with 2, suggesting extended applications of more disubstituted phenylamines incorporation to generate new bioactive angucyclinones in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ming Ma
- Correspondence: (D.Y.); (M.M.)
| |
Collapse
|
6
|
Dan YR, Gan LL, Yu Y. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C19H18N4O, monoclinic, P21/c (no. 14), a = 11.3744(16) Å, b = 13.7367(15) Å, c = 11.208(2) Å, β = 118.51(2)°, V = 1538.9(5) Å3, Z = 4, R
gt
(F) = 0.0494, wR
ref
(F
2) = 0.1327, T = 100(2) K.
Collapse
Affiliation(s)
- Yan Rong Dan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology , School of Pharmacy, Chongqing Medical University , Chongqing 400016 , P. R. China
| | - Lin Ling Gan
- Chongqing Engineering Research Center of Pharmaceutical Sciences , School of Pharmacy, Chongqing Medical and Pharmaceutical College , Chongqing 401331 , P. R. China
| | - Yu Yu
- School of Pharmacy, Chongqing Medical University , Chongqing 400016 , P. R. China
| |
Collapse
|
7
|
Gan L, Gan Z, Dan Y, Li Y, Zhang P, Chen S, Ye Z, Pan T, Wan C, Hu X, Yu Y. Tetrazanbigen Derivatives as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Partial Agonists: Design, Synthesis, Structure-Activity Relationship, and Anticancer Activities. J Med Chem 2021; 64:1018-1036. [PMID: 33423463 DOI: 10.1021/acs.jmedchem.0c01512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazanbigen (TNBG) is a novel sterol isoquinoline derivative with poor water solubility and moderate inhibitory effects on human cancer cell lines via lipoapoptosis induction. Herein, we developed a series of novel TNBG analogues with improved water solubility and antiproliferative activities. The CCK-8 assay enabled us to identify a novel compound, 14g, which strongly inhibited HepG2 and A549 cell growth with IC50 values of 0.54 and 0.47 μM, respectively. The anticancer effects might be explained by the partial activation and upregulation of PPARγ expression, as indicated by the transactivation assay and western blotting evaluation. Furthermore, the in vitro antiproliferative activity was verified in an in vivo xenograft model in which 14g strongly reduced tumor growth at a dose of 10 mg/kg. In line with these positive observations, 14g exhibited an excellent water solubility of 31.4 mg/mL, which was more than 1000-fold higher than that of TNBG (4 μg/mL). Together, these results suggest that 14g is a promising anticancer therapeutic that deserves further investigation.
Collapse
Affiliation(s)
- Linling Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zongjie Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yanrong Dan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yaowei Li
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peiming Zhang
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shanwen Chen
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zaijun Ye
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Pan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chunmei Wan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Hu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Yu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Madden SK, Itzhaki LS. Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140405. [PMID: 32120017 DOI: 10.1016/j.bbapap.2020.140405] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023]
Abstract
The proteins Keap1 and Nrf2 together act as a cytoprotective mechanism that enables cells to overcome electrophilic and oxidative stress. Research has shown that manipulating this system by modulating the Keap1-Nrf2 interaction either through inhibition at the binding interface or via the covalent modification of Keap1 could provide a powerful therapeutic strategy for a range of diseases. However, despite intensive investigation of the system and significant progress in the development of inhibitory small molecules, there is still much to learn about the pathways associated with the Keap1-Nrf2 system and the structural details underpinning its mechanism of action. In this review, we discuss how a deeper understanding could prove revolutionary in the development of new inhibitors and activators as well as guiding how to best harness Keap1 for targeted protein degradation.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, United Kingdom
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, United Kingdom.
| |
Collapse
|
9
|
Chen YH, Dan YR, Gan LL, Yu Y. Crystal structure of 3-fluoro-9-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino [2′,1′:1,6]pyrazino[2,3-b]quinoxaline, C19H17FN4O. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractC19H17FN4O, orthorhombic, Pbca (no. 61), a = 7.0607(2) Å, b = 18.4459(5) Å, c = 23.8955(7) Å, V = 3112.17(15) Å3, Z = 8, Rgt(F) = 0.0543, wRref(F2) = 0.1540, T = 100(2) K.
Collapse
Affiliation(s)
- Yu Hang Chen
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Rong Dan
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Ling Gan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, P.R. China
| | - Yu Yu
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
10
|
Bousquet MS, Ratnayake R, Pope JL, Chen QY, Zhu F, Chen S, Carney TJ, Gharaibeh RZ, Jobin C, Paul VJ, Luesch H. Seaweed natural products modify the host inflammatory response via Nrf2 signaling and alter colon microbiota composition and gene expression. Free Radic Biol Med 2020; 146:306-323. [PMID: 31536771 PMCID: PMC7339024 DOI: 10.1016/j.freeradbiomed.2019.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Seaweeds are an important component of human diets, especially in Asia and the Pacific islands, and have shown chemopreventive as well as anti-inflammatory properties. However, structural characterization and mechanistic insight of seaweed components responsible for their biological activities are lacking. We isolated cymopol and related natural products from the marine green alga Cymopolia barbata and demonstrated their function as activators of transcription factor Nrf2-mediated antioxidant response to increase the cellular antioxidant status. We probed the reactivity of the bioactivation product of cymopol, cymopol quinone, which was able to modify various cysteine residues of Nrf2's cytoplasmic repressor protein Keap1. The observed adducts are reflective of the polypharmacology at the level of natural product, due to multiple electrophilic centers, and at the amino acid level of the cysteine-rich target protein Keap1. The non-polar C. barbata extract and its major active component cymopol, reduced inflammatory gene transcription in vitro in macrophages and mouse embryonic fibroblasts in an Nrf2-dependent manner. Cymopol-containing extracts attenuated neutrophil migration in a zebrafish tail wound model. RNA-seq analysis of colonic tissues of mice exposed to non-polar extract or cymopol showed an antioxidant and anti-inflammatory response, with more pronounced effects exhibited by the extract. Cymopolia extract reduced DSS-induced colitis as measured by fecal lipocalin concentration. RNA-seq showed that mucosal-associated bacterial composition and transcriptional profile in large intestines were beneficially altered to varying degrees in mice treated with either the extract or cymopol. We conclude that seaweed-derived compounds, especially cymopol, alter Nrf2-mediated host and microbial gene expression, thereby providing polypharmacological effects.
Collapse
Affiliation(s)
- Michelle S Bousquet
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Institute of Molecular and Cellular Biology (IMCB), A*STAR, Proteos, 138673, Singapore
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Jillian L Pope
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Fanchao Zhu
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA; Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Thomas J Carney
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Proteos, 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Raad Z Gharaibeh
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Christian Jobin
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Institute of Molecular and Cellular Biology (IMCB), A*STAR, Proteos, 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.
| |
Collapse
|
11
|
Bai F, Zhang B, Hou Y, Yao J, Xu Q, Xu J, Fang J. Xanthohumol Analogues as Potent Nrf2 Activators against Oxidative Stress Mediated Damages of PC12 Cells. ACS Chem Neurosci 2019; 10:2956-2966. [PMID: 31116948 DOI: 10.1021/acschemneuro.9b00171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcription factor controlling a series of cytoprotective genes, is closely associated with scavenging the reactive oxygen species and maintaining the intracellular redox balance. Accumulating evidence has indicated that activation of Nrf2 is efficient to block or retard oxidative stress mediated neurodegenerative disorders. Small molecules that contribute directly or indirectly to the Nrf2 activation thus are promising therapeutic agents. Herein, we screened xanthohumol and its analogues, and two analogues (11 and 12) were disclosed to possess low cytotoxicity and rescue PC12 cells from the hydrogen peroxide or 6-hydroxydopamine induced injuries. Molecular mechanism studies demonstrated that compounds 11 and 12 are potent Nrf2 activators by promoting the nuclear accumulation of Nrf2 and enhancing the cellular antioxidant defense system. More importantly, genetically silencing the Nrf2 expression shuts down the observed cytoprotection conferred by both compounds, supporting the critical involvement of Nrf2 for the cellular actions of compounds 11 and 12.
Collapse
Affiliation(s)
- Feifei Bai
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
12
|
Qiu YF, Niu YJ, Wei X, Cao BQ, Wang XC, Quan ZJ. AgSCF3/Na2S2O8-Promoted Trifluoromethylthiolation/Cyclization of o-Propargyl Arylazides/o-Alkynyl Benzylazides: Synthesis of SCF3-Substituted Quinolines and Isoquinolines. J Org Chem 2019; 84:4165-4178. [DOI: 10.1021/acs.joc.9b00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
| | - Yue-Jie Niu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
| | - Xi Wei
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
| | - Bao-Qian Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, People’s Republic of China
| |
Collapse
|
13
|
Messire G, Massicot F, Vallée A, Vasse JL, Behr JB. Aza-Henry Reaction with Nitrones, an Under-Explored Transformation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gatien Messire
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| | - Fabien Massicot
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| | - Alexis Vallée
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| | - Jean-Luc Vasse
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| | - Jean-Bernard Behr
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| |
Collapse
|
14
|
Sova M, Saso L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3181-3197. [PMID: 30288023 PMCID: PMC6161735 DOI: 10.2147/dddt.s172612] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major cell defense mechanism against oxidative and xenobiotic stress is mediated by the Nrf2/Keap1 signaling pathway. The Nrf2/Keap1 pathway regulates gene expression of many cytoprotective and detoxifying enzymes, thus playing a pivotal role in maintaining redox cellular homeostasis. Many diseases including cancer have been closely related to impaired Nrf2 activity. Targeting Nrf2 and modulating its activity represents a novel modern strategy for cancer chemoprevention and therapy. In this review, different design strategies used for the development of Nrf2 modulators are described in detail. Moreover, the main focus is on important and recently developed Nrf2 activators and inhibitors, their in vitro and in vivo studies, and their potential use as chemopreventive agents and/or cancer therapeutics.
Collapse
Affiliation(s)
- Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia,
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Xu LL, Wu YF, Wang L, Li CC, Li L, Di B, You QD, Jiang ZY. Structure-activity and structure-property relationships of novel Nrf2 activators with a 1,2,4-oxadiazole core and their therapeutic effects on acetaminophen (APAP)-induced acute liver injury. Eur J Med Chem 2018; 157:1376-1394. [DOI: 10.1016/j.ejmech.2018.08.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/11/2018] [Accepted: 08/25/2018] [Indexed: 12/24/2022]
|
16
|
Zuo Q, Wu R, Xiao X, Yang C, Yang Y, Wang C, Lin L, Kong AN. The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J Cell Biochem 2018; 119:9573-9582. [PMID: 30129150 DOI: 10.1002/jcb.27275] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Colorectal cancer remains a leading malignancy in humans. The importance of epigenetic modification in the development of this disease is now being recognized. The reversible and dynamic nature of epigenetic modifications provides a promising strategy in colorectal cancer chemoprevention and treatment. Luteolin (LUT), a flavone dietary phytochemical, can modulate various signaling pathways involved in carcinogenesis. Many studies have demonstrated that LUT inhibits colorectal carcinogenesis by activating the Nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-responsive element (ARE) pathway. However, the potential epigenetic mechanism underlying Nrf2/ARE pathway activation remains unclear. In this study, we aimed to explore the anticancer potential of LUT in human colon cancer cells and the epigenetic regulation of the Nrf2/ARE pathway. Specifically, our data showed that LUT suppressed cell proliferation and cellular transformation of HCT116 and HT29 cells in a dose-dependent manner. Additionally, quantitative real-time polymerase chain reaction and Western blot analysis were performed to determine the mRNA and protein expression of Nrf2 and its downstream genes after LUT treatment. Bisulfite genomic sequencing revealed that methylation of the Nrf2 promoter region was decreased by LUT, corresponding with the increased mRNA expression of Nrf2. Decreased protein levels and enzyme activities of epigenetic modifying enzymes, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), were also observed in LUT-treated HCT116 cells. In summary, our findings suggest that LUT may exert its antitumor activity in part via epigenetic modifications of the Nrf2 gene with subsequent induction of its downstream antioxidative stress pathway.
Collapse
Affiliation(s)
- Qian Zuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.,Department of Integrated Chinese and Western Medicine, Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Xi Xiao
- Department of Integrated Chinese and Western Medicine, Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Caizhi Yang
- Department of Integrated Chinese and Western Medicine, Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Lizhu Lin
- Department of Oncology, No. 1 Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
17
|
3-(1H-Benzo[ d]imidazol-6-yl)-5-(4-fluorophenyl)-1,2,4-oxadiazole (DDO7232), a Novel Potent Nrf2/ARE Inducer, Ameliorates DSS-Induced Murine Colitis and Protects NCM460 Cells against Oxidative Stress via ERK1/2 Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3271617. [PMID: 29887940 PMCID: PMC5985092 DOI: 10.1155/2018/3271617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022]
Abstract
Ulcerative colitis (UC) is a common inflammatory bowel disease that can destroy the integrity of the colon and increase the risk of colorectal cancer. Oxidative stress is one of the critical pathogenic factors for UC, further impairing the entire affected colon. The Nrf2-ARE signaling pathway plays an important role in counteracting oxidative and electrophilic stress. Activation of the Nrf2-ARE pathway provides an indispensable defense mechanism for the treatment of UC. In this study, we identified a novel effective Nrf2 activator, DDO7232, which showed protective effects on NCM460 cells and therapeutic effects on DSS-induced colitis in mice. Mechanistic studies indicated that the Nrf2-ARE-inducing activity of DDO7232 was based on the activation of the ERK1/2 phosphorylation. The phosphorylation of Nrf2 Ser40 by p-ERK triggered the transport of Nrf2 into the nucleus and drove the expression of Nrf2-dependent antioxidant proteins. These results not only revealed the antioxidant mechanisms of DDO7232 but also provided an effective therapeutic option for the treatment of UC.
Collapse
|
18
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
19
|
Development of Novel Nrf2/ARE Inducers Bearing Pyrazino[2,1-a]isoquinolin Scaffold with Potent In Vitro Efficacy and Enhanced Physicochemical Properties. Molecules 2017; 22:molecules22091541. [PMID: 28902165 PMCID: PMC6151508 DOI: 10.3390/molecules22091541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/09/2017] [Indexed: 11/16/2022] Open
Abstract
Pyrazino[2,1-a]isoquinolin analogues were reported as potent activators of Nrf2/ARE signaling both in vitro and in vivo by our group. In this study, we simplified the ring system to investigate the functions of various parts of the pyrazino[2,1-a]isoquinolin scaffold. We proved that the tetrahydroisoquinoline was not essential for activity and the pyrido[1,2-a]pyrazin analogues 3b and 3g retained the cellular Nrf2/ARE activation activity. Besides, this simplification significantly enhanced water solubility and membrane permeability, indicating that these compounds are more favourable for the further development of therapeutic agents around Nrf2 activation.
Collapse
|
20
|
Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marqués L, Molina AJ, Martín V. The NRF2 transcription factor plays a dual role in colorectal cancer: A systematic review. PLoS One 2017; 12:e0177549. [PMID: 28542357 PMCID: PMC5436741 DOI: 10.1371/journal.pone.0177549] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common cancers worldwide, and is influenced by the interplay of various factors, including a very strong genetic component. For instance, incorrect mitochondrial biogenesis is correlated with increased risk of developing colorectal cancer. Thus, it is important to understand the consequences of changes in both the expression and the correct function of the transcription factors that regulate mitochondrial biogenesis, namely NRF2. OBJECTIVES The main objective of this paper is to characterise the relationship between NRF2 and colorectal cancer by compiling data from an exhaustive literature search. METHODS Information was obtained by defining specific search terms and searching in several databases. After a strict selection procedure, data were tabulated and the relationships between articles were assessed by measuring heterogeneity and by constructing conceptual maps. RESULTS AND DISCUSSION We found a general consensus in the literature that the presence of oxidizing agents as well as the inhibition of the NRF2 repressor Keap1 maintain NRF2 expression at basal levels. This predominantly exerts a cytoprotective effect on cells and decreases risk of colorectal cancer. However, if NRF2 is inhibited, protection against external agents disappears and risk of colorectal cancer increases. Interestingly, colorectal cancer risk is also increased when NRF2 becomes overexpressed. In this case, the increased risk arises from NRF2-induced inflammation and resistance to chemotherapy. CONCLUSION The proper basal function of NRF2 and Keap1 are essential for preventing oncogenic processes in the colon. Consequently, any disruption to the expression of these genes can promote the genesis and progression of colon cancer.
Collapse
Affiliation(s)
- C. Gonzalez-Donquiles
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - J. Alonso-Molero
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - T. Fernandez-Villa
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - L. Vilorio-Marqués
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - A. J. Molina
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - V. Martín
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| |
Collapse
|
21
|
Sun H, Zhu J, Lin H, Gu K, Feng F. Recent progress in the development of small molecule Nrf2 modulators: a patent review (2012-2016). Expert Opin Ther Pat 2017; 27:763-785. [PMID: 28454500 DOI: 10.1080/13543776.2017.1325464] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The NF-E2-related factor-2 (Nrf2) is a critical transcription factor that regulates the expression of many phase II and antioxidant genes to maintain the homeostasis. It has many biological functions and plays a central role in the cellular defensive machinery. The abnormal regulation of Nrf2 is closely associated with multiple diseases. Areas covered: This article first discusses the molecular regulatory mechanism of Nrf2-antioxidant response element (ARE) signaling. Then patents and publications about Nrf2 activators and inhibitors from 2012-2016 are reviewed. Several case studies are emphasized to introduce the molecular design strategy, especially on Keap1-Nrf2 protein-protein interaction (PPI) inhibitor. Expert opinion: Firstly, new chemotypes of Nrf2 modulators can be designed in a combination of the progress of both covalent modifiers and target selective Keap1-Nrf2 interaction inhibitors. The aim is to balance the activity and toxicity of Nrf2 modulators. Secondly, considering many known Nrf2 activators, such as DMF and SFN, are electrophilic entities with very small molecular weight, we need to update the concept of how to recognize a drug candidate. Finally, per the mechanism of the Nrf2 modulator, compounds with the most active Nrf2 inductivity maybe not the best choice for the design of an ideal chemopreventive agent.
Collapse
Affiliation(s)
- Haopeng Sun
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jie Zhu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Hongzhi Lin
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Kai Gu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Feng Feng
- b Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
22
|
Kanda Y, Osaki M, Okada F. Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction. Int J Mol Sci 2017; 18:E867. [PMID: 28422073 PMCID: PMC5412448 DOI: 10.3390/ijms18040867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
23
|
Achary R, Mathi GR, Lee DH, Yun CS, Lee CO, Kim HR, Park CH, Kim P, Hwang JY. Novel 2,4-diaminopyrimidines bearing fused tricyclic ring moiety for anaplastic lymphoma kinase (ALK) inhibitor. Bioorg Med Chem Lett 2017; 27:2185-2191. [PMID: 28385505 DOI: 10.1016/j.bmcl.2017.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
In this study, a series of novel 2,4-diaminopyrimidines bearing fused tricyclic ring moiety was described for ALK inhibitor. The pyrazole, imidazole, 1,2,4-triazole, piperazine and phenanthridine moieties were employed at the 2-position of pyrimidine. Among the compounds synthesized, 28, 29, 36, and 42 showed promising anti-ALK activities in enzymatic- and cell-based assays. In vivo H3122 xenograft model study showed that compound 29 effectively suppressed ALK-driven tumor growth, similar to the extent of ceritinib, suggesting that it could be used for a novel ALK inhibitor development.
Collapse
Affiliation(s)
- Raghavendra Achary
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea; Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Gangadhar Rao Mathi
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea; Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dong Ho Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea; Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chang Soo Yun
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chong Ock Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chi Hoon Park
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea; Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Pilho Kim
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea; Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Jong Yeon Hwang
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea; Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
24
|
Zhang C, Wang HJ, Bao QC, Wang L, Guo TK, Chen WL, Xu LL, Zhou HS, Bian JL, Yang YR, Sun HP, Xu XL, You QD. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 2016; 7:73593-73606. [PMID: 27713154 PMCID: PMC5342001 DOI: 10.18632/oncotarget.12435] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022] Open
Abstract
Nuclear factor erythroid 2-related factor (NRF2) is an important transcription factor in oxidative stress regulation. Overexpression of NRF2 is associated with human breast carcinogenesis, and increased NRF2 mRNA levels predict poor patient outcome for breast cancer. However, the mechanisms linking gain of NRF2 expression and poor prognosis in breast cancer are still unclear. Here, we provide evidence that NRF2 deletion inhibits proliferation and metastasis of breast cancer cells by down-regulating RhoA. Restoration of RhoA in MCF7 and MDA-MB-231 cells induced NRF2 knockdown-suppressed cell growth and metastasis in vitro, and NRF2 silencing suppressed stress fiber and focal adhesion formation leading to decreased cell migration and invasion. Mechanistic studies showed that NRF2 binds to the promoter region of estrogen-related receptor α (ERR1) and may function as a silencer. This may enhance RhoA protein stability and lead to RhoA overexpression in breast cancer cell. Our findings indicate that NRF2 silencing-mediated reduction of RhoA expression contributes, at least in part, to the poor outcome of breast cancer patients with high NRF2 expression.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui-Jie Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Chao Bao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Kun Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei-Lin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hai-Shan Zhou
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-Lei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Rui Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
25
|
Jiang ZY, Lu MC, You QD. Discovery and Development of Kelch-like ECH-Associated Protein 1. Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction Inhibitors: Achievements, Challenges, and Future Directions. J Med Chem 2016; 59:10837-10858. [PMID: 27690435 DOI: 10.1021/acs.jmedchem.6b00586] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.
Collapse
Affiliation(s)
- Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Meng-Chen Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
26
|
Lu MC, Tan SJ, Ji JA, Chen ZY, Yuan ZW, You QD, Jiang ZY. Polar Recognition Group Study of Keap1-Nrf2 Protein-Protein Interaction Inhibitors. ACS Med Chem Lett 2016; 7:835-40. [PMID: 27660687 DOI: 10.1021/acsmedchemlett.5b00407] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Directly disrupting the Keap1-Nrf2 protein-protein interaction (PPI) has emerged as an attractive way to activate Nrf2, and Keap1-Nrf2 PPI inhibitors have been proposed as potential agents to relieve inflammatory and oxidative stress diseases. In this work, we investigated the diacetic moiety around the potent Keap1-Nrf2 PPI inhibitor DDO1018 (2), which was reported by our group previously. Exploration of bioisosteric replacements afforded the ditetrazole analog 7, which maintains the potent PPI inhibition activity (IC50 = 15.8 nM) in an in vitro fluorescence polarization assay. Physicochemical property determination demonstrated that ditetrazole replacement can improve the drug-like property, including elevation of pK a, log D, and transcellular permeability. Additionally, 7 is more efficacious than 2 on inducing the expression of Nrf2-dependent gene products in cells. This study provides an alternative way to replace the diacetic moiety and occupy the polar subpockets in Keap1, which can benefit the subsequent development of Keap1-Nrf2 PPI inhibitor.
Collapse
Affiliation(s)
- Meng-Chen Lu
- State
Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of
Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Jie Tan
- State
Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of
Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Ai Ji
- State
Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of
Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Yun Chen
- State
Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of
Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Wei Yuan
- State
Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of
Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State
Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of
Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department
of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- State
Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of
Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department
of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
27
|
Zhu Y, Wang P, Zhao Y, Yang C, Clark A, Leung T, Chen X, Sang S. Synthesis, evaluation, and metabolism of novel [6]-shogaol derivatives as potent Nrf2 activators. Free Radic Biol Med 2016; 95:243-54. [PMID: 27021962 DOI: 10.1016/j.freeradbiomed.2016.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/04/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Oxidative stress is a central component of many chronic diseases. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 p45-related factor 2 (Nrf2) system is a major regulatory pathway of cytoprotective genes against oxidative and electrophilic stress. Activation of the Nrf2 pathway plays crucial roles in the chemopreventive effects of various inducers. In this study, we developed a novel class of potent Nrf2 activators derived from ginger compound, [6]-shogaol (6S), using the Tg[glutathione S-transferase pi 1 (gstp1):green fluorescent protein (GFP)] transgenic zebrafish model. Investigation of structure-activity relationships of 6S derivatives indicates that the combination of an α,β-unsaturated carbonyl entity and a catechol moiety in one compound enhances the Tg(gstp1:GFP) fluorescence signal in zebrafish embryos. Chemical reaction and in vivo metabolism studies of the four most potent 6S derivatives showed that both α,β-unsaturated carbonyl entity and catechol moiety act as major active groups for conjugation with the sulfhydryl groups of the cysteine residues. In addition, we further demonstrated that 6S derivatives increased the expression of Nrf2 downstream target, heme oxygenase-1, in both a dose- and time-dependent manner. These results suggest that α,β-unsaturated carbonyl entity and catechol moiety of 6S derivatives may react with the cysteine residues of Keap1, disrupting the Keap1-Nrf2 complex, thereby liberating and activating Nrf2. Our findings of natural product-derived Nrf2 activators lead to design options of potent Nrf2 activators for further optimization.
Collapse
Affiliation(s)
- Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Chun Yang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA; Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Anderson Clark
- Nutrition Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - TinChung Leung
- Nutrition Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Center University, 700 George Street, Durham, NC 27707, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA.
| |
Collapse
|
28
|
Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Med Res Rev 2016; 36:924-63. [PMID: 27192495 DOI: 10.1002/med.21396] [Citation(s) in RCA: 585] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
The Keap1-Nrf2-ARE ((Kelch-like ECH-Associating protein 1) nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway is one of the most important defense mechanisms against oxidative and/or electrophilic stresses, and it is closely associated with inflammatory diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and aging. In recent years, progress has been made in strategies aimed at modulating the Keap1-Nrf2-ARE pathway. The Nrf2 activator DMF (Dimethylfumarates) has been approved by the FDA as a new first-line oral drug to treat patients with relapsing forms of multiple sclerosis, while a phase 3 study of another promising candidate, CDDO-Me, was terminated for safety reasons. Directly inhibiting Keap1-Nrf2 protein-protein interactions as a novel Nrf2-modulating strategy has many advantages over using electrophilic Nrf2 activators. The development of Keap1-Nrf2 protein-protein interaction inhibitors has become a topic of intense research, and potent inhibitors of this target have been identified. In addition, inhibiting Nrf2 activity has attracted an increasing amount of attention because it may provide an alternative cancer therapy. This review summarizes the molecular mechanisms and biological functions of the Keap1-Nrf2-ARE system. The main focus of this review is on recent progress in studies of agents that target the Keap1-Nrf2-ARE pathway and the therapeutic applications of such agents.
Collapse
Affiliation(s)
- Meng-Chen Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Ai Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
29
|
Yang YR, Wei JL, Mo XF, Yuan ZW, Wang JL, Zhang C, Xie YY, You QD, Sun HP. Discovery and optimization of new benzofuran derivatives against p53-independent malignant cancer cells through inhibition of HIF-1 pathway. Bioorg Med Chem Lett 2016; 26:2713-8. [PMID: 27101893 DOI: 10.1016/j.bmcl.2016.03.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/27/2022]
Abstract
p53-independent malignant cancer is still severe health problem of human beings. HIF-1 pathway is believed to play an important role in the survival and developing progress of such cancers. In the present study, with the aim to inhibit the proliferation of p53-independent malignant cells, we disclose the optimization of 6a, the starting compound which is discovered in the screening of in-house compound collection. The structure-activity relationship (SAR) is summarized. The most potent derivative 8d, inhibits the proliferation of both p53-null and p53-mutated cells through inhibition of HIF-1 pathway. Our findings here provide a new chemotype in designing potent anticancer agent especially against those p53-independent malignant tumors.
Collapse
Affiliation(s)
- Ying-Rui Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jin-Lian Wei
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Fei Mo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Wei Yuan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Lin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Yue Xie
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
30
|
Ji S, Li Z, Song W, Wang Y, Liang W, Li K, Tang S, Wang Q, Qiao X, Zhou D, Yu S, Ye M. Bioactive Constituents of Glycyrrhiza uralensis (Licorice): Discovery of the Effective Components of a Traditional Herbal Medicine. JOURNAL OF NATURAL PRODUCTS 2016; 79:281-92. [PMID: 26841168 DOI: 10.1021/acs.jnatprod.5b00877] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Traditional herbal medicines have been reported to possess significant bioactivities. In this investigation, a combined strategy using both phytochemical and biological approaches was conducted to discern the effective components of licorice, a widely used herbal medicine. Altogether, 122 compounds (1-122), including six new structures (1-6), were isolated and identified from the roots and rhizomes of Glycyrrhiza uralensis (licorice). These compounds were then screened using 11 cell- and enzyme-based bioassay methods, including Nrf2 activation, NO inhibition, NF-κB inhibition, H1N1 virus inhibition, cytotoxicity for cancer cells (HepG2, SW480, A549, MCF7), PTP1B inhibition, tyrosinase inhibition, and AChE inhibition. A number of bioactive compounds, particularly isoprenylated phenolics, were found for the first time. Echinatin (7), a potent Nrf2 activator, was selected as an example for further biological work. It attenuated CCl4-induced liver damage in mice (5 or 10 mg/kg, ip) and thus is responsible, at least in part, for the hepatoprotective activity of licorice.
Collapse
Affiliation(s)
- Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Ziwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Wei Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Yongrui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Wenfei Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Kai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Shunan Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| |
Collapse
|
31
|
3-(2-Oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one (compound 1), a novel potent Nrf2/ARE inducer, protects against DSS-induced colitis via inhibiting NLRP3 inflammasome. Biochem Pharmacol 2016; 101:71-86. [DOI: 10.1016/j.bcp.2015.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
|
32
|
Ji S, Li R, Wang Q, Miao WJ, Li ZW, Si LL, Qiao X, Yu SW, Zhou DM, Ye M. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:475-484. [PMID: 26578185 DOI: 10.1016/j.jep.2015.11.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/24/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Qin, derived from the roots of Scutellaria baicalensis Georgi, is a popular Chinese herbal medicine mainly used to treat influenza and cancer. This study aims to elucidate the anti-influenza, anti-cancer and anti-oxidation effective components of S. baicalensis. MATERIALS AND METHODS Various column chromatography techniques and semi-preparative HPLC were used to isolate Scutellaria compounds, and their structures were identified by HRESIMS and NMR spectroscopic analysis. The pure compounds were evaluated for anti-influenza activities against A/WSN/33 (H1N1) virus in MDCK cells, cytotoxic activities against HepG2, SW480 and MCF7 human cancer cells by MTS assay, and antioxidant activities by Nrf2 luciferase reporter assay. In addition, the contents of 12 major compounds in 27 batches of S. baicalensis were simultaneously determined by a fully validated UPLC/UV method. RESULTS A total of thirty compounds (1-30), including four new ones (3, 7, 11 and 23), were isolated from S. baicalensis. Baicalin (15), baicalein (26), wogonin (27), chrysin (28) and oroxylin A (30) showed potent anti-H1N1 activities, with IC50 values of 7.4, 7.5, 2.1, 7.7 and 12.8 μM, respectively, which were remarkably more potent than the positive drug Osv-P (oseltamivir phosphate, IC50 45.6 μM). Most free flavones (26-28 and 30) showed significant cytotoxic activities at 10 μM (up to 61.2% inhibition rate). Furthermore, 30 could activate Nrf2 transcription by 3.8-fold of the control at 10 μM. UPLC analysis indicated the 12 major compounds (including the bioactive ones) accounted for 195.93 ± 43.9 mg g(-)(1) of the herbal materials. CONCLUSION This study demonstrated that free flavones showed potent anti-influenza, anti-cancer and anti-oxidative activities. They are important effective components of S. baicalensis, and can be used as chemical markers for quality control of this herbal medicine.
Collapse
Affiliation(s)
- Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ru Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Wen-juan Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-wei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Long-long Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Si-wang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - De-min Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
33
|
Novel oxime-bearing coumarin derivatives act as potent Nrf2/ARE activators in vitro and in mouse model. Eur J Med Chem 2015; 106:60-74. [DOI: 10.1016/j.ejmech.2015.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/18/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
|
34
|
Jiang ZY, Xu L, Lu MC, Chen ZY, Yuan ZW, Xu XL, Guo XK, Zhang XJ, Sun HP, You QD. Structure–Activity and Structure–Property Relationship and Exploratory in Vivo Evaluation of the Nanomolar Keap1–Nrf2 Protein–Protein Interaction Inhibitor. J Med Chem 2015; 58:6410-21. [DOI: 10.1021/acs.jmedchem.5b00185] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Li−Li Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Chen Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Yun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Wei Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Ke Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Peng Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
35
|
Xu LL, Zhu JF, Xu XL, Zhu J, Li L, Xi MY, Jiang ZY, Zhang MY, Liu F, Lu MC, Bao QC, Li Q, Zhang C, Wei JL, Zhang XJ, Zhang LS, You QD, Sun HP. Discovery and Modification of in Vivo Active Nrf2 Activators with 1,2,4-Oxadiazole Core: Hits Identification and Structure–Activity Relationship Study. J Med Chem 2015; 58:5419-36. [DOI: 10.1021/acs.jmedchem.5b00170] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Li-Li Xu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jun-Feng Zhu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Zhu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Li Li
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Yang Xi
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ming-Ye Zhang
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Liu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-chen Lu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Chao Bao
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jin-Lian Wei
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jin Zhang
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Shan Zhang
- National Engineering and Research Center for Target Drugs, Jiangsu Hengrui Medicine Co. Ltd., Lianyungang 222000, China
| | - Qi-Dong You
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- National Engineering and Research Center for Target Drugs, Jiangsu Hengrui Medicine Co. Ltd., Lianyungang 222000, China
| | - Hao-Peng Sun
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
36
|
Jiang ZY, Lu MC, Xu L, Yang TT, Xi MY, Xu XL, Guo XK, Zhang XJ, You QD, Sun HP. Discovery of Potent Keap1–Nrf2 Protein–Protein Interaction Inhibitor Based on Molecular Binding Determinants Analysis. J Med Chem 2014; 57:2736-45. [DOI: 10.1021/jm5000529] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zheng-Yu Jiang
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Meng-Chen Lu
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Li−Li Xu
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Ting-Ting Yang
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Mei-Yang Xi
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Xiao-Li Xu
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Xiao-Ke Guo
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Xiao-Jin Zhang
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- Department
of Organic Chemistry, School of Science, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Qi-Dong You
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| | - Hao-Peng Sun
- Jiang
Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
- Department
of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, TongJiaXiang 24, Nanjing 210009, China
| |
Collapse
|