1
|
Tamim R, Saini P, M S KK, Kumar Y, Mukhopadhyay P. Synthesis of Phosphinylated Naphthalene Diimides and Radical Anions: A SeT-Mediated Route Circumvents the Use of Metal/Photocatalyst. J Org Chem 2025; 90:4495-4504. [PMID: 39945295 DOI: 10.1021/acs.joc.4c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Phosphinylation of π-scaffolds is of huge current interest; however, the ensuing C-P(O) bond formation necessitates catalyst, light, heat, etc. We report that electron-deficient halogenated naphthalene diimide (NDI) scaffolds can enable catalyst-free, room-temperature phosphinylation via a possible single-eT-mediated reaction. The arylphosphinylated NDIs show multielectron acceptor property, and LUMO of -4.24 eV, rendering the Ph2PO group equally potent as the electron-withdrawing C≡N group. Thus, in situ reduction can be propelled leading to radical anions and dianions.
Collapse
Affiliation(s)
- Rustam Tamim
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Saini
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishna Kumar M S
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogendra Kumar
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Guerrero L, Ebrahim A, Riley BT, Kim SH, Bishop AC, Wu J, Han YN, Tautz L, Keedy DA. Three STEPs forward: A trio of unexpected structures of PTPN5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.20.624168. [PMID: 39605455 PMCID: PMC11601604 DOI: 10.1101/2024.11.20.624168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein tyrosine phosphatases (PTPs) play pivotal roles in myriad cellular processes by counteracting protein tyrosine kinases. Striatal-enriched protein tyrosine phosphatase (STEP, PTPN5) regulates synaptic function and neuronal plasticity in the brain and is a therapeutic target for several neurological disorders. Here, we present three new crystal structures of STEP, each with unexpected features. These include high-resolution conformational heterogeneity at multiple sites, and a highly coordinated citrate molecule in the active site, a previously unseen conformational change at an allosteric site, an intramolecular disulfide bond that was characterized biochemically but had never been visualized structurally, and two serendipitous covalent ligand binding events at surface-exposed cysteines that are nearly or entirely unique to STEP among human PTPs. Together, our results offer new views of the conformational landscape of STEP that may inform structure-based design of allosteric small molecules to specifically inhibit this biomedically important enzyme.
Collapse
|
3
|
Jiang C, Liu R, Chang Y, Zhang S, Li X, Zhao Z, Quan M, Wang Q, Zhou H, Hou X, Fang H. Design and synthesis of novel benzoic acid derivatives as striatal-enriched protein tyrosine phosphatase (STEP) inhibitors with neuroprotective properties. Eur J Med Chem 2025; 283:117135. [PMID: 39657460 DOI: 10.1016/j.ejmech.2024.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
As a central nervous system-specific member of the protein tyrosine phosphatase (PTP) family, the striatal-enriched protein tyrosine phosphatase (STEP) is an attractive drug target for neurodegenerative diseases. Here, we reported the discovery of a series of benzoic acid derivatives as new STEP inhibitors. Among them, compound 14b exhibited good STEP inhibitory activity and displayed selectivity against other PTPs. The neuroprotective activity of compound 14b was evaluated against glutamate-induced oxidative cell death in HT22 cells. Results indicated that compound 14b co-treatment prevented cell death and reduced cellular ROS accumulation. Compound 14b inhibited cell apoptosis by upregulating BCL-2 expression and downregulating BAX and C-caspase3 expression. Moreover, compound 14b was also found to provide neuroprotection to primary cortical neurons after oxygen-glucose deprivation/reoxygenation (OGD/R). Further structural elaboration of compound 14b may provide new drug candidates for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunxue Jiang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Renshuai Liu
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yong Chang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shiji Zhang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xue Li
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhongcheng Zhao
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mengyao Quan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin, 541004, China
| | - Hengxing Zhou
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
4
|
Gou XY, Oliveira JCA, Chen S, Homölle SL, Trienes S, von Münchow T, Zhang BS, Ackermann L. Ruthenaelectro-catalyzed C-H phosphorylation: ortho to para position-selectivity switch. Chem Sci 2025; 16:824-833. [PMID: 39650220 PMCID: PMC11619359 DOI: 10.1039/d4sc06219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The position-selective C-H bond activation of arenes has long been a challenging topic. Herein, we report an expedient ruthenium-electrocatalyzed site-selective ortho-C-H phosphorylation of arenes driven by electrochemical hydrogen evolution reaction (HER), avoiding stoichiometric amounts of chemical redox-waste products. This strategy paved the way to achieve unprecedented ruthenaelectro-catalyzed para-C-H phosphorylation with excellent levels of site-selectivity. This electrocatalytic approach was characterized by an ample substrate scope with a broad range of arenes containing N-heterocycles, as well as several aryl/alkylphosphine oxides were well tolerated. Moreover, late-stage C-H phosphorylation of medicinal relevant drugs could also be achieved. DFT mechanistic studies provided support for an unusual ruthenium(iii/iv/ii) regime for the ortho-C-H phosphorylation.
Collapse
Affiliation(s)
- Xue-Ya Gou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - João C A Oliveira
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Shan Chen
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Simon L Homölle
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Sven Trienes
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Tristan von Münchow
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Bo-Sheng Zhang
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
5
|
Zhang Z, Liu M, Liu M, Pan C, Mao Z, Zhang X. Visible-Light-Induced Highly Site-Selective Direct C-H Phosphorylation of Pyrrolo[2,3- d]pyrimidine Derivatives with H-Phosphine Oxides. J Org Chem 2024; 89:2996-3009. [PMID: 38359468 DOI: 10.1021/acs.joc.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
An efficient and highly regioselective C6-phosphorylation protocol for pyrrolo[2,3-d]pyrimidine (7-DAP) derivatives with various H-phosphine oxides induced by visible light at room temperature is described for the first time. This protocol has been successfully achieved by the combination of Na2-eosin Y as a photocatalyst and LPO as an oxidant under transition metal- and additive-free conditions. The broad substrate scope, good functional group tolerance, excellent regioselectivity, and air tolerant conditions make this process favorable for the functional modification of pyrrolo[2,3-d]pyrimidine scaffold and enrich the phosphorylated 7-DAP compounds for further biological evaluation.
Collapse
Affiliation(s)
- Zhuo Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mingrui Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Min Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chenhong Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhengtong Mao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Mahaman YAR, Huang F, Embaye KS, Wang X, Zhu F. The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders. Front Cell Dev Biol 2021; 9:680118. [PMID: 34195199 PMCID: PMC8236946 DOI: 10.3389/fcell.2021.680118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a tyrosine phosphatase that has been implicated in Alzheimer’s disease (AD), the most common form of dementia, and many other neurological diseases. The protein level and activity of STEP have been found to be elevated in most of these disorders, and specifically in AD as a result of dysregulation of different pathways including PP2B/DARPP32/PP1, PKA as well as impairments of both proteasomal and lysosomal systems. The upregulation in STEP leads to increased binding to, and dephosphorylation of, its substrates which are mainly found to be synaptic plasticity and thus learning and memory related proteins. These proteins include kinases like Fyn, Pyk2, ERK1/2 and both NMDA and AMPA receptor subunits GluN2B and GluA2. The dephosphorylation of these molecules results in inactivation of these kinases and internalization of NMDA and AMPA receptor complexes leading to synapse loss and cognitive impairments. In this study, we aim to review STEP regulation and its implications in AD as well as other neurological disorders and then summarize data on targeting STEP as therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kidane Siele Embaye
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
|
9
|
Hou X, Sun JP, Ge L, Liang X, Li K, Zhang Y, Fang H. Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets. Eur J Med Chem 2020; 190:112131. [PMID: 32078861 PMCID: PMC7163917 DOI: 10.1016/j.ejmech.2020.112131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 11/21/2022]
Abstract
Cryptic pockets, which are not apparent in crystallographic structures, provide promising alternatives to traditional binding sites for drug development. However, identifying cryptic pockets is extremely challenging and the therapeutic potential of cryptic pockets remains unclear. Here, we reported the discovery of novel inhibitors for striatal-enriched protein tyrosine phosphatase (STEP), a potential drug target for multiple neuropsychiatric disorders, based on cryptic pocket detection. By combining the use of molecular dynamics simulations and fragment-centric topographical mapping, we identified transiently open cryptic pockets and identified 12 new STEP inhibition scaffolds through structure-based virtual screening. Site-directed mutagenesis verified the binding of ST3 with the predicted cryptic pockets. Moreover, the most potent and selective inhibitors could modulate the phosphorylation of both ERK1/2 and Pyk2 in PC12 cells.
Collapse
Affiliation(s)
- Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China; Department of Chemistry, New York University, New York, NY, 10003, United States
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Ge
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Kangshuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, 10003, United States; NYU-ECNU Center for Computational Chemistry, New York University-Shanghai, Shanghai, 200122, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Wu Z, Su F, Lin W, Song J, Wen T, Zhang H, Xu H. Scalable Rhodium(III)‐Catalyzed Aryl C−H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zheng‐Jian Wu
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
- State Key Laboratory of Physical Chemistry of Solid SurfacesLaboratory of Chemical Biology of Fujian Province,iChEMXiamen University Xiamen 361005 P. R. China
| | - Feng Su
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Weidong Lin
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 P. R. China
| | - Ting‐Bin Wen
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Hui‐Jun Zhang
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
- State Key Laboratory of Physical Chemistry of Solid SurfacesLaboratory of Chemical Biology of Fujian Province,iChEMXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
11
|
Wu ZJ, Su F, Lin W, Song J, Wen TB, Zhang HJ, Xu HC. Scalable Rhodium(III)-Catalyzed Aryl C-H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. Angew Chem Int Ed Engl 2019; 58:16770-16774. [PMID: 31464027 DOI: 10.1002/anie.201909951] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 01/22/2023]
Abstract
Transition metal catalyzed C-H phosphorylation remains an unsolved challenge. Reported methods are generally limited in scope and require stoichiometric silver salts as oxidants. Reported here is an electrochemically driven RhIII -catalyzed aryl C-H phosphorylation reaction that proceeds through H2 evolution, obviating the need for stoichiometric metal oxidants. The method is compatible with a variety of aryl C-H and P-H coupling partners and particularly useful for synthesizing triarylphosphine oxides from diarylphosphine oxides, which are often difficult coupling partners for transition metal catalyzed C-H phosphorylation reactions. Experimental results suggest that the mechanism responsible for the C-P bond formation involves an oxidation-induced reductive elimination process.
Collapse
Affiliation(s)
- Zheng-Jian Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Laboratory of Chemical Biology of Fujian Province,iChEM, Xiamen University, Xiamen, 361005, P. R. China
| | - Feng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Weidong Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ting-Bin Wen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Laboratory of Chemical Biology of Fujian Province,iChEM, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
12
|
Rádai Z, Keglevich G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules 2018; 23:E1493. [PMID: 29925805 PMCID: PMC6099812 DOI: 10.3390/molecules23061493] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the main synthetic routes towards α-hydroxyphosphonates that are known as enzyme inhibitors, herbicides and antioxidants, moreover, a number of representatives express antibacterial or antifungal effect. Special attention is devoted to green chemical aspects. α-Hydroxyphosphonates are also versatile intermediates for other valuable derivatives. O-Alkylation and O-acylation are typical reactions to afford α-alkoxy-, or α-acyloxyphosphonates, respectively. The oxidation of hydroxyphosphonates leads to ketophosphonates. The hydroxy function at the α carbon atom of hydroxyphosphonates may be replaced by a halogen atom. α-Aminophosphonates formed in the nucleophilic substitution reaction of α-hydroxyphosphonates with primary or secondary amines are also potentially bioactive compounds. Another typical reaction is the base-catalyzed rearrangement of α-hydroxy-phosphonates to phosphates. Hydrolysis of the ester function of hydroxyphosphonates leads to the corresponding phosphonic acids.
Collapse
Affiliation(s)
- Zita Rádai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary.
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary.
| |
Collapse
|
13
|
Altered Intracellular Calcium Homeostasis Underlying Enhanced Glutamatergic Transmission in Striatal-Enriched Tyrosine Phosphatase (STEP) Knockout Mice. Mol Neurobiol 2018; 55:8084-8102. [PMID: 29508281 DOI: 10.1007/s12035-018-0980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
The striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase involved in synaptic transmission. The current hypothesis on STEP function holds that it opposes synaptic strengthening by dephosphorylating and inactivating key neuronal proteins involved in synaptic plasticity and intracellular signaling, such as the MAP kinases ERK1/2 and p38, as well as the tyrosine kinase Fyn. Although STEP has a predominant role at the post-synaptic level, it is also expressed in nerve terminals. To better investigate its physiological role at the presynaptic level, we functionally investigated brain synaptosomes and autaptic hippocampal neurons from STEP knockout (KO) mice. Synaptosomes purified from mutant mice were characterized by an increased basal and evoked glutamate release compared with wild-type animals. Under resting conditions, STEP KO synaptosomes displayed increased cytosolic Ca2+ levels accompanied by an enhanced basal activity of Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and hyperphosphorylation of synapsin I at CaMKII sites. Moreover, STEP KO hippocampal neurons exhibit an increase of excitatory synaptic strength attributable to an increased size of the readily releasable pool of synaptic vesicles. These results provide new evidence that STEP plays an important role at nerve terminals in the regulation of Ca2+ homeostasis and neurotransmitter release.
Collapse
|
14
|
Tjin C, Otley KD, Baguley TD, Kurup P, Xu J, Nairn AC, Lombroso PJ, Ellman JA. Glutathione-Responsive Selenosulfide Prodrugs as a Platform Strategy for Potent and Selective Mechanism-Based Inhibition of Protein Tyrosine Phosphatases. ACS CENTRAL SCIENCE 2017; 3:1322-1328. [PMID: 29296673 PMCID: PMC5746864 DOI: 10.1021/acscentsci.7b00486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 05/03/2023]
Abstract
Dysregulation of protein tyrosine phosphorylation has been implicated in a number of human diseases, including cancer, diabetes, and neurodegenerative diseases. As a result of their essential role in regulating protein tyrosine phosphorylation levels, protein tyrosine phosphatases (PTPs) have emerged as important yet challenging therapeutic targets. Here we report on the development and application of a glutathione-responsive motif to facilitate the efficient intracellular delivery of a novel class of selenosulfide phosphatase inhibitors for the selective active site directed inhibition of the targeted PTP by selenosulfide exchange with the active site cysteine. The strategy leverages the large difference in extracellular and intracellular glutathione levels to deliver selenosulfide phosphatase inhibitors to cells. As an initial exploration of the prodrug platform and the corresponding selenosulfide covalent inhibitor class, potent and selective inhibitors were developed for two therapeutically relevant PTP targets: the Mycobacterium tuberculosis virulence factor mPTPA and the CNS-specific tyrosine phosphatase, striatal-enriched protein tyrosine phosphatase (STEP). The lead selenosulfide inhibitors enable potent and selective inhibition of their respective targets over a panel of human PTPs and a representative cysteine protease. Kinetic parameters of the inhibitors were characterized, including reversibility of inhibition and rapid rate of GSH exchange at intracellular GSH concentrations. Additionally, active site covalent inhibitor-labeling with an mPTPA inhibitor was rigorously confirmed by mass spectrometry, and cellular activity was demonstrated with a STEP prodrug inhibitor in cortical neurons.
Collapse
Affiliation(s)
- Caroline
Chandra Tjin
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kate D. Otley
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tyler D. Baguley
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Pradeep Kurup
- The
Child Study Center, Yale University School
of Medicine, New Haven, Connecticut 06520, United States
| | - Jian Xu
- The
Child Study Center, Yale University School
of Medicine, New Haven, Connecticut 06520, United States
| | - Angus C. Nairn
- Department
of Psychiatry, Yale University School of
Medicine, New Haven, Connecticut 06508, United States
| | - Paul J. Lombroso
- The
Child Study Center, Yale University School
of Medicine, New Haven, Connecticut 06520, United States
| | - Jonathan A. Ellman
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| |
Collapse
|
15
|
Witten MR, Wissler L, Snow M, Geschwindner S, Read JA, Brandon NJ, Nairn AC, Lombroso PJ, Käck H, Ellman JA. X-ray Characterization and Structure-Based Optimization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors. J Med Chem 2017; 60:9299-9319. [PMID: 29116812 DOI: 10.1021/acs.jmedchem.7b01292] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Excessive activity of striatal-enriched protein tyrosine phosphatase (STEP) in the brain has been detected in numerous neuropsychiatric disorders including Alzheimer's disease. Notably, knockdown of STEP in an Alzheimer mouse model effected an increase in the phosphorylation levels of downstream STEP substrates and a significant reversal in the observed cognitive and memory deficits. These data point to the promising potential of STEP as a target for drug discovery in Alzheimer's treatment. We previously reported a substrate-based approach to the development of low molecular weight STEP inhibitors with Ki values as low as 7.8 μM. Herein, we disclose the first X-ray crystal structures of inhibitors bound to STEP and the surprising finding that they occupy noncoincident binding sites. Moreover, we utilize this structural information to optimize the inhibitor structure to achieve a Ki of 110 nM, with 15-60-fold selectivity across a series of phosphatases.
Collapse
Affiliation(s)
- Michael R Witten
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Lisa Wissler
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Melanie Snow
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Macclesfield SK10 4TG, United Kingdom
| | - Stefan Geschwindner
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Jon A Read
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Cambridge CB4 0WG, United Kingdom
| | - Nicholas J Brandon
- Neuroscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Cambridge, Massachusetts 02139, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University , New Haven, Connecticut 06520, United States
| | - Paul J Lombroso
- Department of Psychiatry, Yale University , New Haven, Connecticut 06520, United States.,Child Study Center, Yale University , New Haven, Connecticut 06520, United States
| | - Helena Käck
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Jonathan A Ellman
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| |
Collapse
|
16
|
Gladysz R, Lambeir AM, Joossens J, Augustyns K, Van der Veken P. Substrate Activity Screening (SAS) and Related Approaches in Medicinal Chemistry. ChemMedChem 2016; 11:467-76. [PMID: 26845065 DOI: 10.1002/cmdc.201500569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 12/24/2022]
Abstract
Substrate activity screening (SAS) was presented a decade ago by Ellman and co-workers as a straightforward methodology for the identification of fragment-sized building blocks for enzyme inhibitors. Ever since, SAS and variations derived from it have been successfully applied to the discovery of inhibitors of various families of enzymatically active drug targets. This review covers key achievements and challenges of SAS and related methodologies, including the modified substrate activity screening (MSAS) approach. Special attention is given to the kinetic and thermodynamic aspects of these methodologies, as a thorough understanding thereof is crucial for successfully transforming the identified fragment-sized hits into potent inhibitors.
Collapse
Affiliation(s)
- Rafaela Gladysz
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jurgen Joossens
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Koen Augustyns
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Pieter Van der Veken
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
17
|
Zhan P, Itoh Y, Suzuki T, Liu X. Strategies for the Discovery of Target-Specific or Isoform-Selective Modulators. J Med Chem 2015; 58:7611-33. [PMID: 26086931 DOI: 10.1021/acs.jmedchem.5b00229] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peng Zhan
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Yukihiro Itoh
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Takayoshi Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Xinyong Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
18
|
Legastelois R, Darcq E, Wegner SA, Lombroso PJ, Ron D. Striatal-enriched protein tyrosine phosphatase controls responses to aversive stimuli: implication for ethanol drinking. PLoS One 2015; 10:e0127408. [PMID: 25992601 PMCID: PMC4438985 DOI: 10.1371/journal.pone.0127408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
The STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific phosphatase whose dysregulation in expression and/or activity is associated with several neuropsychiatric disorders. We recently showed that long-term excessive consumption of ethanol induces a sustained inhibition of STEP activity in the dorsomedial striatum (DMS) of mice. We further showed that down-regulation of STEP expression in the DMS, and not in the adjacent dorsolateral striatum, increases ethanol intake, suggesting that the inactivation of STEP in the DMS contributes to the development of ethanol drinking behaviors. Here, we compared the consequence of global deletion of the STEP gene on voluntary ethanol intake to the consumption of an appetitive rewarding substance (saccharin) or an aversive solution (quinine or denatonium). Whereas saccharin intake was similar in STEP knockout (KO) and wild type (WT) littermate mice, the consumption of ethanol as well as quinine and denatonium was increased in STEP KO mice. These results suggested that the aversive taste of these substances was masked upon deletion of the STEP gene. We therefore hypothesized that STEP contributes to the physiological avoidance towards aversive stimuli. To further test this hypothesis, we measured the responses of STEP KO and WT mice to lithium-induced conditioned place aversion (CPA) and found that whereas WT mice developed lithium place aversion, STEP KO mice did not. In contrast, conditioned place preference (CPP) to ethanol was similar in both genotypes. Together, our results indicate that STEP contributes, at least in part, to the protection against the ingestion of aversive agents.
Collapse
Affiliation(s)
- Rémi Legastelois
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Emmanuel Darcq
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Scott A. Wegner
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Paul J. Lombroso
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Jamali H, Khan HA, Stringer JR, Chowdhury S, Ellman JA. Identification of multiple structurally distinct, nonpeptidic small molecule inhibitors of protein arginine deiminase 3 using a substrate-based fragment method. J Am Chem Soc 2015; 137:3616-21. [PMID: 25742366 PMCID: PMC4447334 DOI: 10.1021/jacs.5b00095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The protein arginine deiminases (PADs) are a family of enzymes that catalyze the post-translational hydrolytic deimination of arginine residues. Four different enzymologically active PAD subtypes have been characterized and exhibit tissue-specific expression and association with a number of different diseases. In this Article we describe the development of an approach for the reliable discovery of low molecular weight, nonpeptidic fragment substrates of the PADs that then can be optimized and converted to mechanism-based irreversible PAD inhibitors. The approach is demonstrated by the development of potent and selective inhibitors of PAD3, a PAD subtype implicated in the neurodegenerative response to spinal cord injury. Multiple structurally distinct inhibitors were identified with the most potent inhibitors having >10,000 min(-1) M(-1) k(inact)/K(I) values and ≥10-fold selectivity for PAD3 over PADs 1, 2, and 4.
Collapse
Affiliation(s)
- Haya Jamali
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hasan A. Khan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Baguley TD, Nairn AC, Lombroso PJ, Ellman JA. Synthesis of benzopentathiepin analogs and their evaluation as inhibitors of the phosphatase STEP. Bioorg Med Chem Lett 2015; 25:1044-6. [PMID: 25666825 DOI: 10.1016/j.bmcl.2015.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain specific protein tyrosine phosphatase that has been implicated in many neurodegenerative diseases, such as Alzheimer's disease. We recently reported the benzopentathiepin TC-2153 as a potent inhibitor of STEP in vitro, cells and animals. Herein, we report the synthesis and evaluation of TC-2153 analogs in order to define what structural features are important for inhibition and to identify positions tolerant of substitution for further study. The trifluoromethyl substitution is beneficial for inhibitor potency, and the amine is tolerant of acylation, and thus provides a convenient handle for introducing additional functionality such as reporter groups.
Collapse
Affiliation(s)
- Tyler D Baguley
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT 06520, United States
| | - Paul J Lombroso
- Department of Psychiatry, Yale University, New Haven, CT 06520, United States; Department of Neurobiology, Yale University, New Haven, CT 06520, United States; Child Study Center, Yale University, New Haven, CT 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
21
|
Breen ME, Soellner MB. Small molecule substrate phosphorylation site inhibitors of protein kinases: approaches and challenges. ACS Chem Biol 2015; 10:175-89. [PMID: 25494294 PMCID: PMC4301090 DOI: 10.1021/cb5008376] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Protein kinases are
important mediators of cellular communication
and attractive drug targets for many diseases. Although success has
been achieved with developing ATP-competitive kinase inhibitors, the
disadvantages of ATP-competitive inhibitors have led to increased
interest in targeting sites outside of the ATP binding pocket. Kinase
inhibitors with substrate-competitive, ATP-noncompetitive binding
modes are promising due to the possibility of increased selectivity
and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors
has resulted in significantly fewer small molecule substrate phosphorylation
site inhibitors being reported compared to ATP-competitive inhibitors.
This review surveys reported substrate phosphorylation site inhibitors
and methods that can be applied to the discovery of such inhibitors,
including a discussion of the challenges inherent to these screening
methods.
Collapse
Affiliation(s)
- Meghan E. Breen
- Department of Medicinal Chemistry and ‡Department of
Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthew B. Soellner
- Department of Medicinal Chemistry and ‡Department of
Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Karasawa T, Lombroso PJ. Disruption of striatal-enriched protein tyrosine phosphatase (STEP) function in neuropsychiatric disorders. Neurosci Res 2014; 89:1-9. [PMID: 25218562 DOI: 10.1016/j.neures.2014.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/12/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific tyrosine phosphatase that plays a major role in the development of synaptic plasticity. Recent findings have implicated STEP in several psychiatric and neurological disorders, including Alzheimer's disease, schizophrenia, fragile X syndrome, Huntington's disease, stroke/ischemia, and stress-related psychiatric disorders. In these disorders, STEP protein expression levels and activity are dysregulated, contributing to the cognitive deficits that are present. In this review, we focus on the most recent findings on STEP, discuss how STEP expression and activity are maintained during normal cognitive function, and how disruptions in STEP activity contribute to a number of illnesses.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan.
| | - Paul J Lombroso
- Departments of Neurobiology, Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
23
|
Gladysz R, Cleenewerck M, Joossens J, Lambeir AM, Augustyns K, Van der Veken P. Repositioning the Substrate Activity Screening (SAS) Approach as a Fragment-Based Method for Identification of Weak Binders. Chembiochem 2014; 15:2238-47. [DOI: 10.1002/cbic.201402192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/06/2022]
|
24
|
Barelier S, Cummings J, Rauwerdink AM, Hitchcock DS, Farelli JD, Almo SC, Raushel FM, Allen KN, Shoichet BK. Substrate deconstruction and the nonadditivity of enzyme recognition. J Am Chem Soc 2014; 136:7374-82. [PMID: 24791931 PMCID: PMC4046767 DOI: 10.1021/ja501354q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Indexed: 12/15/2022]
Abstract
Predicting substrates for enzymes of unknown function is a major postgenomic challenge. Substrate discovery, like inhibitor discovery, is constrained by our ability to explore chemotypes; it would be expanded by orders of magnitude if reactive sites could be probed with fragments rather than fully elaborated substrates, as is done for inhibitor discovery. To explore the feasibility of this approach, substrates of six enzymes from three different superfamilies were deconstructed into 41 overlapping fragments that were tested for activity or binding. Surprisingly, even those fragments containing the key reactive group had little activity, and most fragments did not bind measurably, until they captured most of the substrate features. Removing a single atom from a recognized substrate could often reduce catalytic recognition by 6 log-orders. To explore recognition at atomic resolution, the structures of three fragment complexes of the β-lactamase substrate cephalothin were determined by X-ray crystallography. Substrate discovery may be difficult to reduce to the fragment level, with implications for function discovery and for the tolerance of enzymes to metabolite promiscuity. Pragmatically, this study supports the development of libraries of fully elaborated metabolites as probes for enzyme function, which currently do not exist.
Collapse
Affiliation(s)
- Sarah Barelier
- Department
of Pharmaceutical Chemistry, University
of California - San Francisco, 1700 Fourth Street, Byers Hall, San Francisco, California 94158, United States
| | - Jennifer
A. Cummings
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Alissa M. Rauwerdink
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Daniel S. Hitchcock
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas, United States
| | - Jeremiah D. Farelli
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215-2521, United States
| | - Steven C. Almo
- Department
of Biochemistry, Albert Einstein College
of Medicine, New York, New York 10461, United
States
| | - Frank M. Raushel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas, United States
| | - Karen N. Allen
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215-2521, United States
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University
of California - San Francisco, 1700 Fourth Street, Byers Hall, San Francisco, California 94158, United States
- Faculty of
Pharmacy, University of Toronto, Donnelly Centre Suite 604, 160 College
Street, Toronto, Ontario, Canada, M5S 3E1
| |
Collapse
|