1
|
Dreier D, Belleza OJV, Schlögl K, Kickinger S, Hellsberg E, Mayer FP, Sandtner W, Mikšovsky P, Schittmayer M, Hu Y, Jäntsch K, Holy M, Ecker GF, Sitte HH, Mihovilovic MD. Careful Examination of a Novel Azobenzene Paroxetine Derivative and Its Interactions With Biogenic Amine Transporters. J Neurochem 2025; 169:e70068. [PMID: 40270279 PMCID: PMC12019583 DOI: 10.1111/jnc.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
The serotonin transporter (SERT) belongs to the family of neurotransmitter sodium symporters (NSS), together with other neurotransmitter transporters for norepinephrine, dopamine, glycine, and GABA. The main physiological role of SERT is the retrieval of previously released serotonin from the synaptic cleft. Thereby, SERT plays an important role in regulating the extracellular serotonin concentration and maintaining serotonergic neurotransmission. This process can be influenced by molecules acting as serotonin uptake inhibitors, like paroxetine. Here, we report the development of a novel photoswitchable paroxetine derivative and its pharmacological interaction profile with SERT as a tool compound for the light-induced control of SERT. Based on the azo-extension strategy, the photoswitchable moiety was formed at the former position of the fluoro substituent in paroxetine. The resulting azo-paroxetine (9) was easily and reversibly switched between active (Z) and inactive (E) configurations and remained stable between these configurations: serotonin uptake was inhibited more than 12 times more potently by the active (Z)-configuration having a sub μM IC50 value. This was supported by electrophysiological patch-clamp recordings in the whole-cell configuration and docking studies. No significant toxic impact of azo-paroxetine (9) and no off-target activity at the norepinephrine transporter (NET), human GABA transporter subtypes 1 and 3, and rat GAT1 were observed. Our results demonstrate that the activity of SERT can be reversibly manipulated by the optopharmacological agent azo-paroxetine (9). This compound can thus be applied as a tool for the selective manipulation of SERT in central or peripheral investigations, further benefiting from its low probability for compound-related off-target effects.
Collapse
Affiliation(s)
- Dominik Dreier
- Institute of Applied Synthetic ChemistryTU WienViennaAustria
| | - Oliver John V. Belleza
- Institute of Pharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | | | | | - Eva Hellsberg
- Department of Pharmaceutical ChemistryUniversity of ViennaViennaAustria
| | - Felix P. Mayer
- Institute of Pharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | | | | | - Yuntao Hu
- Department of Pharmaceutical ChemistryUniversity of ViennaViennaAustria
| | - Kathrin Jäntsch
- Institute of Pharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Gerhard F. Ecker
- Department of Pharmaceutical ChemistryUniversity of ViennaViennaAustria
| | - Harald H. Sitte
- Institute of Pharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
- Hourani Center for Applied Scientific ResearchAl‐Ahliyya Amman UniversityAmmanJordan
- Center for Addiction Research and ScienceMedical University ViennaViennaAustria
| | | |
Collapse
|
2
|
Singh GK, Kumari B, Das N, Zaman K, Prasad P, Singh RB. Design, synthesis, molecular docking and pharmacological evaluation of some thiadiazole based nipecotic acid derivatives as a potential anticonvulsant and antidepressant agents. 3 Biotech 2024; 14:71. [PMID: 38362592 PMCID: PMC10864245 DOI: 10.1007/s13205-023-03897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
In our continuous effort to develop novel antiepileptic drug, a new series of nipecotic acid derivatives having1,3,4-thiadiazole nucleus were designed and synthesized. This study aims to improve the lipophilicity of nipecotic acid by attaching some lipophilic anchors like thiadiazole and substituted aryl acid derivatives. In our previous study, we noticed that the N-substituted oxadiazole derivative of nipecotic acid exhibited significant antiepileptic activity in the rodent model. The synthesized compounds were characterized by FT-IR, 1H-NMR, 13C-NMR, Mass, and elemental analysis. The anticonvulsant activity was evaluated by using the maximal electroshock-induced seizure model in rats (MES) and the subcutaneous pentylenetetrazol (scPTZ) test in mice. None of the compounds were found to be active in the MES model whereas compounds (TN2, TN9, TN12, TN13, and TN15) produced significant protection against the scPTZ-induced seizures model. The compounds showing antiepileptic activity were additionally evaluated for antidepressant activity by using the forced swim test, 5-hydroxytryptophan (5-HTP)-induced head twitch test, and learned helplessness test. All the molecules that showed anticonvulsant activity (TN2, TN9, TN12, TN13, and TN15), also exerted significant antidepressant effects in the animal models. The selected compounds were subjected to different toxicity studies. Compounds were found to have no neurotoxicity in the rota-rod test and devoid of hepatic and renal toxicity in 30 days repeated oral toxicity test. Further, a homology model was developed to perform the in-silico molecular docking and dynamics studies which revealed the similar binding of compound TN9 within the active binding pocket and were found to be the most potent anti-epileptic agent. The market expectation for newly developed antiepileptic thiadiazole-based nipecotic acid derivatives is significant, driven by their potential to offer improved therapeutic outcomes and reduced side effects, addressing a critical need in epilepsy treatment. These innovative compounds hold promise for meeting the demand for more effective and safer antiepileptic medications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03897-1.
Collapse
Affiliation(s)
- Gireesh Kumar Singh
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, Bihar 824236 India
| | - Bindu Kumari
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, Bihar 824236 India
| | - Nirupam Das
- Department of Pharmaceutical Science, SSMPS, Assam University, Silchar, Assam 788151 India
| | - Kamaruz Zaman
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pratibha Prasad
- Department of Neurology, All India Institute of Medical Sciences, Deoghar, Jharkhand 814142 India
| | - Ravi Bhushan Singh
- Institute of Pharmacy, Harischandra P.G. College, Bawanbeegha, Azamgarh Road, Varanasi, 221002 India
| |
Collapse
|
3
|
Knippenberg N, Bauwens M, Schijns O, Hoogland G, Florea A, Rijkers K, Cleij TJ, Eersels K, van Grinsven B, Diliën H. Visualizing GABA transporters in vivo: an overview of reported radioligands and future directions. EJNMMI Res 2023; 13:42. [PMID: 37171631 PMCID: PMC10182260 DOI: 10.1186/s13550-023-00992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
By clearing GABA from the synaptic cleft, GABA transporters (GATs) play an essential role in inhibitory neurotransmission. Consequently, in vivo visualization of GATs can be a valuable diagnostic tool and biomarker for various psychiatric and neurological disorders. Not surprisingly, in recent years several research attempts to develop a radioligand have been conducted, but so far none have led to suitable radioligands that allow imaging of GATs. Here, we provide an overview of the radioligands that were developed with a focus on GAT1, since this is the most abundant transporter and most of the research concerns this GAT subtype. Initially, we focus on the field of GAT1 inhibitors, after which we discuss the development of GAT1 radioligands based on these inhibitors. We hypothesize that the radioligands developed so far have been unsuccessful due to the zwitterionic nature of their nipecotic acid moiety. To overcome this problem, the use of non-classical GAT inhibitors as basis for GAT1 radioligands or the use of carboxylic acid bioisosteres may be considered. As the latter structural modification has already been used in the field of GAT1 inhibitors, this option seems particularly viable and could lead to the development of more successful GAT1 radioligands in the future.
Collapse
Affiliation(s)
- Niels Knippenberg
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands.
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Olaf Schijns
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Academic Center for Epileptology (ACE), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Alexandru Florea
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Academic Center for Epileptology (ACE), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
4
|
Kasture AS, Fischer FP, Kunert L, Burger ML, Burgstaller AC, El-Kasaby A, Hummel T, Sucic S. Drosophila melanogaster as a model for unraveling unique molecular features of epilepsy elicited by human GABA transporter 1 variants. Front Neurosci 2023; 16:1074427. [PMID: 36741049 PMCID: PMC9893286 DOI: 10.3389/fnins.2022.1074427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Mutations in the human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) can instigate myoclonic-atonic and other generalized epilepsies in the afflicted individuals. We systematically examined fifteen hGAT-1 disease variants, all of which dramatically reduced or completely abolished GABA uptake activity. Many of these loss-of-function variants were absent from their regular site of action at the cell surface, due to protein misfolding and/or impaired trafficking machinery (as verified by confocal microscopy and de-glycosylation experiments). A modest fraction of the mutants displayed correct targeting to the plasma membrane, but nonetheless rendered the mutated proteins devoid of GABA transport, possibly due to structural alterations in the GABA binding site/translocation pathway. We here focused on a folding-deficient A288V variant. In flies, A288V reiterated its impeded expression pattern, closely mimicking the ER-retention demonstrated in transfected HEK293 cells. Functionally, A288V presented a temperature-sensitive seizure phenotype in fruit flies. We employed diverse small molecules to restore the expression and activity of folding-deficient hGAT-1 epilepsy variants, in vitro (in HEK293 cells) and in vivo (in flies). We identified three compounds (chemical and pharmacological chaperones) conferring moderate rescue capacity for several variants. Our data grant crucial new insights into: (i) the molecular basis of epilepsy in patients harboring hGAT-1 mutations, and (ii) a proof-of-principle that protein folding deficits in disease-associated hGAT-1 variants can be corrected using the pharmacochaperoning approach. Such innovative pharmaco-therapeutic prospects inspire the rational design of novel drugs for alleviating the clinical symptoms triggered by the numerous emerging pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Lisa Kunert
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Melanie L. Burger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Ali El-Kasaby
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Bhatt M, Gauthier-Manuel L, Lazzarin E, Zerlotti R, Ziegler C, Bazzone A, Stockner T, Bossi E. A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain. Front Physiol 2023; 14:1145973. [PMID: 37123280 PMCID: PMC10137170 DOI: 10.3389/fphys.2023.1145973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Its homeostasis is maintained by neuronal and glial GABA transporters (GATs). The four GATs identified in humans are GAT1 (SLC6A1), GAT2 (SLC6A13), GAT3 (SLC6A11), and betaine/GABA transporter-1 BGT-1 (SLC6A12) which are all members of the solute carrier 6 (SLC6) family of sodium-dependent transporters. While GAT1 has been investigated extensively, the other GABA transporters are less studied and their role in CNS is not clearly defined. Altered GABAergic neurotransmission is involved in different diseases, but the importance of the different transporters remained understudied and limits drug targeting. In this review, the well-studied GABA transporter GAT1 is compared with the less-studied BGT-1 with the aim to leverage the knowledge on GAT1 to shed new light on the open questions concerning BGT-1. The most recent knowledge on transporter structure, functions, expression, and localization is discussed along with their specific role as drug targets for neurological and neurodegenerative disorders. We review and discuss data on the binding sites for Na+, Cl-, substrates, and inhibitors by building on the recent cryo-EM structure of GAT1 to highlight specific molecular determinants of transporter functions. The role of the two proteins in GABA homeostasis is investigated by looking at the transport coupling mechanism, as well as structural and kinetic transport models. Furthermore, we review information on selective inhibitors together with the pharmacophore hypothesis of transporter substrates.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Centre for Neuroscience—University of Insubria, Varese, Italy
| | - Laure Gauthier-Manuel
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | - Erika Lazzarin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr, Vienna
| | - Rocco Zerlotti
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Christine Ziegler
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | | | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr, Vienna
- *Correspondence: Thomas Stockner, ; Elena Bossi,
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Centre for Neuroscience—University of Insubria, Varese, Italy
- *Correspondence: Thomas Stockner, ; Elena Bossi,
| |
Collapse
|
6
|
Joseph D, Nayak SR, Penmatsa A. Structural insights into GABA transport inhibition using an engineered neurotransmitter transporter. EMBO J 2022; 41:e110735. [PMID: 35796008 PMCID: PMC9340486 DOI: 10.15252/embj.2022110735] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023] Open
Abstract
γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and its levels in the synaptic space are controlled by the GABA transporter isoforms (GATs). GATs are structurally related to biogenic amine transporters but display interactions with distinct inhibitors used as anti-epileptics. In this study, we engineer the binding pocket of Drosophila melanogaster dopamine transporter to resemble GAT1 and determine high-resolution X-ray structures of the modified transporter in the substrate-free state and in complex with GAT1 inhibitors NO711 and SKF89976a that are analogs of tiagabine, a medication prescribed for the treatment of partial seizures. We observe that the primary binding site undergoes substantial shifts in subsite architecture in the modified transporter to accommodate the two GAT1 inhibitors. We also observe that SKF89976a additionally interacts at an allosteric site in the extracellular vestibule, yielding an occluded conformation. Interchanging SKF89976a interacting residue in the extracellular loop 4 between GAT1 and dDAT suggests a role for this motif in the selective control of neurotransmitter uptake. Our findings, therefore, provide vital insights into the organizational principles dictating GAT1 activity and inhibition.
Collapse
Affiliation(s)
- Deepthi Joseph
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | | | - Aravind Penmatsa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
7
|
Abstract
γ-Aminobutyric acid (GABA) transporter 1 (GAT1)1 regulates neuronal excitation of the central nervous system by clearing the synaptic cleft of the inhibitory neurotransmitter GABA upon its release from synaptic vesicles. Elevating the levels of GABA in the synaptic cleft, by inhibiting GABA reuptake transporters, is an established strategy to treat neurological disorders, such as epilepsy2. Here we determined the cryo-electron microscopy structure of full-length, wild-type human GAT1 in complex with its clinically used inhibitor tiagabine3, with an ordered part of only 60 kDa. Our structure reveals that tiagabine locks GAT1 in the inward-open conformation, by blocking the intracellular gate of the GABA release pathway, and thus suppresses neurotransmitter uptake. Our results provide insights into the mixed-type inhibition of GAT1 by tiagabine, which is an important anticonvulsant medication. Its pharmacodynamic profile, confirmed by our experimental data, suggests initial binding of tiagabine to the substrate-binding site in the outward-open conformation, whereas our structure presents the drug stalling the transporter in the inward-open conformation, consistent with a two-step mechanism of inhibition4. The presented structure of GAT1 gives crucial insights into the biology and pharmacology of this important neurotransmitter transporter and provides blueprints for the rational design of neuromodulators, as well as moving the boundaries of what is considered possible in single-particle cryo-electron microscopy of challenging membrane proteins.
Collapse
|
8
|
Kickinger S, Lie MEK, Suemasa A, Al-Khawaja A, Fujiwara K, Watanabe M, Wilhelmsen KS, Falk-Petersen CB, Frølund B, Shuto S, Ecker GF, Wellendorph P. Molecular Determinants and Pharmacological Analysis for a Class of Competitive Non-transported Bicyclic Inhibitors of the Betaine/GABA Transporter BGT1. Front Chem 2021; 9:736457. [PMID: 34595152 PMCID: PMC8476755 DOI: 10.3389/fchem.2021.736457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
The betaine/GABA transporter 1 (BGT1) is a member of the GABA transporter (GAT) family with still elusive function, largely due to a lack of potent and selective tool compounds. Based on modeling, we here present the design, synthesis and pharmacological evaluation of five novel conformationally restricted cyclic GABA analogs related to the previously reported highly potent and selective BGT1 inhibitor (1S,2S,5R)-5-aminobicyclo[3.1.0]hexane-2-carboxylic acid (bicyclo-GABA). Using [3H]GABA radioligand uptake assays at the four human GATs recombinantly expressed in mammalian cell lines, we identified bicyclo-GABA and its N-methylated analog (2) as the most potent and selective BGT1 inhibitors. Additional pharmacological characterization in a fluorescence-based membrane potential assay showed that bicyclo-GABA and 2 are competitive inhibitors, not substrates, at BGT1, which was validated by a Schild analysis for bicyclo-GABA (pKB value of 6.4). To further elaborate on the selectivity profile both compounds were tested at recombinant α1β2γ2 GABAA receptors. Whereas bicyclo-GABA showed low micromolar agonistic activity, the N-methylated 2 was completely devoid of activity at GABAA receptors. To further reveal the binding mode of bicyclo-GABA and 2 binding hypotheses of the compounds were obtained from in silico-guided mutagenesis studies followed by pharmacological evaluation at selected BGT1 mutants. This identified the non-conserved BGT1 residues Q299 and E52 as the molecular determinants driving BGT1 activity and selectivity. The binding mode of bicyclo-GABA was further validated by the introduction of activity into the corresponding GAT3 mutant L314Q (38 times potency increase cf. wildtype). Altogether, our data reveal the molecular determinants for the activity of bicyclic GABA analogs, that despite their small size act as competitive inhibitors of BGT1. These compounds may serve as valuable tools to selectively and potently target BGT1 in order to decipher its elusive pharmacological role in the brain and periphery such as the liver and kidneys.
Collapse
Affiliation(s)
- Stefanie Kickinger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutical Science, University of Vienna, Vienna, Austria
| | - Maria E K Lie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Akihiro Suemasa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Anas Al-Khawaja
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kristine S Wilhelmsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Gerhard F Ecker
- Department of Pharmaceutical Science, University of Vienna, Vienna, Austria
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Gryzło B, Zaręba P, Malawska K, Mazur G, Rapacz A, Ła̧tka K, Höfner GC, Latacz G, Bajda M, Sałat K, Wanner KT, Malawska B, Kulig K. Novel Functionalized Amino Acids as Inhibitors of GABA Transporters with Analgesic Activity. ACS Chem Neurosci 2021; 12:3073-3100. [PMID: 34347423 PMCID: PMC8397297 DOI: 10.1021/acschemneuro.1c00351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Neuropathic pain
resistance to pharmacotherapy has encouraged researchers
to develop effective therapies for its treatment. γ-Aminobutyric
acid (GABA) transporters 1 and 4 (mGAT1 and mGAT4) have been increasingly
recognized as promising drug targets for neuropathic pain (NP) associated
with imbalances in inhibitory neurotransmission. In this context,
we designed and synthesized new functionalized amino acids as inhibitors
of GABA uptake and assessed their activities toward all four mouse
GAT subtypes (mGAT1–4). According to the obtained results,
compounds 2RS,4RS-39c (pIC50 (mGAT4) = 5.36), 50a (pIC50 (mGAT2) = 5.43), and 56a (with moderate subtype selectivity
that favored mGAT4, pIC50 (mGAT4) = 5.04) were of particular
interest and were therefore evaluated for their cytotoxic and hepatotoxic
effects. In a set of in vivo experiments, both compounds 50a and 56a showed antinociceptive properties
in three rodent models of NP, namely, chemotherapy-induced neuropathic
pain models (the oxaliplatin model and the paclitaxel model) and the
diabetic neuropathic pain model induced by streptozotocin; however
compound 56a demonstrated predominant activity. Since
impaired motor coordination is also observed in neuropathic pain conditions,
we have pointed out that none of the test compounds induced motor
deficits in the rotarod test.
Collapse
Affiliation(s)
- Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Rapacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Kamil Ła̧tka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Georg C. Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstraße 5-13, 81377 Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstraße 5-13, 81377 Munich, Germany
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
10
|
Zafar S, Jabeen I. Molecular Dynamic Simulations to Probe Stereoselectivity of Tiagabine Binding with Human GAT1. Molecules 2020; 25:molecules25204745. [PMID: 33081136 PMCID: PMC7587590 DOI: 10.3390/molecules25204745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
The human gamma aminobutyric acid transporter subtype 1 (hGAT1) located in the nerve terminals is known to catalyze the neuronal function by the electrogenic reuptake of γ-aminobutyric acid (GABA) with the co-transport of Na+ and Cl− ions. In the past, there has been a major research drive focused on the dysfunction of hGAT1 in several neurological disorders. Thus, hGAT1 of the GABAergic system has been well established as an attractive target for such diseased conditions. Till date, there are various reports about stereo selectivity of –COOH group of tiagabine, a Food and Drug Administration (FDA)-approved hGAT1-selective antiepileptic drug. However, the effect of the stereochemistry of the protonated –NH group of tiagabine has never been scrutinized. Therefore, in this study, tiagabine has been used to explore the binding hypothesis of different enantiomers of tiagabine. In addition, the impact of axial and equatorial configuration of the–COOH group attached at the meta position of the piperidine ring of tiagabine enantiomers was also investigated. Further, the stability of the finally selected four hGAT1–tiagabine enantiomers namely entries 3, 4, 6, and 9 was evaluated through 100 ns molecular dynamics (MD) simulations for the selection of the best probable tiagabine enantiomer. The results indicate that the protonated –NH group in the R-conformation and the –COOH group of Tiagabine in the equatorial configuration of entry 4 provide maximum strength in terms of interaction within the hGAT1 binding pocket to prevent the change in hGAT1 conformational state, i.e., from open-to-out to open-to-in as compared to other selected tiagabine enantiomers 3, 6, and 9.
Collapse
|
11
|
Singh RB, Das N, Singh GK, Singh SK, Zaman K. Synthesis and pharmacological evaluation of 3-[5-(aryl-[1,3,4]oxadiazole-2-yl]-piperidine derivatives as anticonvulsant and antidepressant agents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Jiang T, Wen PC, Trebesch N, Zhao Z, Pant S, Kapoor K, Shekhar M, Tajkhorshid E. Computational Dissection of Membrane Transport at a Microscopic Level. Trends Biochem Sci 2020; 45:202-216. [PMID: 31813734 PMCID: PMC7024014 DOI: 10.1016/j.tibs.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023]
Abstract
Membrane transporters are key gatekeeper proteins at cellular membranes that closely control the traffic of materials. Their function relies on structural rearrangements of varying degrees that facilitate substrate translocation across the membrane. Characterizing these functionally important molecular events at a microscopic level is key to our understanding of membrane transport, yet challenging to achieve experimentally. Recent advances in simulation technology and computing power have rendered molecular dynamics (MD) simulation a powerful biophysical tool to investigate a wide range of dynamical events spanning multiple spatial and temporal scales. Here, we review recent studies of diverse membrane transporters using computational methods, with an emphasis on highlighting the technical challenges, key lessons learned, and new opportunities to illuminate transporter structure and function.
Collapse
Affiliation(s)
- Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Po-Chao Wen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah Trebesch
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhiyu Zhao
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karan Kapoor
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mrinal Shekhar
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Kickinger S, Hellsberg E, Frølund B, Schousboe A, Ecker GF, Wellendorph P. Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology 2019; 161:107644. [PMID: 31108110 DOI: 10.1016/j.neuropharm.2019.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/14/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
Abstract
ɣ-aminobutyric-acid (GABA) functions as the principal inhibitory neurotransmitter in the central nervous system. Imbalances in GABAergic neurotransmission are involved in the pathophysiology of various neurological diseases such as epilepsy, Alzheimer's disease and stroke. GABA transporters (GATs) facilitate the termination of GABAergic signaling by transporting GABA together with sodium and chloride from the synaptic cleft into presynaptic neurons and surrounding glial cells. Four different GATs have been identified that all belong to the solute carrier 6 (SLC6) transporter family: GAT1-3 (SLC6A1, SLC6A13, SLC6A11) and betaine/GABA transporter 1 (BGT1, SLC6A12). BGT1 has emerged as an interesting target for treating epilepsy due to animal studies that reported anticonvulsant effects for the GAT1/BGT1 selective inhibitor EF1502 and the BGT1 selective inhibitor RPC-425. However, the precise involvement of BGT1 in epilepsy remains elusive because of its controversial expression levels in the brain and the lack of highly selective and potent tool compounds. This review gathers the current structural and functional knowledge on BGT1 with emphasis on brain relevance, discusses all available compounds, and tries to shed light on the molecular determinants driving BGT1 selectivity. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Stefanie Kickinger
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Eva Hellsberg
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Bente Frølund
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Arne Schousboe
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Petrine Wellendorph
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Héja L, Simon Á, Szabó Z, Kardos J. Feedback adaptation of synaptic excitability via Glu:Na + symport driven astrocytic GABA and Gln release. Neuropharmacology 2019; 161:107629. [PMID: 31103619 DOI: 10.1016/j.neuropharm.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/30/2019] [Accepted: 05/07/2019] [Indexed: 02/08/2023]
Abstract
Glutamatergic transmission composed of the arriving of action potential at the axon terminal, fast vesicular Glu release, postsynaptic Glu receptor activation, astrocytic Glu clearance and Glu→Gln shuttle is an abundantly investigated phenomenon. Despite its essential role, however, much less is known about the consequences of the mechanistic connotations of Glu:Na+ symport. Due to the coupled Na+ transport, Glu uptake results in significantly elevated intracellular astrocytic [Na+] that markedly alters the driving force of other Na+-coupled astrocytic transporters. The resulting GABA and Gln release by reverse transport through the respective GAT-3 and SNAT3 transporters help to re-establish the physiological Na+ homeostasis without ATP dissipation and consequently leads to enhanced tonic inhibition and replenishment of axonal glutamate pool. Here, we place this emerging astrocytic adjustment of synaptic excitability into the centre of future perspectives. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
15
|
Zafar S, Jabeen I. GRID-independent molecular descriptor analysis and molecular docking studies to mimic the binding hypothesis of γ-aminobutyric acid transporter 1 (GAT1) inhibitors. PeerJ 2019; 7:e6283. [PMID: 30723616 PMCID: PMC6360079 DOI: 10.7717/peerj.6283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background The γ-aminobutyric acid (GABA) transporter GAT1 is involved in GABA transport across the biological membrane in and out of the synaptic cleft. The efficiency of this Na+ coupled GABA transport is regulated by an electrochemical gradient, which is directed inward under normal conditions. However, in certain pathophysiological situations, including strong depolarization or an imbalance in ion homeostasis, the GABA influx into the cytoplasm is increased by re-uptake transport mechanism. This mechanism may lead to extra removal of extracellular GABA which results in numerous neurological disorders such as epilepsy. Thus, small molecule inhibitors of GABA re-uptake may enhance GABA activity at the synaptic clefts. Methods In the present study, various GRID-independent molecular descriptor (GRIND) models have been developed to shed light on the 3D structural features of human GAT1 (hGAT1) inhibitors using nipecotic acid and N-diarylalkenyl piperidine analogs. Further, a binding hypothesis has been developed for the selected GAT1 antagonists by molecular docking inside the binding cavity of hGAT1 homology model. Results Our results indicate that two hydrogen bond acceptors, one hydrogen bond donor and one hydrophobic region at certain distances from each other play an important role in achieving high inhibitory potency against hGAT1. Our docking results elucidate the importance of the COOH group in hGAT1 antagonists by considering substitution of the COOH group with an isoxazol ring in compound 37, which subsequently leads to a three order of magnitude decrease in biological activity of 37 (IC50 = 38 µM) as compared to compound 1 (IC50 = 0.040 µM). Discussion Our docking results are strengthened by the structure activity relationship of the data series as well as by GRIND models, thus providing a significant structural basis for understanding the binding of antagonists, which may be useful for guiding the design of hGAT1 inhibitors.
Collapse
Affiliation(s)
- Sadia Zafar
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Federal, Pakistan
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Federal, Pakistan
| |
Collapse
|
16
|
Singh N, Scalise M, Galluccio M, Wieder M, Seidel T, Langer T, Indiveri C, Ecker GF. Discovery of Potent Inhibitors for the Large Neutral Amino Acid Transporter 1 (LAT1) by Structure-Based Methods. Int J Mol Sci 2018; 20:ijms20010027. [PMID: 30577601 PMCID: PMC6337383 DOI: 10.3390/ijms20010027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022] Open
Abstract
The large neutral amino acid transporter 1 (LAT1) is a promising anticancer target that is required for the cellular uptake of essential amino acids that serve as building blocks for cancer growth and proliferation. Here, we report a structure-based approach to identify chemically diverse and potent inhibitors of LAT1. First, a homology model of LAT1 that is based on the atomic structures of the prokaryotic homologs was constructed. Molecular docking of nitrogen mustards (NMs) with a wide range of affinity allowed for deriving a common binding mode that could explain the structure−activity relationship pattern in NMs. Subsequently, validated binding hypotheses were subjected to molecular dynamics simulation, which allowed for extracting a set of dynamic pharmacophores. Finally, a library of ~1.1 million molecules was virtually screened against these pharmacophores, followed by docking. Biological testing of the 30 top-ranked hits revealed 13 actives, with the best compound showing an IC50 value in the sub-μM range.
Collapse
Affiliation(s)
- Natesh Singh
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Mariafrancesca Scalise
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Michele Galluccio
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Cesare Indiveri
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
17
|
Zafar S, Nguyen ME, Muthyala R, Jabeen I, Sham YY. Modeling and Simulation of hGAT1: A Mechanistic Investigation of the GABA Transport Process. Comput Struct Biotechnol J 2018; 17:61-69. [PMID: 30619541 PMCID: PMC6312766 DOI: 10.1016/j.csbj.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 01/30/2023] Open
Abstract
Human γ-Aminobutyric acid transporter 1 (hGAT1) is a Na+/Cl- dependent co-transporter that plays a key role in the inhibitory neurotransmission of GABA in the brain. Due to the lack of structural data, the exact co-transport mechanism of GABA reuptake by hGAT1 remains unclear. To examine the roles of the co-transport ions and the nature of their interactions with GABA, homology modeling and molecular dynamics simulations of the hGAT1 in the open-to-out conformation were carried out. Our study focused on the sequential preloading of Na+ and Cl- ions, followed by GABA binding. Our simulations showed pre-loading of ions maintains the transport ready state of hGAT1 in the open-to-out conformation essential for GABA binding. Of the four putative preloaded states, GABA binding to the fully loaded state is most favored. Binding of Na+ ion to the Na1 site helps to maintain the open-to-out conformation for GABA binding as compared to the Na2 site. GABA binding to the mono-sodium or the di-sodium loaded states leads to destabilization of Na+ ions within their binding sites. The two most prominent interactions required for GABA binding include interaction between carboxylate group of GABA with the bound Na+ ion in Na1 binding site and the hydroxyl group of Y140. Overall our results support the fully loaded state as the predominate state for GABA binding. Our study further illustrates that Na+ ion within the Na1 site is crucial for GABA recognition. Therefore, a revised mechanism is proposed for the initial step of hGAT1 translocation cycle.
Collapse
Affiliation(s)
- Sadia Zafar
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Megin E. Nguyen
- Bioinformatics and Computational Biology Program, University of Minnesota, United States
| | - Ramaiah Muthyala
- Department of Experimental and Clinical Pharmacology & Center for Orphan Drug Research, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yuk Y. Sham
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, United States
- Bioinformatics and Computational Biology Program, University of Minnesota, United States
| |
Collapse
|
18
|
Palazzolo L, Parravicini C, Laurenzi T, Guerrini U, Indiveri C, Gianazza E, Eberini I. In silico Description of LAT1 Transport Mechanism at an Atomistic Level. Front Chem 2018; 6:350. [PMID: 30197880 PMCID: PMC6117385 DOI: 10.3389/fchem.2018.00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanism of transport mediated by LAT1, a sodium-independent antiporter of large neutral amino acids, was investigated through in silico procedures, specifically making reference to two transported substrates, tyrosine (Tyr) and leucine methyl ester (LME), and to 3,5-diiodo-L-tyrosine (DIT), a well-known LAT1 inhibitor. Two models of the transporter were built by comparative modeling, with LAT1 either in an outward-facing (OF) or in an inward-facing (IF) conformation, based, respectively, on the crystal structure of AdiC and of GadC. As frequently classic Molecular Dynamics (MD) fails to monitor large-scale conformational transitions within a reasonable simulated time, the OF structure was equilibrated for 150 ns then processed through targeted MD (tMD). During this procedure, an elastic force pulled the OF structure to the IF structure and induced, at the same time, substrates/inhibitor to move through the transport channel. This elastic force was modulated by a spring constant (k) value; by decreasing its value from 100 to 70, it was possible to comparatively account for the propensity for transport of the three tested molecules. In line with our expectations, during the tMD simulations, Tyr and LME behaved as substrates, moving down the transport channel, or most of it, for all k values. On the contrary, DIT behaved as an inhibitor, being (almost) transported across the channel only at the highest k value (100). During their transit through the channel, Tyr and LME interacted with specific amino acids (first with Phe252 then with Thr345, Arg348, Tyr259, and Phe262); this suggests that a primary as well as a putative secondary gate may contribute to the transport of substrates. Quite on the opposite, DIT appeared to establish only transient interactions with side chains lining the external part of the transport channel. Our tMD simulations could thus efficiently discriminate between two transported substrates and one inhibitor, and therefore can be proposed as a benchmark for developing novel LAT1 inhibitors of pharmacological interest.
Collapse
Affiliation(s)
- Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Cesare Indiveri
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Cosenza, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Design, synthesis, evaluation and molecular modeling studies of some novel N-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2141-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Jørgensen L, Al-Khawaja A, Kickinger S, Vogensen SB, Skovgaard-Petersen J, Rosenthal E, Borkar N, Löffler R, Madsen KK, Bräuner-Osborne H, Schousboe A, Ecker GF, Wellendorph P, Clausen RP. Structure–Activity Relationship, Pharmacological Characterization, and Molecular Modeling of Noncompetitive Inhibitors of the Betaine/γ-Aminobutyric Acid Transporter 1 (BGT1). J Med Chem 2017; 60:8834-8846. [DOI: 10.1021/acs.jmedchem.7b00924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lars Jørgensen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anas Al-Khawaja
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Stefanie Kickinger
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stine B. Vogensen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jonas Skovgaard-Petersen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Emil Rosenthal
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nrupa Borkar
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karsten K. Madsen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Petrine Wellendorph
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rasmus P. Clausen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Design, synthesis, characterization, and molecular modeling studies of novel oxadiazole derivatives of nipecotic acid as potential anticonvulsant and antidepressant agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2047-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Goldmann D, Zdrazil B, Digles D, Ecker GF. Empowering pharmacoinformatics by linked life science data. J Comput Aided Mol Des 2017; 31:319-328. [PMID: 27830428 PMCID: PMC5385323 DOI: 10.1007/s10822-016-9990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 11/11/2022]
Abstract
With the public availability of large data sources such as ChEMBLdb and the Open PHACTS Discovery Platform, retrieval of data sets for certain protein targets of interest with consistent assay conditions is no longer a time consuming process. Especially the use of workflow engines such as KNIME or Pipeline Pilot allows complex queries and enables to simultaneously search for several targets. Data can then directly be used as input to various ligand- and structure-based studies. In this contribution, using in-house projects on P-gp inhibition, transporter selectivity, and TRPV1 modulation we outline how the incorporation of linked life science data in the daily execution of projects allowed to expand our approaches from conventional Hansch analysis to complex, integrated multilayer models.
Collapse
Affiliation(s)
- Daria Goldmann
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Daniela Digles
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
23
|
Damgaard M, Haugaard AS, Kickinger S, Al-Khawaja A, Lie MEK, Ecker GF, Clausen RP, Frølund B. Development of Non-GAT1-Selective Inhibitors: Challenges and Achievements. ADVANCES IN NEUROBIOLOGY 2017; 16:315-332. [DOI: 10.1007/978-3-319-55769-4_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
24
|
Mori T, Ishikawa D, Yonamine Y, Fujii Y, Hill JP, Ichinose I, Ariga K, Nakanishi W. Mechanically Induced Opening-Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. Chemphyschem 2016; 18:1470-1474. [PMID: 27781370 DOI: 10.1002/cphc.201601144] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 12/17/2022]
Abstract
Reversible dynamic control of structure is a significant challenge in molecular nanotechnology. Previously, we have reported a mechanically induced continuous (analog) conformational variation in an amphiphilic binaphthyl, where closing of molecular pliers was achieved by compression of a molecular monolayer composed of these molecules at the air-water interface. In this work we report that a phase transition induced by an applied mechanical stress enables discontinuous digital (1/0) opening of simple binaphthyl molecular pliers. A lipid matrix at the air-water interface promotes the formation of quasi-stable nanocrystals, in which binaphthyl molecules have an open transoid configuration. The crystallization/dissolution of quasi-stable binaphthyl crystals with accompanying conformational change is reversible and repeatable.
Collapse
Affiliation(s)
- Taizo Mori
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Daisuke Ishikawa
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yonamine
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yoshihisa Fujii
- Polymer Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jonathan P Hill
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Izumi Ichinose
- Polymer Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Waka Nakanishi
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
25
|
Fijałkowski Ł, Sałat K, Podkowa A, Zaręba P, Nowaczyk A. Potential role of selected antiepileptics used in neuropathic pain as human GABA transporter isoform 1 (GAT1) inhibitors-Molecular docking and pharmacodynamic studies. Eur J Pharm Sci 2016; 96:362-372. [PMID: 27721044 DOI: 10.1016/j.ejps.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/31/2023]
Abstract
The chemical interaction of nine antiepileptic drugs (tiagabine, gabapentin, pregabalin, lamotrigine, zonisamide, valproic acid, valpromide, vigabatrin, progabide) and two endogenous metabolites (4-aminobutanoic acid, 4-hydroxybutanoic acid) with a model of human GABA transporter 1 (hGAT1) is described using the molecular docking method. To establish the role of hGAT1 in chronic pain, tiagabine, a selective hGAT1 inhibitor, was assessed in the in vivo experiments for its antiallodynic properties in two mouse models of neuropathic pain. Docking analyses performed in this study provided the complex binding energies, specific hydrogen bond components, and hydrogen bond properties such as energies, distances and angles. The data of the docking studies strongly support the assumption that the antiepileptic and analgesic actions of the studied drugs can be at least in part related to the strength of their chemical interactions with hGAT1. In vivo experiments with tiagabine confirmed the involvement of hGAT1 in the regulation of the mechanical nociceptive threshold in neuropathic pain.
Collapse
Affiliation(s)
- Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Cracow, Poland
| | - Adrian Podkowa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Cracow, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Cracow, Poland
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland.
| |
Collapse
|
26
|
Colas C, Ung PMU, Schlessinger A. SLC Transporters: Structure, Function, and Drug Discovery. MEDCHEMCOMM 2016; 7:1069-1081. [PMID: 27672436 PMCID: PMC5034948 DOI: 10.1039/c6md00005c] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human Solute Carrier (SLC) transporters are important targets for drug development. Structure-based drug discovery for SLC transporters requires the description of their structure, dynamics, and mechanism of interaction with small molecule ligands and ions. The recent determination of atomic structures of human SLC transporters and their homologs, combined with improved computational power and prediction methods have led to an increased applicability of structure-based drug design methods for human SLC members. In this review, we provide an overview of the SLC transporters' structures and transport mechanisms. We then describe computational techniques, such as homology modeling and virtual screening that are emerging as key tools to discover chemical probes for human SLC members. We illustrate the utility of these methods by presenting case studies in which rational integration of computation and experiment was used to characterize SLC members that transport key nutrients and metabolites, including the amino acid transporters LAT-1 and ASCT2, the SLC13 family of citric acid cycle intermediate transporters, and the glucose transporter GLUT1. We conclude with a brief discussion about future directions in structure-based drug discovery for the human SLC superfamily, one of the most structurally and functionally diverse protein families in human.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Man-Un Ung
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
27
|
Abstract
We delineate perspectives for the design and discovery of antiepileptic drugs (AEDs) with fewer side effects by focusing on astroglial modulation of spatiotemporal seizure dynamics. It is now recognized that the major inhibitory neurotransmitter of the brain, γ-aminobutyric acid (GABA), can be released through the reversal of astroglial GABA transporters. Synaptic spillover and subsequent glutamate (Glu) uptake in neighboring astrocytes evoke replacement of extracellular Glu for GABA, driving neurons away from the seizure threshold. Attenuation of synaptic signaling by this negative feedback through the interplay of Glu and GABA transporters of adjacent astroglia can result in shortened seizures. By contrast, long-range activation of astroglia through gap junctions may promote recurrent seizures on the model of pharmacoresistant temporal lobe epilepsy. From their first detection to our current understanding, we identify various targets that shape both short- and long-range neuro-astroglia coupling, as these are manifest in epilepsy phenomena and in the associated research promotions of AED.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
28
|
|