1
|
Synthesis of S-substituted 5-sulfonylmethyl(ethyl)-1,3,4-thiadiazol-2-amines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Serkov SA, Sigai NV, Kostikova NN, Fedorov AE, Gazieva GA. Synthesis and evaluation of cytotoxicity of S-substituted 5-sulfanylmethyl(ethyl)-1,3,4-thiadiazol-2-amines. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021; 45:6064299. [PMID: 33399826 PMCID: PMC8371276 DOI: 10.1093/femsre/fuaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered by the high research and development costs versus the relatively low revenues for the pharmaceutical industry. Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development of novel molecules to effectively treat this life-threatening pathogen.
Collapse
Affiliation(s)
- F Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
Cochrane SA, Lohans CT. Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. Eur J Med Chem 2020; 194:112262. [PMID: 32248005 DOI: 10.1016/j.ejmech.2020.112262] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
The enzymes involved in bacterial cell wall synthesis are established antibiotic targets, and continue to be a central focus for antibiotic development. Bacterial penicillin-binding proteins (and, in some bacteria, l,d-transpeptidases) form essential peptide cross-links in the cell wall. Although the β-lactam class of antibiotics target these enzymes, bacterial resistance threatens their clinical use, and there is an urgent unmet need for new antibiotics. However, the search for new antibiotics targeting the bacterial cell wall is hindered by a number of obstacles associated with screening the enzymes involved in peptidoglycan synthesis. This review describes recent approaches for measuring the activity and inhibition of penicillin-binding proteins and l,d-transpeptidases, highlighting strategies that are poised to serve as valuable tools for high-throughput screening of transpeptidase inhibitors, supporting the development of new antibiotics.
Collapse
Affiliation(s)
- Stephen A Cochrane
- School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada.
| |
Collapse
|
5
|
Kim HJ, Kim N, Shum D, Huddar S, Park CM, Jang S. Identification of Antipneumococcal Molecules Effective Against Different Streptococcus pneumoniae Serotypes Using a Resazurin-Based High-Throughput Screen. Assay Drug Dev Technol 2018; 15:198-209. [PMID: 28723269 DOI: 10.1089/adt.2017.789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen, causing around 1.6 million deaths worldwide each year. By optimizing a resazurin-based assay to detect S. pneumoniae growth in 384-well microplates, we developed a new high-throughput screening (HTS) system for the discovery of antipneumococcal molecules, which was unsuccessful using conventional absorbance measurements. Before applying our protocol to a large-scale screen, we validated the system through a pilot screen targeting about 7,800 bioactive molecules using three different S. pneumoniae serotypes. Primary screenings of a further 27,000 synthetic small molecules facilitated the identification of 3-acyl-2-phenylamino-1,4-dihydropquinolin-4-one (APDQ) derivatives that inhibited growth of S. pneumoniae with MIC90 values <1 μM (0.03-0.81 μM). Five selected APDQ derivatives were also active against Staphylococcus aureus but neither Klebsiella pneumoniae nor Pseudomonas aeruginosa, suggesting that APDQ may act specifically against Gram-positive bacteria. Our results both validated and demonstrated the utility of the resazurin-based HTS system for the identification of new antipneumococcal molecules. Moreover, the identified new antipneumococcal molecules in this study may have potential to be further developed as new antibiotics.
Collapse
Affiliation(s)
- Hyung Jun Kim
- 1 Antibacterial Resistance Research Laboratory, Discovery Biology Department, Institut Pasteur Korea , Seongnam-si, Korea
| | - Namyoul Kim
- 2 Assay Development and Screening Group, Screening Sciences and Novel Assay Technologies Department, Institut Pasteur Korea , Seongnam-si, Korea
| | - David Shum
- 2 Assay Development and Screening Group, Screening Sciences and Novel Assay Technologies Department, Institut Pasteur Korea , Seongnam-si, Korea
| | - Srigouri Huddar
- 3 Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology , Daejeon, Korea.,4 Korea University of Science and Technology , Daejeon, Korea
| | - Chul Min Park
- 3 Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology , Daejeon, Korea
| | - Soojin Jang
- 1 Antibacterial Resistance Research Laboratory, Discovery Biology Department, Institut Pasteur Korea , Seongnam-si, Korea
| |
Collapse
|
6
|
Murahari M, Kharkar PS, Lonikar N, Mayur YC. Design, synthesis, biological evaluation, molecular docking and QSAR studies of 2,4-dimethylacridones as anticancer agents. Eur J Med Chem 2017; 130:154-170. [PMID: 28246041 DOI: 10.1016/j.ejmech.2017.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
Drug resistance in cancer is an unmet medical challenge and a major drawback for the failure of many chemotherapeutic drugs. Search for targeted, effective drug with minimum toxicity is an urgent need. Acridone which is an alkaloid derivative has been attributed as molecule in reversing drug resistance in cancer cells for a long time now. In the present investigation, an attempt has been made to explore the chemosensitizing ability of 2,4-dimethylacridones with alkyl side chain containing terminally substituted tertiary amino groups. Considering the structural features required for the MDR reversal activity, acridone derivatives have been synthesized with propyl and butyl side chain containing morpholinyl, piperidinyl, N-methylpiperazinyl, N,N-diethylamino, N-diethanolamino, N-[(β-hydroxylethyl)]piperazino at the terminus of the alkyl side chain. cLogP values for the synthesized compounds ranged from 2.96 to 4.72 for the propyl derivatives and 3.41 to 5.15 for the butyl derivatives. All the compounds were screened against breast cancer sensitive MCF7 and resistant MCF7/ADR cell lines. Compounds 12e and 12f have shown better cytotoxicity profiles with IC50 of 4 ± 0.05 and 2 ± 0.03 μM against MCF7 cells, 5.21 ± 0.13 and 2.56 ± 0.05 μM against MCF7/ADR cells. Photolabelling studies with [3H]-azidopine and molecular docking studies have identified that 2,4-dimethylacridones have potential to modulate the P-gp mediated multidrug resistance. Docking studies identified that compounds have shown favorable interactions with P-gp. QSAR equation was derived for cytotoxicity vs molecular descriptors of acridone derivatives. Best models with good predictive ability have been generated with very high square correlation coefficient (R2) values of 0.889, 0.964 and 0.983.
Collapse
Affiliation(s)
- Manikanta Murahari
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore 560 054, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400 056, India
| | - Nitin Lonikar
- Department of Pharmaceutical Chemistry, AME's V.L. College of Pharmacy, Raichur 584103, India
| | - Y C Mayur
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400 056, India.
| |
Collapse
|
7
|
Dzhekieva L, Adediran SA, Herman R, Kerff F, Duez C, Charlier P, Sauvage E, Pratt RF. Inhibition of DD-peptidases by a specific trifluoroketone: crystal structure of a complex with the Actinomadura R39 DD-peptidase. Biochemistry 2013; 52:2128-38. [PMID: 23484909 DOI: 10.1021/bi400048s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.
Collapse
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Balewski Ł, Sączewski F, Gdaniec M, Bednarski PJ, Jara I. Synthesis of N-(2-pyridyl)imidazolidin-2-ones and 1-(2-pyridyl)-2,3,7,8-tetrahydro-1H-imidazo[2,1-b][1,3,5]triazepin-5(6H)-ones with potential biological activities. HETEROCYCL COMMUN 2013. [DOI: 10.1515/hc-2013-0125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
9
|
Development of new drugs for an old target: the penicillin binding proteins. Molecules 2012; 17:12478-505. [PMID: 23095893 PMCID: PMC6268044 DOI: 10.3390/molecules171112478] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/05/2012] [Accepted: 10/17/2012] [Indexed: 11/16/2022] Open
Abstract
The widespread use of β-lactam antibiotics has led to the worldwide appearance of drug-resistant strains. Bacteria have developed resistance to β-lactams by two main mechanisms: the production of β-lactamases, sometimes accompanied by a decrease of outer membrane permeability, and the production of low-affinity, drug resistant Penicillin Binding Proteins (PBPs). PBPs remain attractive targets for developing new antibiotic agents because they catalyse the last steps of the biosynthesis of peptidoglycan, which is unique to bacteria, and lies outside the cytoplasmic membrane. Here we summarize the “current state of the art” of non-β-lactam inhibitors of PBPs, which have being developed in an attempt to counter the emergence of β-lactam resistance. These molecules are not susceptible to hydrolysis by β-lactamases and thus present a real alternative to β-lactams. We present transition state analogs such as boronic acids, which can covalently bind to the active serine residue in the catalytic site. Molecules containing ring structures different from the β-lactam-ring like lactivicin are able to acylate the active serine residue. High throughput screening methods, in combination with virtual screening methods and structure based design, have allowed the development of new molecules. Some of these novel inhibitors are active against major pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and thus open avenues new for the discovery of novel antibiotics.
Collapse
|
10
|
Fedarovich A, Djordjevic KA, Swanson SM, Peterson YK, Nicholas RA, Davies C. High-throughput screening for novel inhibitors of Neisseria gonorrhoeae penicillin-binding protein 2. PLoS One 2012; 7:e44918. [PMID: 23049763 PMCID: PMC3458020 DOI: 10.1371/journal.pone.0044918] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
The increasing prevalence of N. gonorrhoeae strains exhibiting decreased susceptibility to third-generation cephalosporins and the recent isolation of two distinct strains with high-level resistance to cefixime or ceftriaxone heralds the possible demise of β-lactam antibiotics as effective treatments for gonorrhea. To identify new compounds that inhibit penicillin-binding proteins (PBPs), which are proven targets for β-lactam antibiotics, we developed a high-throughput assay that uses fluorescence polarization (FP) to distinguish the fluorescent penicillin, Bocillin-FL, in free or PBP-bound form. This assay was used to screen a 50,000 compound library for potential inhibitors of N. gonorrhoeae PBP 2, and 32 compounds were identified that exhibited >50% inhibition of Bocillin-FL binding to PBP 2. These included a cephalosporin that provided validation of the assay. After elimination of compounds that failed to exhibit concentration-dependent inhibition, the antimicrobial activity of the remaining 24 was tested. Of these, 7 showed antimicrobial activity against susceptible and penicillin- or cephalosporin-resistant strains of N. gonorrhoeae. In molecular docking simulations using the crystal structure of PBP 2, two of these inhibitors docked into the active site of the enzyme and each mediate interactions with the active site serine nucleophile. This study demonstrates the validity of a FP-based assay to find novel inhibitors of PBPs and paves the way for more comprehensive high-throughput screening against highly resistant strains of N. gonorrhoeae. It also provides a set of lead compounds for optimization of anti-gonococcal agents.
Collapse
Affiliation(s)
- Alena Fedarovich
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail: (AF); (CD)
| | - Kevin A. Djordjevic
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Shauna M. Swanson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yuri K. Peterson
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Robert A. Nicholas
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail: (AF); (CD)
| |
Collapse
|
11
|
Shilabin A, Dzhekieva L, Misra P, Jayaram B, Pratt RF. 4-quinolones as noncovalent inhibitors of high molecular mass penicillin-binding proteins. ACS Med Chem Lett 2012; 3:592-5. [PMID: 24900515 PMCID: PMC4025767 DOI: 10.1021/ml3001006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/28/2012] [Indexed: 11/29/2022] Open
Abstract
Penicillin-binding proteins (PBPs) are important bacterial enzymes that carry out the final steps of bacterial cell wall assembly. Their DD-transpeptidase activity accomplishes the essential peptide cross-linking step of the cell wall. To date, all attempts to discover effective inhibitors of PBPs, apart from β-lactams, have not led to new antibiotics. Therefore, the need for new classes of efficient inhibitors of these enzymes remains. Guided by a computational fragment-based docking procedure, carried out on Escherichia coli PBP5, we have designed and synthesized a series of 4-quinolones as potential inhibitors of PBPs. We describe their binding to the PBPs of E. coli and Bacillus subtilis. Notably, these compounds bind quite tightly to the essential high molecular mass PBPs.
Collapse
Affiliation(s)
- Abbas
G. Shilabin
- Department
of Chemistry, Wesleyan University, Middletown,
Connecticut 06459,
United States
| | - Liudmila Dzhekieva
- Department
of Chemistry, Wesleyan University, Middletown,
Connecticut 06459,
United States
| | - Pushpa Misra
- Department
of Chemistry, IIT Delhi, Hauz Khas, New
Delhi 110016, India
| | - B. Jayaram
- Department
of Chemistry, IIT Delhi, Hauz Khas, New
Delhi 110016, India
| | - R. F. Pratt
- Department
of Chemistry, Wesleyan University, Middletown,
Connecticut 06459,
United States
| |
Collapse
|
12
|
Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol 2012; 7:395-410. [PMID: 22393892 DOI: 10.2217/fmb.12.2] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.
Collapse
Affiliation(s)
- Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Paul Ehrlich Strasse 23, D-67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
13
|
Zervosen A, Bouillez A, Herman A, Amoroso A, Joris B, Sauvage E, Charlier P, Luxen A. Synthesis and evaluation of boronic acids as inhibitors of Penicillin Binding Proteins of classes A, B and C. Bioorg Med Chem 2012; 20:3915-24. [PMID: 22579615 DOI: 10.1016/j.bmc.2012.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/05/2012] [Accepted: 04/07/2012] [Indexed: 10/28/2022]
Abstract
In response to the widespread use of β-lactam antibiotics bacteria have evolved drug resistance mechanisms that include the production of resistant Penicillin Binding Proteins (PBPs). Boronic acids are potent β-lactamase inhibitors and have been shown to display some specificity for soluble transpeptidases and PBPs, but their potential as inhibitors of the latter enzymes is yet to be widely explored. Recently, a (2,6-dimethoxybenzamido)methylboronic acid was identified as being a potent inhibitor of Actinomadura sp. R39 transpeptidase (IC(50): 1.3 μM). In this work, we synthesized and studied the potential of a number of acylaminomethylboronic acids as inhibitors of PBPs from different classes. Several derivatives inhibited PBPs of classes A, B and C from penicillin sensitive strains. The (2-nitrobenzamido)methylboronic acid was identified as a good inhibitor of a class A PBP (PBP1b from Streptococcus pneumoniae, IC(50) = 26 μM), a class B PBP (PBP2xR6 from Streptococcus pneumoniae, IC(50) = 138 μM) and a class C PBP (R39 from Actinomadura sp., IC(50) = 0.6 μM). This work opens new avenues towards the development of molecules that inhibit PBPs, and eventually display bactericidal effects, on distinct bacterial species.
Collapse
Affiliation(s)
- Astrid Zervosen
- Centre de Recherches du Cyclotron, B30, Université de Liège, Sart-Tilman, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dzhekieva L, Kumar I, Pratt RF. Inhibition of Bacterial DD-Peptidases (Penicillin-Binding Proteins) in Membranes and in Vivo by Peptidoglycan-Mimetic Boronic Acids. Biochemistry 2012; 51:2804-11. [DOI: 10.1021/bi300148v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| | - Ish Kumar
- School of Natural
Sciences, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| |
Collapse
|
15
|
Abstract
Computer-aided drug design plays a vital role in drug discovery and development and has become an indispensable tool in the pharmaceutical industry. Computational medicinal chemists can take advantage of all kinds of software and resources in the computer-aided drug design field for the purposes of discovering and optimizing biologically active compounds. This article reviews software and other resources related to computer-aided drug design approaches, putting particular emphasis on structure-based drug design, ligand-based drug design, chemical databases and chemoinformatics tools.
Collapse
|
16
|
Bohari MH, Srivastava HK, Sastry GN. Analogue-based approaches in anti-cancer compound modelling: the relevance of QSAR models. Org Med Chem Lett 2011; 1:3. [PMID: 22373294 DOI: 10.1186/2191-2858-1-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND QSAR is among the most extensively used computational methodology for analogue-based design. The application of various descriptor classes like quantum chemical, molecular mechanics, conceptual density functional theory (DFT)- and docking-based descriptors for predicting anti-cancer activity is well known. Although in vitro assay for anti-cancer activity is available against many different cell lines, most of the computational studies are carried out targeting insufficient number of cell lines. Hence, statistically robust and extensive QSAR studies against 29 different cancer cell lines and its comparative account, has been carried out. RESULTS The predictive models were built for 266 compounds with experimental data against 29 different cancer cell lines, employing independent and least number of descriptors. Robust statistical analysis shows a high correlation, cross-validation coefficient values, and provides a range of QSAR equations. Comparative performance of each class of descriptors was carried out and the effect of number of descriptors (1-10) on statistical parameters was tested. Charge-based descriptors were found in 20 out of 39 models (approx. 50%), valency-based descriptor in 14 (approx. 36%) and bond order-based descriptor in 11 (approx. 28%) in comparison to other descriptors. The use of conceptual DFT descriptors does not improve the statistical quality of the models in most cases. CONCLUSION Analysis is done with various models where the number of descriptors is increased from 1 to 10; it is interesting to note that in most cases 3 descriptor-based models are adequate. The study reveals that quantum chemical descriptors are the most important class of descriptors in modelling these series of compounds followed by electrostatic, constitutional, geometrical, topological and conceptual DFT descriptors. Cell lines in nasopharyngeal (2) cancer average R2 = 0.90 followed by cell lines in melanoma cancer (4) with average R2 = 0.81 gave the best statistical values.
Collapse
Affiliation(s)
- Mohammed Hussaini Bohari
- Molecular Modelling Group, Indian Institute of Chemical Technology, Taranaka, Hyderabad 500 607, India.
| | | | | |
Collapse
|
17
|
Matter H, Sotriffer C. Applications and Success Stories in Virtual Screening. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1002/9783527633326.ch12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Turk S, Verlaine O, Gerards T, Živec M, Humljan J, Sosič I, Amoroso A, Zervosen A, Luxen A, Joris B, Gobec S. New noncovalent inhibitors of penicillin-binding proteins from penicillin-resistant bacteria. PLoS One 2011; 6:e19418. [PMID: 21573060 PMCID: PMC3090393 DOI: 10.1371/journal.pone.0019418] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs β-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for β-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs. Methodology/Principal Findings Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains. Conclusions We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.
Collapse
Affiliation(s)
- Samo Turk
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Olivier Verlaine
- Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Thomas Gerards
- Laboratory of Organic Chemistry, University of Liège, Liège, Belgium
| | - Matej Živec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Humljan
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Amoroso
- Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Astrid Zervosen
- Laboratory of Organic Chemistry, University of Liège, Liège, Belgium
| | - André Luxen
- Laboratory of Organic Chemistry, University of Liège, Liège, Belgium
| | - Bernard Joris
- Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
19
|
|