1
|
Bhattacharjee P, Rutland N, Iyer MR. Targeting Sterol O-Acyltransferase/Acyl-CoA:Cholesterol Acyltransferase (ACAT): A Perspective on Small-Molecule Inhibitors and Their Therapeutic Potential. J Med Chem 2022; 65:16062-16098. [PMID: 36473091 DOI: 10.1021/acs.jmedchem.2c01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterol O-acyltransferase (SOAT) is a membrane-bound enzyme that aids the esterification of cholesterol and fatty acids to cholesterol esters. SOAT has been studied extensively as a potential drug target, since its inhibition can serve as an alternative to statin therapy. Two SOAT isozymes that have discrete functions in the human body, namely, SOAT1 and SOAT2, have been characterized. Over three decades of research has focused on candidate SOAT1 inhibitors with unsatisfactory results in clinical trials. Recent research has focused on targeting SOAT2 selectively. In this perspective, we summarize the literature covering various SOAT inhibitory agents and discuss the design, structural requirements, and mode of action of SOAT inhibitors.
Collapse
Affiliation(s)
- Pinaki Bhattacharjee
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nicholas Rutland
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| |
Collapse
|
2
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
3
|
Crystal structure of AmpC BER and molecular docking lead to the discovery of broad inhibition activities of halisulfates against β-lactamases. Comput Struct Biotechnol J 2020; 19:145-152. [PMID: 33425247 PMCID: PMC7773887 DOI: 10.1016/j.csbj.2020.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/23/2022] Open
Abstract
AmpC BER is an extended-spectrum (ES) class C β-lactamase with a two-amino-acid insertion in the H10 helix region located at the boundary of the active site compared with its narrow spectrum progenitor. The crystal structure of the wild-type AmpC BER revealed that the insertion widens the active site by restructuring the flexible H10 helix region, which is the structural basis for its ES activity. Besides, two sulfates originated from the crystallization solution were observed in the active site. The presence of sulfate-binding subsites, together with the recognition of ring-structured chemical scaffolds by AmpC BER, led us to perform in silico molecular docking experiments with halisulfates, natural products isolated from marine sponge. Inspired by the snug fit of halisulfates within the active site, we demonstrated that halisulfate 3 and 5 significantly inhibit ES class C β-lactamases. Especially, halisulfate 5 is comparable to avibactam in terms of inhibition efficiency; it inhibits the nitrocefin-hydrolyzing activity of AmpC BER with a Ki value of 5.87 μM in a competitive manner. Furthermore, halisulfate 5 displayed moderate and weak inhibition activities against class A and class B/D enzymes, respectively. The treatment of β-lactamase inhibitors (BLIs) in combination with β-lactam antibiotics is a working strategy to cope with infections by pathogens producing ES β-lactamases. Considering the emergence and dissemination of enzymes insensitive to clinically-used BLIs, the broad inhibition spectrum and structural difference of halisulfates would be used to develop novel BLIs that can escape the bacterial resistance mechanism mediated by β-lactamases.
Collapse
|
4
|
Structural Insights into Inhibition of the Acinetobacter-Derived Cephalosporinase ADC-7 by Ceftazidime and Its Boronic Acid Transition State Analog. Antimicrob Agents Chemother 2020; 64:AAC.01183-20. [PMID: 32988830 DOI: 10.1128/aac.01183-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023] Open
Abstract
Extended-spectrum class C β-lactamases have evolved to rapidly inactivate expanded-spectrum cephalosporins, a class of antibiotics designed to be resistant to hydrolysis by β-lactamase enzymes. To better understand the mechanism by which Acinetobacter-derived cephalosporinase-7 (ADC-7), a chromosomal AmpC enzyme, hydrolyzes these molecules, we determined the X-ray crystal structure of ADC-7 in an acyl-enzyme complex with the cephalosporin ceftazidime (2.40 Å) as well as in complex with a boronic acid transition state analog inhibitor that contains the R1 side chain of ceftazidime (1.67 Å). In the acyl-enzyme complex, the carbonyl oxygen is situated in the oxyanion hole where it makes key stabilizing interactions with the main chain nitrogens of Ser64 and Ser315. The boronic acid O1 hydroxyl group is similarly positioned in this area. Conserved residues Gln120 and Asn152 form hydrogen bonds with the amide group of the R1 side chain in both complexes. These complexes represent two steps in the hydrolysis of expanded-spectrum cephalosporins by ADC-7 and offer insight into the inhibition of ADC-7 by ceftazidime through displacement of the deacylating water molecule as well as blocking its trajectory to the acyl carbonyl carbon. In addition, the transition state analog inhibitor, LP06, was shown to bind with high affinity to ADC-7 (Ki , 50 nM) and was able to restore ceftazidime susceptibility, offering the potential for optimization efforts of this type of inhibitor.
Collapse
|
5
|
Abstract
A standard numbering scheme has been proposed for class C β-lactamases. This will significantly enhance comparison of biochemical and biophysical studies performed on different members of this class of enzymes and facilitate communication in the field.
Collapse
|
6
|
Awasthi S, Gupta S, Tripathi R, Nair NN. Mechanism and Kinetics of Aztreonam Hydrolysis Catalyzed by Class-C β-Lactamase: A Temperature-Accelerated Sliced Sampling Study. J Phys Chem B 2018; 122:4299-4308. [DOI: 10.1021/acs.jpcb.8b01287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shalini Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ravi Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
7
|
Decuyper L, Jukič M, Sosič I, Žula A, D'hooghe M, Gobec S. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams. Med Res Rev 2017; 38:426-503. [DOI: 10.1002/med.21443] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Lena Decuyper
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Marko Jukič
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Aleš Žula
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Stanislav Gobec
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
8
|
Vorberg R, Trapp N, Carreira EM, Müller K. Bicyclo[3.2.0]heptane as a Core Structure for Conformational Locking of 1,3-Bis-Pharmacophores, Exemplified by GABA. Chemistry 2017; 23:3126-3138. [DOI: 10.1002/chem.201605179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Raffael Vorberg
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Klaus Müller
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
9
|
Piens N, De Craene S, Franceus J, Mollet K, Van Hecke K, Desmet T, D'hooghe M. Diastereoselective synthesis of 3-acetoxy-4-(3-aryloxiran-2-yl)azetidin-2-ones and their transformation into 3,4-oxolane-fused bicyclic β-lactams. Org Biomol Chem 2016; 14:11279-11288. [PMID: 27853806 DOI: 10.1039/c6ob02221a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
cis-3-Acetoxy-4-(3-aryloxiran-2-yl)azetidin-2-ones were prepared through a Staudinger [2+2]-cyclocondensation between acetoxyketene and the appropriate epoxyimines in a highly diastereoselective way. Subsequent potassium carbonate-mediated acetate hydrolysis, followed by intramolecular ring closure through epoxide ring opening, afforded stereodefined 3-aryl-4-hydroxy-2-oxa-6-azabicyclo[3.2.0]heptan-7-ones as a novel class of C-fused bicyclic β-lactams. Selective benzylic oxidation of bicyclic N-(4-methoxybenzyl)-β-lactams with potassium persulfate and potassium dihydrogen phosphate provided the corresponding N-aroyl derivatives as interesting leads for further β-lactamase inhibitor development.
Collapse
Affiliation(s)
- Nicola Piens
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Sven De Craene
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Jorick Franceus
- Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Karen Mollet
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Kristof Van Hecke
- XStruct, Department of Inorganic and Physical Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Tom Desmet
- Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
10
|
Zhang SJ, Sun WW, Cao P, Dong XP, Liu JK, Wu B. Stereoselective Synthesis of Diazabicyclic β-Lactams through Intramolecular Amination of Unactivated C(sp3)–H Bonds of Carboxamides by Palladium Catalysis. J Org Chem 2016; 81:956-68. [PMID: 26745308 DOI: 10.1021/acs.joc.5b02532] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shi-Jin Zhang
- Pharmacy
College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wen-Wu Sun
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Cao
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Ping Dong
- Pharmacy
College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ji-Kai Liu
- School
of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bin Wu
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School
of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
11
|
Tan Q, Xu B. CH Bond Activation as a Powerful Tool in the Construction of Biologically Active Nitrogen-Containing Heterocycles. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63749-9.00009-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Sun WW, Cao P, Mei RQ, Li Y, Ma YL, Wu B. Palladium-Catalyzed Unactivated C(sp3)–H Bond Activation and Intramolecular Amination of Carboxamides: A New Approach to β-Lactams. Org Lett 2013; 16:480-3. [PMID: 24341538 DOI: 10.1021/ol403364k] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wen-Wu Sun
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Pei Cao
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ren-Qiang Mei
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yue Li
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuan-Liang Ma
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bin Wu
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
13
|
Papp-Wallace KM, Mallo S, Bethel CR, Taracila MA, Hujer AM, Fernández A, Gatta JA, Smith KM, Xu Y, Page MGP, Desarbre E, Bou G, Bonomo RA. A kinetic analysis of the inhibition of FOX-4 β-lactamase, a plasmid-mediated AmpC cephalosporinase, by monocyclic β-lactams and carbapenems. J Antimicrob Chemother 2013; 69:682-90. [PMID: 24235094 DOI: 10.1093/jac/dkt434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Class C β-lactamases are prevalent among Enterobacteriaceae; however, these enzymes are resistant to inactivation by commercially available β-lactamase inhibitors. In order to find novel scaffolds to inhibit class C β-lactamases, the comparative efficacy of monocyclic β-lactam antibiotics (aztreonam and the siderophore monosulfactam BAL30072), the bridged monobactam β-lactamase inhibitor BAL29880, and carbapenems (imipenem, meropenem, doripenem and ertapenem) were tested in kinetic assays against FOX-4, a plasmid-mediated class C β-lactamase (pmAmpC). METHODS The FOX-4 β-lactamase was purified. Steady-state kinetics, electrospray ionization mass spectrometry (ESI-MS) and ultraviolet difference (UVD) spectroscopy were conducted using the β-lactam scaffolds described. RESULTS The K(i) values for the monocyclic β-lactams against FOX-4 β-lactamase were 0.04 ± 0.01 μM (aztreonam) and 0.66 ± 0.03 μM (BAL30072), and the Ki value for the bridged monobactam BAL29880 was 8.9 ± 0.5 μM. For carbapenems, the Ki values ranged from 0.27 ± 0.05 μM (ertapenem) to 2.3 ± 0.3 μM (imipenem). ESI-MS demonstrated the formation of stable covalent adducts when the monocyclic β-lactams and carbapenems were reacted with FOX-4 β-lactamase. UVD spectroscopy suggested the appearance of different chromophoric intermediates. CONCLUSIONS Monocyclic β-lactam and carbapenem antibiotics are effective mechanism-based inhibitors of FOX-4 β-lactamase, a clinically important pmAmpC, and provide stimulus for the development of new inhibitors to inactivate plasmidic and chromosomal class C β-lactamases.
Collapse
Affiliation(s)
- Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Buynak JD. β-Lactamase inhibitors: a review of the patent literature (2010 – 2013). Expert Opin Ther Pat 2013; 23:1469-81. [DOI: 10.1517/13543776.2013.831071] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Dahyot S, Broutin I, de Champs C, Guillon H, Mammeri H. Contribution of asparagine 346 residue to the carbapenemase activity of CMY-2 β-lactamase. FEMS Microbiol Lett 2013; 345:147-53. [PMID: 23763375 DOI: 10.1111/1574-6968.12199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022] Open
Abstract
Only a few plasmid-borne AmpC (pAmpC) β-lactamases, such as CMY-2, can account for carbapenem resistance in Enterobacteriaceae in combination with outer membrane impermeability. The aim of this study was to elucidate the contribution of Asn-346, which is well conserved among carbapenem-hydrolyzing pAmpCs, to the hydrolysis spectrum of CMY-2. Site-directed mutagenesis experiments were carried out to replace Asn-346 with glycine, alanine, valine, glutamate, aspartate, serine, threonine, glutamine, tyrosine, isoleucine, lysine, and histidine. The recombinant plasmids were transferred into wild-type and porin-deficient Escherichia coli strains. Asn-346 replacement reduced significantly the MICs of all β-lactams, except the Asn-346-Ile substitution that increased the MICs of cephalosporins, whereas it decreased those of carbapenems. The biochemical characterization, along with a molecular modeling study, showed that the size and the polarity of the side chain at position 346 assisted substrate binding and turnover. This study shows for the first time that the amino acid at position 346 contributes to the β-lactamase activity of cephalosporinases. Asparagine and isoleucine residues, which are well conserved at position 346 among AmpC-type enzymes, modulate their hydrolysis spectrum in an opposing sense. Ile-346 confers higher level of cephalosporins resistance, whereas Asn-346 confers carbapenem resistance in combination with outer membrane impermeability.
Collapse
Affiliation(s)
- Sandrine Dahyot
- Service de Bactériologie, Centre Hospitalo-Universitaire d'Amiens, Amiens, France
| | | | | | | | | |
Collapse
|
16
|
Mollet K, Dhooghe M, De Kimpe N. Stereoselective synthesis of bicyclic tetrahydrofuran-fused ?-lactams and their conversion into methyl cis-3-aminotetrahydrofuran-2-carboxylates. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Ramesh VV, Puranik VG, Sanjayan GJ. Carbohydrate-derived conformationally restricted bicyclic dipeptides as potential hetero foldamer building blocks. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Chen H, Blizzard TA, Kim S, Wu J, Young K, Park YW, Ogawa AM, Raghoobar S, Painter RE, Wisniewski D, Hairston N, Fitzgerald P, Sharma N, Scapin G, Lu J, Hermes J, Hammond ML. Side chain SAR of bicyclic β-lactamase inhibitors (BLIs). 2. N-Alkylated and open chain analogs of MK-8712. Bioorg Med Chem Lett 2011; 21:4267-70. [DOI: 10.1016/j.bmcl.2011.05.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 12/27/2022]
|
19
|
Page MGP, Dantier C, Desarbre E, Gaucher B, Gebhardt K, Schmitt-Hoffmann A. In vitro and in vivo properties of BAL30376, a β-lactam and dual beta-lactamase inhibitor combination with enhanced activity against Gram-negative Bacilli that express multiple β-lactamases. Antimicrob Agents Chemother 2011; 55:1510-9. [PMID: 21245441 PMCID: PMC3067176 DOI: 10.1128/aac.01370-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/03/2010] [Accepted: 01/07/2011] [Indexed: 11/20/2022] Open
Abstract
BAL30376 is a triple combination comprising a siderophore monobactam, BAL19764; a novel bridged monobactam, BAL29880, which specifically inhibits class C β-lactamases; and clavulanic acid, which inhibits many class A and some class D β-lactamases. The MIC(90) was ≤ 4 μg/ml (expressed as the concentration of BAL19764) for most species of the Enterobacteriaceae family, including strains that produced metallo-β-lactamases and were resistant to all of the other β-lactams tested. The MIC(90) for Stenotrophomonas maltophilia was 2 μg/ml, for multidrug-resistant (MDR) Pseudomonas aeruginosa it was 8 μg/ml, and for MDR Acinetobacter and Burkholderia spp. it was 16 μg/ml. The presence of the class C β-lactamase inhibitor BAL29880 contributed significantly to the activity of BAL30376 against strains of Citrobacter freundii, Enterobacter species, Serratia marcescens, and P. aeruginosa. The presence of clavulanic acid contributed significantly to the activity against many strains of Escherichia coli and Klebsiella pneumoniae that produced class A extended-spectrum β-lactamases. The activity of BAL30376 against strains with metallo-β-lactamases was largely attributable to the intrinsic stability of the monobactam BAL19764 toward these enzymes. Considering its three components, BAL30376 was unexpectedly refractory toward the development of stable resistance.
Collapse
Affiliation(s)
- Malcolm G P Page
- Basilea Pharmaceutica International Ltd., PO Box 3255, CH-4005 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
20
|
Ali AE. Synthesis, spectral, thermal and antimicrobial studies of some new tri metallic biologically active ceftriaxone complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:224-230. [PMID: 21074487 DOI: 10.1016/j.saa.2010.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/25/2010] [Accepted: 09/29/2010] [Indexed: 05/30/2023]
Abstract
Iron, cobalt, nickel and copper complexes of ceftriaxone were prepared in 1:3 ligand:metal ratio to examine the ligating properties of the different moieties of the drug. The complexes were found to have high percentages of coordinated water molecules. The modes of bonding were discussed depending on the infrared spectral absorption peaks of the different allowed vibrations. The Nujol mull electronic absorption spectra and the magnetic moment values indicated the Oh geometry of the metal ions in the complexes. The ESR spectra of the iron, cobalt, and copper complexes were determined and discussed. The thermal behaviors of the complexes were studied by TG and DTA techniques. The antimicrobial activities of the complexes were examined and compared to that of the ceftriaxone itself.
Collapse
Affiliation(s)
- Alaa E Ali
- Chemistry Department, Faculty of Science, Alexandria University, Damanhour, Egypt.
| |
Collapse
|
21
|
Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Drugs 2010; 70:651-79. [PMID: 20394454 DOI: 10.2165/11318430-000000000-00000] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of the three classical beta-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with beta-lactam antibacterials is currently the most successful strategy to combat beta-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A beta-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the beta-lactam ring such as 6-beta-halogenopenicillanates, beta-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-beta-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-beta-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that beta-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group. This review describes all the types of molecules already tested as potential beta-lactamase inhibitors and thus constitutes an update of the current status in beta-lactamase inhibitor discovery.
Collapse
Affiliation(s)
- Carine Bebrone
- Biological Macromolecules, Centre for Protein Engineering, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ram RN, Kumar N, Singh N. Synthesis of Chlorinated Bicyclic C-Fused Tetrahydrofuro[3,2-c]azetidin-2-ones. J Org Chem 2010; 75:7408-11. [DOI: 10.1021/jo101045z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ram N. Ram
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Neeraj Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Nem Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
23
|
Moghadam PN, Azaryan E, Zeynizade B. Investigation of Poly(styrene-alt-maleic anhydride) Copolymer for Controlled Drug Delivery of Ceftriaxone Antibiotic. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2010. [DOI: 10.1080/10601325.2010.492265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob Agents Chemother 2010; 54:2291-302. [PMID: 20308379 DOI: 10.1128/aac.01525-09] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BAL30072 is a new monocyclic beta-lactam antibiotic belonging to the sulfactams. Its spectrum of activity against significant Gram-negative pathogens with beta-lactam-resistant phenotypes was evaluated and was compared with the activities of reference drugs, including aztreonam, ceftazidime, cefepime, meropenem, imipenem, and piperacillin-tazobactam. BAL30072 showed potent activity against multidrug-resistant (MDR) Pseudomonas aeruginosa and Acinetobacter sp. isolates, including many carbapenem-resistant strains. The MIC(90)s were 4 microg/ml for MDR Acinetobacter spp. and 8 microg/ml for MDR P. aeruginosa, whereas the MIC(90) of meropenem for the same sets of isolates was >32 microg/ml. BAL30072 was bactericidal against both Acinetobacter spp. and P. aeruginosa, even against strains that produced metallo-beta-lactamases that conferred resistance to all other beta-lactams tested, including aztreonam. It was also active against many species of MDR isolates of the Enterobacteriaceae family, including isolates that had a class A carbapenemase or a metallo-beta-lactamase. Unlike other monocyclic beta-lactams, BAL30072 was found to trigger the spheroplasting and lysis of Escherichia coli rather than the formation of extensive filaments. The basis for this unusual property is its inhibition of the bifunctional penicillin-binding proteins PBP 1a and PBP 1b, in addition to its high affinity for PBP 3, which is the target of monobactams, such as aztreonam.
Collapse
|
25
|
Endimiani A, Doi Y, Bethel CR, Taracila M, Adams-Haduch JM, O'Keefe A, Hujer AM, Paterson DL, Skalweit MJ, Page MGP, Drawz SM, Bonomo RA. Enhancing resistance to cephalosporins in class C beta-lactamases: impact of Gly214Glu in CMY-2. Biochemistry 2010; 49:1014-23. [PMID: 19938877 DOI: 10.1021/bi9015549] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biochemical properties of CMY-32, a class C enzyme possessing a single-amino acid substitution in the Omega loop (Gly214Glu), were compared to those of the parent enzyme, CMY-2, a widespread class C beta-lactamase. In parallel with our microbiological characterization, the Gly214Glu substitution in CMY-32 reduced catalytic efficiency (k(cat)/K(m)) by 50-70% against "good" substrates (i.e., cephalothin) while increasing k(cat)/K(m) against "poor" substrates (i.e., cefotaxime). Additionally, CMY-32 was more susceptible to inactivation by sulfone beta-lactamase inhibitors (i.e., sulbactam and tazobactam) than CMY-2. Timed electrospray ionization mass spectrometry (ESI-MS) analysis of the reaction of CMY-2 and CMY-32 with different substrates and inhibitors suggested that both beta-lactamases formed similar intermediates during catalysis and inactivation. We next showed that the carbapenems (imipenem, meropenem, and doripenem) form long-lived acyl-enzyme intermediates and present evidence that there is beta-lactamase-catalyzed elimination of the C(6) hydroxyethyl substituent. Furthermore, we discovered that the monobactam aztreonam and BAL29880, a new beta-lactamase inhibitor of the monobactam class, inactivate CMY-2 and CMY-32 by forming an acyl-enzyme intermediate that undergoes elimination of SO(3)(2-). Molecular modeling and dynamics simulations suggest that the Omega loop is more constrained in CMY-32 than CMY-2. Our model also proposes that Gln120 adopts a novel conformation in the active site while new interactions form between Glu214 and Tyr221, thus explaining the increased level of cefotaxime hydrolysis. When it is docked in the active site, we observe that BAL29880 exploits contacts with highly conserved residues Lys67 and Asn152 in CMY-2 and CMY-32. These findings highlight (i) the impact of single-amino acid substitutions on protein evolution in clinically important AmpC enzymes and (ii) the novel insights into the mechanisms by which carbapenems and monobactams interact with CMY-2 and CMY-32 beta-lactamases.
Collapse
Affiliation(s)
- Andrea Endimiani
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
27
|
Blizzard TA, Chen H, Kim S, Wu J, Young K, Park YW, Ogawa A, Raghoobar S, Painter RE, Hairston N, Lee SH, Misura A, Felcetto T, Fitzgerald P, Sharma N, Lu J, Ha S, Hickey E, Hermes J, Hammond ML. Side chain SAR of bicyclic beta-lactamase inhibitors (BLIs). 1. Discovery of a class C BLI for combination with imipinem. Bioorg Med Chem Lett 2009; 20:918-21. [PMID: 20044254 DOI: 10.1016/j.bmcl.2009.12.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 11/16/2022]
Abstract
Bridged monobactam beta-lactamase inhibitors were prepared and evaluated as potential partners for combination with imipenem to overcome class C beta-lactamase mediated resistance. The (S)-azepine analog 2 was found to be effective in both in vitro and in vivo assays and was selected for preclinical development.
Collapse
Affiliation(s)
- Timothy A Blizzard
- Department of Medicinal Chemistry, Merck Research Labs, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen PC, Wharton RE, Patel PA, Oyelere AK. Direct diazo-transfer reaction on beta-lactam: synthesis and preliminary biological activities of 6-triazolylpenicillanic acids. Bioorg Med Chem 2007; 15:7288-300. [PMID: 17855098 PMCID: PMC2755539 DOI: 10.1016/j.bmc.2007.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 08/14/2007] [Accepted: 08/20/2007] [Indexed: 11/30/2022]
Abstract
In this study we report the first example of a direct diazo-transfer reaction on readily available 6-aminopenicillanates to give 6-azidopenicillanates in high yield. Subsequent Cu(I)-catalyzed Huisgen cycloaddition between these 6-azidopenicillanates and assorted terminal alkynes facilely furnished 6-triazolylpenicillanic acids. Preliminary biological screening indicates that these triazolylpenicillanic acids possess low to moderate antibacterial activities.
Collapse
Affiliation(s)
- Po C Chen
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | |
Collapse
|
29
|
Buynak JD. Understanding the longevity of the beta-lactam antibiotics and of antibiotic/beta-lactamase inhibitor combinations. Biochem Pharmacol 2005; 71:930-40. [PMID: 16359643 DOI: 10.1016/j.bcp.2005.11.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/02/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
Microbial resistance necessitates the search for new targets and new antibiotics. However, it is likely that resistance problems will eventually threaten these new products and it may, therefore, be instructive to review the successful employment of beta-lactam antibiotic/beta-lactamase inhibitor combinations to combat penicillin resistance. These combination drugs have proven successful for more than two decades, with inhibitor resistance still being relatively rare. The beta-lactamase inhibitors are mechanism-based irreversible inactivators. The ability of the inhibitors to avoid resistance may be due to the structural similarities between the substrate and inhibitor.
Collapse
Affiliation(s)
- John D Buynak
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| |
Collapse
|
30
|
Venkatesan AM, Gu Y, Dos Santos O, Abe T, Agarwal A, Yang Y, Petersen PJ, Weiss WJ, Mansour TS, Nukaga M, Hujer AM, Bonomo RA, Knox JR. Structure−Activity Relationship of 6-Methylidene Penems Bearing Tricyclic Heterocycles as Broad-Spectrum β-Lactamase Inhibitors: Crystallographic Structures Show Unexpected Binding of 1,4-Thiazepine Intermediates. J Med Chem 2004; 47:6556-68. [PMID: 15588091 DOI: 10.1021/jm049680x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The design and synthesis of a series of seven tricyclic 6-methylidene penems as novel class A and C serine beta-lactamase inhibitors is described. These compounds proved to be very potent inhibitors of the TEM-1 and AmpC beta-lactamases and less so against the class B metallo-beta-lactamase CcrA. In combination with piperacillin, their in vitro activities enhanced susceptibility of all class C resistant strains from various bacteria. Crystallographic structures of a serine-bound reaction intermediate of 17 with the class A SHV-1 and class C GC1 enzymes have been established to resolutions of 2.0 and 1.4 A, respectively, and refined to R-factors equal 0.163 and 0.145. In both beta-lactamases, a seven-membered 1,4-thiazepine ring has formed. The stereogenic C7 atom in the ring has the R configuration in the SHV-1 intermediate and has both R and S configurations in the GC1 intermediate. Hydrophobic stacking interactions between the tricyclic C7 substituent and a tyrosine side chain, rather than electrostatic or hydrogen bonding by the C3 carboxylic acid group, dominate in both complexes. The formation of the 1,4- thiazepine ring structures is proposed based on a 7-endo-trig cyclization.
Collapse
|
31
|
|
32
|
Nukaga M, Abe T, Venkatesan AM, Mansour TS, Bonomo RA, Knox JR. Inhibition of class A and class C beta-lactamases by penems: crystallographic structures of a novel 1,4-thiazepine intermediate. Biochemistry 2004; 42:13152-9. [PMID: 14609325 DOI: 10.1021/bi034986b] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new beta-lactamase inhibitor, a methylidene penem having a 5,6-dihydro-8H-imidazo[2,1-c][1,4]oxazine heterocyclic substituent at the C6 position with a Z configuration, irreversibly inhibits both class A and class C serine beta-lactamases with IC(50) values of 0.4 and 9.0 nM for TEM-1 and SHV-1 (class A), respectively, and 4.8 nM in AmpC (class C) beta-lactamases. The compound also inhibits irreversibly the class C extended-spectrum GC1 beta-lactamase (IC(50) = 6.2 nM). High-resolution crystallographic structures of a reaction intermediate of (5R)-(6Z)-6-(5,6-dihydro-8H-imidazo[2,1-c][1,4]oxazin-2-ylmethylene)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-3-carboxylic acid 1 with the SHV-1 beta-lactamase and with the GC1 beta-lactamase have been determined by X-ray diffraction to resolutions of 1.10 and 1.38 A, respectively. The two complexes were refined to crystallographic R-factors (R(free)) of 0.141 (0.186) and 0.138 (0.202), respectively. Cryoquenching of the reaction of 1 with each beta-lactamase crystal produced a common, covalently bound intermediate. After acylation of the serine, a nucleophilic attack by the departing thiolate on the C6' atom yielded a novel seven-membered 1,4-thiazepine ring having R stereochemistry at the new C7 moiety. The orientation of this ring in each complex differs by a 180 degrees rotation about the bond to the acylated serine. The acyl ester bond is stabilized to hydrolysis through resonance stabilization with the dihydrothiazepine ring and by low occupancy or disorder of hydrolytic water molecules. In the class A complex, the buried water molecule on the alpha-face of the ester bond appears to be loosely bound or absent. In the class C complex, a water molecule on the beta-face is disordered and poorly activated for hydrolysis. Here, the acyl intermediate is unable to assist its own hydrolysis, as is thought to occur with many class C substrates.
Collapse
Affiliation(s)
- Michiyoshi Nukaga
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wilkinson AS, Bryant PK, Meroueh SO, Page MGP, Mobashery S, Wharton CW. A dynamic structure for the acyl-enzyme species of the antibiotic aztreonam with the Citrobacter freundii beta-lactamase revealed by infrared spectroscopy and molecular dynamics simulations. Biochemistry 2003; 42:1950-7. [PMID: 12590581 DOI: 10.1021/bi0266941] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infrared difference spectra show that at least 4 conformations coexist for the ester carbonyl group of the stable acyl-enzyme species formed between the antibiotic aztreonam and the class C beta-lactamase from Citrobacter freundii. A novel method for the assignment of the bands that arise from the ester carbonyl group has been employed. This has made use of the finding that the infrared absorption intensity of aliphatic esters is surprisingly constant, so a direct comparison with simple model esters has been possible. This has allowed a clear distinction to be made between ester and amide (protein) absorptions. The polarity of the conformer environment varies from hexane-like to strongly hydrogen-bonded. We assume that the conformer with the lowest frequency (1,690 cm(-)(1)) and hence the strongest hydrogen-bonding is the singular conformer observed in the X-ray crystallographic structure, since a good interaction via two hydrogen bonds with the oxyanion hole is seen. Molecular dynamics simulation by the method of locally enhanced sampling revealed that the motion of the ester carbonyl of the acyl-enzyme species in and out of the oxyanion hole is facile. The simulation revealed two pathways for this motion that would go through intermediates that first break one or the other of the two hydrogen bonds to the oxyanion hole, prior to departure of the carbonyl moiety out of the active site. It is likely that such motion for the acyl-enzyme species might also occur with more typical beta-lactam substrates for beta-lactamases, but their detection in the more rapid time scale may prove a challenge.
Collapse
Affiliation(s)
- Alan-Shaun Wilkinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Hillisch A, Hilgenfeld R. The role of protein 3D-structures in the drug discovery process. EXS 2003:157-81. [PMID: 12613176 DOI: 10.1007/978-3-0348-7997-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
35
|
Copar A, Prevec T, Anzic B, Mesar T, Selic L, Vilar M, Solmajer T. Design, synthesis and bioactivity evaluation of tribactam beta lactamase inhibitors. Bioorg Med Chem Lett 2002; 12:971-5. [PMID: 11959006 DOI: 10.1016/s0960-894x(02)00061-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Known carbapenem compounds with inhibitory effect towards beta-lactamase enzymes are formed from bicyclical beta lactam structural scaffolds. On the basis of results from theoretical computational methods and molecular modelling we have designed and developed a synthetic route towards novel, biologically active tricyclic derivatives of carbapenems.
Collapse
Affiliation(s)
- Anton Copar
- Lek d.d., Research and Development, Celovska 135, 1526, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
A theoretical study of the water-assisted alkaline hydrolysis of 2-azetidinone, 3-formylamino-2-azetidinone and 3-formylamino-2-azetidine-1-sulfonate ion is carried out at the B3LYP/6-31+G* level. The effect of bulk solvent is taken into account using the PCM solvation model while specific solvent effects are represented by the inclusion of an ancillary water molecule along the reaction profile. The calculated free energy barriers in solution are in reasonable agreement with experimental values. The observed substituent effects due to the presence of the 3-formylamino and the SO(3) groups attached to the beta-lactam ring are crucial factors determining the hydrolysis of monobactam antibiotics.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica Universidad de Oviedo C/ Julian Clavería 8, 33006, Oviedo Asturias, Spain
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Steger M, Hubschwerlen C, Schmid G. Solid- and solution-phase synthesis of highly-substituted-pyrrolidine libraries. Bioorg Med Chem Lett 2001; 11:2537-40. [PMID: 11549464 DOI: 10.1016/s0960-894x(01)00495-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Starting from a complex bicyclic beta-lactam scaffold we have demonstrated the possible production of libraries of a new class of drug-like, highly substituted pyrrolidines. The choice of the type of substitution was made by optimizing various synthetic routes. The selection of each compound is the result of a filtration of a large virtual combinatorial chemical space, using simple criteria. The access to these complex pyrrolidines needed only four to six synthetic steps.
Collapse
Affiliation(s)
- M Steger
- Pharma Research Departments, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland.
| | | | | |
Collapse
|
39
|
Crichlow GV, Nukaga M, Doppalapudi VR, Buynak JD, Knox JR. Inhibition of Class C β-Lactamases: Structure of a Reaction Intermediate with a Cephem Sulfone†,‡. Biochemistry 2001; 40:6233-9. [PMID: 11371184 DOI: 10.1021/bi010131s] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystallographic structure of the Enterobacter cloacae GC1 extended-spectrum class C beta-lactamase, inhibited by a new 7-alkylidenecephalosporin sulfone, has been determined by X-ray diffraction at 100 K to a resolution of 1.6 A. The crystal structure was solved by molecular replacement using the unliganded structure [Crichlow et al. (1999) Biochemistry 38, 10256-10261] and refined to a crystallographic R-factor equal to 0.183 (R(free) 0.208). Cryoquenching of the reaction of the sulfone with the enzyme produced an intermediate that is covalently bound via Ser64. After acylation of the beta-lactam ring, the dihydrothiazine dioxide ring opened with departure of the sulfinate. Nucleophilic attack of a side chain pyridine nitrogen atom on the C6 atom of the resultant imine yielded a bicyclic aromatic system which helps to stabilize the acyl enzyme to hydrolysis. A structural assist to this resonance stabilization is the positioning of the anionic sulfinate group between the probable catalytic base (Tyr150) and the acyl ester bond so as to block the approach of a potentially deacylating water molecule. Comparison of the liganded and unliganded protein structures showed that a major movement (up to 7 A) and refolding of part of the Omega-loop (215-224) accompanies the binding of the inhibitor. This conformational flexibility in the Omega-loop may form the basis of an extended-spectrum activity of class C beta-lactamases against modern cephalosporins.
Collapse
Affiliation(s)
- G V Crichlow
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Three mechanisms of antimicrobial resistance predominate in bacteria: antibiotic inactivation, target site modification, and altered uptake by way of restricted entry and/or enhanced efflux. Many of these involve enzymes or transport proteins whose activity can be targeted directly in an attemptto compromise resistance and, thus, potentiate antimicrobial activity. Alternatively, novel agents unaffected by these resistance mechanisms can be developed. Given the ongoing challenge posed by antimicrobial resistance in bacteria, targeting resistance in this way may be our best hope at prolonging the antibiotic era.
Collapse
Affiliation(s)
- K Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
41
|
Abstract
So far, two strategies have been applied to develop new anti-infective agents: (a) the synthesis of analogs of classical antibiotics with enhanced activity against resistant pathogens and (b) the screening of naturally occurring substances and libraries of synthetic compounds for antimicrobial activity in whole-cell assays. Today, the same principles are being used; however, the search for antimicrobial compounds with novel modes of action is based on targeting specific resistance and virulence factors. Novel targets for anti-infective agents are currently being discovered as a consequence of a better understanding of cell biology, the molecular basis of bacterial resistance, the gene-pathogenicity relationship and the mechanism of the infection process.
Collapse
Affiliation(s)
- E L Setti
- Axys Pharmaceuticals, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
42
|
Wright GD. Resisting resistance: new chemical strategies for battling superbugs. CHEMISTRY & BIOLOGY 2000; 7:R127-32. [PMID: 10873842 DOI: 10.1016/s1074-5521(00)00126-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As microbes become increasingly resistant to antibiotics, and in many cases to several drugs simultaneously, the search is on to find new therapies. One method to combat resistance is to use inhibitors of resistance mechanisms to potentiate existing antibiotics. Recent efforts are encouraging and highlight the importance of research at the chemistry-microbiology interface in developing new approaches to tackle resistance.
Collapse
Affiliation(s)
- G D Wright
- Department of Biochemistry, Antimicrobial Research Centre, McMaster University, ON, L8N 3Z5, Canada.
| |
Collapse
|
43
|
Abstract
The use of beta-lactamase inhibitors in combination with a beta-lactamase-susceptible antibiotic is a useful strategy to rescue otherwise good antibiotics from failure. However, recent years have seen a rise in the numbers of beta-lactamases that are insensitive to the available beta-lactamase inhibitors. This review summarizes of the mechanisms of action of the principal types of inhibitors and the ways in which beta-lactamase are thought to develop resistance towards them. Ten general classes of inhibitors are reviewed, especially those of therapeutic importance (clavulanic acid, penam sulfones and carbapenems). Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Malcolm G. P. Page
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| |
Collapse
|
44
|
Babini GS, Livermore DM. Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Southern and Western Europe in 1997-1998. J Antimicrob Chemother 2000; 45:183-9. [PMID: 10660500 DOI: 10.1093/jac/45.2.183] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 1994 survey of 35 intensive care units (ICUs) in Western and Southern Europe found extended-spectrum beta-lactamases (ESBLs) in 220/966 (23%) klebsiellae. A follow-up survey from May 1997 to October 1998 collected klebsiellae from 24 ICUs, including 23 that participated in 1994. Twenty-one ICUs sent 433 eligible isolates, of which 110 (25%) had ESBLs. The prevalence of ESBLs had not changed significantly from 1994 but the proportion of ESBL-producers resistant to piperacillin/tazobactam had risen from 31% to 63% (P < 0.001), and most of this resistance was high level (MICs >/= 128 + 4 mg/L). The proportion of Klebsiella oxytoca isolates hyperproducing K1 beta-lactamase rose from 8% in 1994 to 21% in 1997-1998 (P < 0. 001). Most klebsiellae (99%) were very susceptible to meropenem (mode MIC 0.03 mg/L) but three had decreased susceptibility (MICs 2-4 mg/L). These could not hydrolyse carbapenems. Aminoglycoside resistance was not significantly changed in prevalence from 1994; ciprofloxacin resistance occurred in 31% of ESBL-producers in both years, but had increased among non-producers (2% in 1994 versus 7% in 1997-1998, P < 0.001).
Collapse
Affiliation(s)
- G S Babini
- Antibiotic Resistance Monitoring and Reference Laboratory, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK
| | | |
Collapse
|
45
|
Hamilton-Miller JM. beta-lactams: variations on a chemical theme, with some surprising biological results. J Antimicrob Chemother 1999; 44:729-34. [PMID: 10590272 DOI: 10.1093/jac/44.6.729] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J M Hamilton-Miller
- Department of Medical Microbiology, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
46
|
The Red Menace: Emerging Issues in Antimicrobial Resistance in Gram-Negative Bacilli. Curr Infect Dis Rep 1999; 1:338-346. [PMID: 11095807 DOI: 10.1007/s11908-999-0040-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gram-negative bacilli cause more than one third of all nosocomial infections in US hospitals. Despite a surfeit of new and highly potent antimicrobial agents, the problem of resistance in these pathogens continues to increase. Particularly important is the emergence of resistance to the fluoroquinolone and beta-lactam classes of antimicrobial agents. Recent work has confirmed that resistance to fluoroquinolone antibiotics is a complex process that involves mutations in the target enzymes (topoisomerase II and IV), decreased access to the target enzyme resulting from low permeability of the outer membrane (this is primarily important in Pseudomonas aeruginosa), and active efflux from the cell. Resistance to beta-lactam antibiotics, however, is primarily caused by the elaboration of an ever-growing number of beta-lactamases. Our ability to understand the genetic and biochemical underpinnings of these resistance phenotypes will be an important factor in determining the ultimate success of efforts to control their emergence and spread.
Collapse
|
47
|
Chapter 29. Structure-Based Drug Design. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1999. [DOI: 10.1016/s0065-7743(08)60591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
48
|
Hubschwerlen C, Angehrn P, Gubernator K, Page MG, Specklin JL. Structure-based design of beta-lactamase inhibitors. 2. Synthesis and evaluation of bridged sulfactams and oxamazins. J Med Chem 1998; 41:3972-5. [PMID: 9767634 DOI: 10.1021/jm9800245] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of bridged monocyclic beta-lactams activated by various groups on the beta-lactam nitrogen (X = OCH2CO2H, OSO3H) has been synthesized and evaluated. Among them, the bridged sulfactams (X = OSO3H) were found to be effective beta-lactamase inhibitors. They inhibit both class A and class C beta-lactamases.
Collapse
Affiliation(s)
- C Hubschwerlen
- Preclinical Research, F. Hoffmann-La Roche Ltd., CH-4070 Basle, Switzerland
| | | | | | | | | |
Collapse
|