1
|
Fatima A, Shahzadi A, Majeed A, Al-Rawi SS, Ibrahim AH, Iqbal MA, Qaleel F. Green Catalysis: Water as a Sustainable Medium in Organocatalyzed Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8451-8479. [PMID: 40119848 DOI: 10.1021/acs.langmuir.4c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
The use of organocatalysts has increased significantly in recent years due to their tremendous applications in green solvents. Thus, using water as a solvent has evolved as a critical factor. Organocatalysts are efficient and sustainable agents for promoting chemical reactions in water. The literature has been extensively reviewed, and the use of various organocatalysts for three fundamental C-C bond-forming processes─the Aldol, Michael, and Mannich reactions in aqueous media─have been compiled in this study. Organocatalysts can overcome the limitations of conventional organic solvents by achieving high reaction rates and regioselectivity in water. This Review highlights the advantages of organocatalysts in aqueous media for these key reactions. It discusses the principles behind designing effective organocatalysts, focusing on their impact on selectivity, sustainability, and reaction efficiency. This study also summarizes the most significant advancements in sustainable organic reactions over the past decade.
Collapse
Affiliation(s)
- Anfal Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anam Shahzadi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Adnan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Sawsan S Al-Rawi
- Biology Education Department, Tishk International University, 44001 Erbil, Iraq
| | - Ahmad H Ibrahim
- Pharmacy Department, Tishk International University, 44001 Erbil, Iraq
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Faisal Qaleel
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Hikawa R, Shimogaki M, Kano T. Construction of three contiguous stereocenters through amine-catalyzed asymmetric aldol reactions. Chem Commun (Camb) 2023. [PMID: 37334826 DOI: 10.1039/d3cc01606d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Three contiguous stereocenters were constructed by an amino acid-catalyzed asymmetric aldol reaction of α-siloxyketones with racemizable α-haloaldehydes via dynamic kinetic resolution. One-pot catalytic asymmetric synthesis of the highly functionalized products could also be accomplished by the α-bromination of simple aldehydes and the subsequent asymmetric aldol reaction.
Collapse
Affiliation(s)
- Ryoga Hikawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Mio Shimogaki
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Taichi Kano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
3
|
Ahmed E, Cho J, Friedmann L, Jang SS, Weck M. Catalytically Active Multicompartment Micelles. JACS AU 2022; 2:2316-2326. [PMID: 36311828 PMCID: PMC9597600 DOI: 10.1021/jacsau.2c00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
This article presents the self-assembly behavior of multicompartment micelles (MCMs) in water into morphologies with multiple segregated domains and their use as supports for aqueous catalysis. A library of poly(norbornene)-based amphiphilic bottlebrush copolymers containing covalently attached l-proline in the hydrophobic, styrene, and pentafluorostyrene domains and a poly(ethylene glycol)-containing repeat unit as the hydrophilic block have been synthesized using ring-opening metathesis polymerization. Interaction parameter (χ) values between amphiphilic blocks were determined using a Flory-Huggins-based computational model. The morphologies of the MCMs are observed via cryogenic transmission electron microscopy and modeled using dissipative particle dynamic simulations. The catalytic activities of these MCM nanoreactors were systematically investigated using the aldol addition between 4-nitrobenzaldehyde and cyclohexanone in water as a model reaction. MCMs present an ideal environment for catalysis by providing control over water content and enhancing interactions between the catalytic sites and the aldehyde substrate, thereby forming the aldol product in high yields and selectivities that is otherwise not possible under aqueous conditions. Catalyst location, block ratio, and functionality have substantial influences on micelle morphology and, ultimately, catalytic efficiency. "Clover-like" and "core-shell" micelle morphologies displayed the best catalytic activity. Our MCM-based catalytic system expands the application of these nanostructures beyond selective storage of guest molecules and demonstrates the importance of micelle morphology on catalytic activity.
Collapse
Affiliation(s)
- Eman Ahmed
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jinwon Cho
- School
of Materials Science and Engineering, Georgia
Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Lulu Friedmann
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seung Soon Jang
- School
of Materials Science and Engineering, Georgia
Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Marcus Weck
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
4
|
Trajkovic M, Pavlovic M, Bihelovic F, Ferjancic Z, Saicic RN. Total Synthesis of ( + )-Swainsonine, (–)- Swainsonine, ( + )-8- epi- Swainsonine and ( + )- Dideoxy-Imino-Lyxitol by an Organocatalyzed Aldolization/Reductive Amination Sequence. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221091672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A tactical combination of either ( S)- or ( R)-proline catalyzed aldol reaction followed by intramolecular reductive amination enabled the synthesis of a chiral pyrrolidine derivative with 3 contiguous stereocenters in only 2 synthetic steps, starting from achiral precursors. This product, obtainable in both enantiomeric forms, was further exploited as a common intermediate in total syntheses of the biologically active iminosugars: ( + )-swainsonine, (–)-swainsonine, ( + )-8- epi-swainsonine, and ( + )-dideoxy-imino-lyxitol.
Collapse
Affiliation(s)
- Milos Trajkovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milos Pavlovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Filip Bihelovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | | | - Radomir N Saicic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
5
|
Li L, El Khoury A, Clement BO, Wu C, Harran PG. Asymmetric Organocatalysis Enables Rapid Assembly of Portimine Precursor Chains. Org Lett 2022; 24:2607-2612. [PMID: 35377667 DOI: 10.1021/acs.orglett.2c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequential organocatalytic additions of 2-furanone and dihydroxyacetone derivatives to a crotonaldehyde lynchpin provide polyhydroxylated chains reminiscent of lactonized deoxo Kdn type sugars. Further homologation via Kulinkovich ring opening of the butyrolactone and acylation of the zinc homoenolate derived from the incipient cyclopropanol allows assembly of functionalized chain precursors to portimine. Our experiments probe the stability and reactivity of monosubstituted methylidene pyrrolines and generate advanced intermediates useful for exploring the biosynthesis and de novo synthesis of portimine.
Collapse
Affiliation(s)
- Liubo Li
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Anton El Khoury
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Brennan O'Neil Clement
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
6
|
Funabiki K, Gotoh T, Kani R, Inuzuka T, Kubota Y. Highly diastereo- and enantioselective organocatalytic synthesis of trifluoromethylated erythritols based on the in situ generation of unstable trifluoroacetaldehyde. Org Biomol Chem 2021; 19:1296-1304. [PMID: 33315035 DOI: 10.1039/d0ob02067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thus far, only a few methods for the asymmetric synthesis of erythritols bearing a trifluoromethyl group have been developed, and these methods present serious disadvantages such as the requirement of multiple steps for the preparation of their starting materials, low stereoselectivity, and the use of highly toxic reagents. Herein, we have developed a highly diastereo- and enantioselective organocatalytic method to synthesise erythritols bearing a trifluoromethyl group using (1) a commercially available organocatalyst to produce unstable trifluoroacetaldehyde in situ from its corresponding hemiacetal, followed by the simultaneous asymmetric carbon-carbon bond-forming reaction of the organocatalyst with an in situ-generated chiral enamine derived from 2,2-dimethyl-1,3-dioxane-5-one to obtain the corresponding aldol product in good yield (65-80%) with high diastereoselectivity (up to 94% de) and excellent enantioselectivity (up to >98% ee), (2) the highly diastereoselective reduction of the ketone moiety in the aldol product (up to 98% de), and (3) the deprotection of the acetal moiety.
Collapse
Affiliation(s)
- Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.
| | - Toshiya Gotoh
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.
| | - Ryunosuke Kani
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Centre, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
7
|
Kon K, Kohari Y, Murata M. Tripeptide-Catalyzed Direct Asymmetric Aldol Reaction of Activated Ketones. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yoshihito Kohari
- Division of Applied Chemistry, Faculty of Engineering, Kitami Institute of Technology
| | | |
Collapse
|
8
|
Abstract
The proline-catalysed asymmetric aldol reaction is usually carried out in highly dipolar aprotic solvents (dimethylsulfoxide, dimethylformamide, acetonitrile) where proline presents an acceptable solubility. Protic solvents are generally characterized by poor stereocontrol (e.g., methanol) or poor reactivity (e.g., water). Here, we report that water/methanol mixtures are exceptionally simple and effective reaction media for the intermolecular organocatalytic aldol reaction using the simple proline as the catalyst.
Collapse
|
9
|
Shimogaki M, Takeshima A, Kano T, Maruoka K. Enantioselective Synthesis of Monosaccharide Analogues by Two-Step Sequential Enamine Catalysis: Benzoyloxylation and Aldol Reaction. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mio Shimogaki
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Aika Takeshima
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Taichi Kano
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Keiji Maruoka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
- Graduate School of Pharmaceutical Sciences; Graduate School of Science; Kyoto University; Sakyo 606-8501 Kyoto Japan
- School of Chemical Engineering and Light Industry; Graduate School of Science; Guangdong University of Technology; 510006 Guangzhou China
| |
Collapse
|
10
|
Xu EJ, Song Y, Wei ZL, Wang R, Duan HF, Lin YJ, Yang QB, Li YX. Novel chiral proline-based organocatalysts with amide and thiourea–amine units for highly efficient asymmetric aldol reaction in saturated brine without additives. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of novel proline-based organocatalysts with amide and thiourea-amine units (7a–7f) were developed and evaluated in the asymmetric aldol reaction of 4-nitrobenzaldehyde with cyclohexanone. The organocatalyst (7c or 7d, 5 mol%) exhibited efficient catalytic activity to afford aldol products in high diastereoselectivity (up to >99:1), enantioselectivity (up to >99%), and yield (up to >96%) at 0 °C in saturated brine without adding an acid. Aldol products of benzaldehyde derivatives almost universally provide high diastereoselectivity and enantioselectivity.
Collapse
Affiliation(s)
- En-Jie Xu
- College of Chemistry, Jilin University, Changchun 130012, China
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yan Song
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zhong-Lin Wei
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Rui Wang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hai-Feng Duan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying-Jie Lin
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qing-Biao Yang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yao-Xian Li
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Aumala V, Mollerup F, Jurak E, Blume F, Karppi J, Koistinen AE, Schuiten E, Voß M, Bornscheuer U, Deska J, Master ER. Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. CHEMSUSCHEM 2019; 12:848-857. [PMID: 30589228 PMCID: PMC6519198 DOI: 10.1002/cssc.201802580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Plant-derived carbohydrates are an abundant renewable resource. Transformation of carbohydrates into new products, including amine-functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, biocatalytic production routes to amino carbohydrates, including oligosaccharides, are demonstrated. In each case, two-step biocatalysis was performed to functionalize d-galactose-containing carbohydrates by employing the galactose oxidase from Fusarium graminearum or a pyranose dehydrogenase from Agaricus bisporus followed by the ω-transaminase from Chromobacterium violaceum (Cvi-ω-TA). Formation of 6-amino-6-deoxy-d-galactose, 2-amino-2-deoxy-d-galactose, and 2-amino-2-deoxy-6-aldo-d-galactose was confirmed by mass spectrometry. The activity of Cvi-ω-TA was highest towards 6-aldo-d-galactose, for which the highest yield of 6-amino-6-deoxy-d-galactose (67 %) was achieved in reactions permitting simultaneous oxidation of d-galactose and transamination of the resulting 6-aldo-d-galactose.
Collapse
Affiliation(s)
- Ville Aumala
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Filip Mollerup
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Edita Jurak
- Department of Aquatic Biotechnology and Bioproduct EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Fabian Blume
- Department of Chemistry and Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Johanna Karppi
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Antti E. Koistinen
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Eva Schuiten
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Moritz Voß
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Uwe Bornscheuer
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Jan Deska
- Department of Chemistry and Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Emma R. Master
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoOntarioM5S 3E5Canada
| |
Collapse
|
12
|
Wang X, Chen Y, Wang J, Yang Y. Total Synthesis of the Trisaccharide Antigen of the Campylobacter jejuni RM1221 Capsular Polysaccharide via de Novo Synthesis of the 6-Deoxy-d- manno-heptose Building Blocks. J Org Chem 2019; 84:2393-2403. [PMID: 30691266 DOI: 10.1021/acs.joc.8b02394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A de novo approach utilizing the d-proline-catalyzed and LDA-promoted aldol reactions as key steps for the preparation of differentiated-protected 6-deoxy-d- manno-heptose building blocks was developed. PPh3AuBAr4F-catalyzed glycosylation with the 6-deoxy-d- manno-heptosyl o-hexynylbenzoate as donor was demonstrated as a direct and practical method for the stereoselective synthesis of the β-linked 6-deoxy-d- manno-heptoside as the major product. Coupling of the 6-deoxy-α-d- manno-heptosyl H-phosphonate with the 3-hydroxyl disaccharide acceptor based on H-phosphonate chemistry was described for the construction of the trisaccharide skeleton with the acid-labile phosphodiester linkage. Finally, first total synthesis of the unique trisaccharide antigen of the capsular polysaccharide of Campylobacter jejuni RM1221 that belongs to HS:53 serotype complex was accomplished for further evaluation as vaccine candidate against C. jejuni RM1221 infection.
Collapse
Affiliation(s)
- Xiaoman Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yan Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Junchang Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
13
|
Yasuda M, Saga Y, Tokunaga T, Itoh S, Aoki S. Stereoselective aldol reactions of dihydroxyacetone derivatives catalyzed by chiral Zn2+ complexes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Aikawa K, Yabuuchi K, Torii K, Mikami K. Copper-catalyzed asymmetric methylation of fluoroalkylated pyruvates with dimethylzinc. Beilstein J Org Chem 2018; 14:576-582. [PMID: 29623119 PMCID: PMC5852614 DOI: 10.3762/bjoc.14.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/19/2018] [Indexed: 11/23/2022] Open
Abstract
The catalytic asymmetric methylation of fluoroalkylated pyruvates is shown with dimethylzinc as a methylating reagent in the presence of a copper catalyst bearing a chiral phosphine ligand. This is the first catalytic asymmetric methylation to synthesize various α-fluoroalkylated tertiary alcohols with CF3, CF2H, CF2Br, and n-C n F2n+1 (n = 2, 3, 8) groups in good-to-high yields and enantioselectivities. Axial backbones and substituents on phosphorus atoms of chiral phosphine ligands critically influence the enantioselectivity. Moreover, the methylation of simple perfluoroalkylated ketones is found to be facilitated by only chiral phosphines without copper.
Collapse
Affiliation(s)
- Kohsuke Aikawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Kohei Yabuuchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Kota Torii
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Koichi Mikami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
15
|
Rai P, Sagir H, Kumar A, B. Yadav V, R. Siddiqui I. Organocatalyzed Synthesis of Medicinally Important Chromeno[2, 3-d]pyrimidine-triones in Biodegradable Reaction Medium. ChemistrySelect 2018. [DOI: 10.1002/slct.201702483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pragati Rai
- Laboratory of Green Synthesis; Department of Chemistry, University of Allahabad; Allahabad-211002 India
| | - Hozeyfa Sagir
- Laboratory of Green Synthesis; Department of Chemistry, University of Allahabad; Allahabad-211002 India
| | - Akhilesh Kumar
- Laboratory of Green Synthesis; Department of Chemistry, University of Allahabad; Allahabad-211002 India
| | - Vijay B. Yadav
- Laboratory of Green Synthesis; Department of Chemistry, University of Allahabad; Allahabad-211002 India
| | - I. R. Siddiqui
- Laboratory of Green Synthesis; Department of Chemistry, University of Allahabad; Allahabad-211002 India
| |
Collapse
|
16
|
Yamashita Y, Yasukawa T, Yoo WJ, Kitanosono T, Kobayashi S. Catalytic enantioselective aldol reactions. Chem Soc Rev 2018; 47:4388-4480. [DOI: 10.1039/c7cs00824d] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in catalytic asymmetric aldol reactions have been summarized.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Tomohiro Yasukawa
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Woo-Jin Yoo
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Taku Kitanosono
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Shū Kobayashi
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
17
|
Chen Y, Wang X, Wang J, Yang Y. Synthesis of D- manno-heptulose via a cascade aldol/hemiketalization reaction. Beilstein J Org Chem 2017; 13:795-799. [PMID: 28546836 PMCID: PMC5433184 DOI: 10.3762/bjoc.13.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
A [4 + 3] synthesis of D-manno-heptulose is described. The cascade aldol/hemiketalization reaction of a C4 aldehyde with a C3 ketone provides the differentially protected ketoheptose building block, which can be further reacted to furnish target D-manno-heptulose.
Collapse
Affiliation(s)
- Yan Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoman Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Junchang Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
18
|
Baś S, Mlynarski J. Synthesis of 2-Keto-d- and l-gluconic Acid via Stereoselective Direct Aldol Reactions. J Org Chem 2016; 81:6112-7. [PMID: 27355860 DOI: 10.1021/acs.joc.6b01068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stereoselective direct aldol reaction between optically pure d- or l-glyceraldehyde and hydroxyacetylfuran is demonstrated as an efficient and straightforward methodology for the synthesis of six-carbon atom d- and l-arabino-hex-2-ulosonic acids. syn-Selective aldol reactions realized by using either tertiary amines or a dizinc aldol catalyst constitute two parallel routes to the de novo synthesis of orthogonally protected biologically relevant 2-keto-d- and l-gluconic acids.
Collapse
Affiliation(s)
- Sebastian Baś
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| | - Jacek Mlynarski
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
19
|
Craig RA, Smith RC, Pritchett BP, Estipona BI, Stoltz BM. Preparation of 1,5-Dioxaspiro[5.5]undecan-3-one. ACTA ACUST UNITED AC 2016; 93:210-227. [PMID: 28729749 DOI: 10.15227/orgsyn.093.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Robert A Craig
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| | - Russell C Smith
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| | - Beau P Pritchett
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| | - Benzi I Estipona
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Popik O, Pasternak-Suder M, Baś S, Mlynarski J. Organocatalytic Synthesis of Higher-Carbon Sugars: Efficient Protocol for the Synthesis of Natural Sedoheptulose and d-Glycero-l-galacto-oct-2-ulose. ChemistryOpen 2015; 4:717-21. [PMID: 27308197 PMCID: PMC4906512 DOI: 10.1002/open.201500099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 01/06/2023] Open
Abstract
Herein we report a short and efficient protocol for the synthesis of naturally occurring higher-carbon sugars-sedoheptulose (d-altro-hept-2-ulose) and d-glycero-l-galacto-oct-2-ulose-from readily available sugar aldehydes and dihydroxyacetone (DHA). The key step includes a diastereoselective organocatalytic syn-selective aldol reaction of DHA with d-erythrose and d-xylose, respectively. The methodology presented can be expanded to the synthesis of various higher sugars by means of syn-selective carbon-carbon-bond-forming aldol reactions promoted by primary-based organocatalysts. For example, this methodology provided useful access to d-glycero-d-galacto-oct-2-ulose and 1-deoxy-d-glycero-d-galacto-oct-2-ulose from d-arabinose in high yield (85 and 74 %, respectively) and high stereoselectivity (99:1).
Collapse
Affiliation(s)
- Oskar Popik
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Sebastian Baś
- Faculty of Chemistry Jagiellonian University Ingardena 3 30-060 Krakow Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/5201-224 Warsaw Poland; Faculty of Chemistry Jagiellonian University Ingardena 330-060 Krakow Poland
| |
Collapse
|
21
|
First synthesis of novel 3,3′-bipyridazine derivatives as new potent antihepatocellular carcinoma agents. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.07.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Aikawa K, Yoshida S, Kondo D, Asai Y, Mikami K. Catalytic Asymmetric Synthesis of Tertiary Alcohols and Oxetenes Bearing a Difluoromethyl Group. Org Lett 2015; 17:5108-11. [PMID: 26421643 DOI: 10.1021/acs.orglett.5b02617] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The catalytic asymmetric ene reaction with difluoropyruvate as an electrophile in the presence of a dicationic palladium complex is shown. This is the reliable and practical catalytic asymmetric synthesis for various α-CF2H tertiary alcohols in high yields and enantioselectivities. The reaction with isobutene can be catalyzed efficiently under solvent-free conditions with low catalyst loading (up to S/C 2000). Furthermore, difluoropyruvate is applicable to the [2 + 2] cycloaddition reaction in high yields and enantioselectivities.
Collapse
Affiliation(s)
- Kohsuke Aikawa
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Seiya Yoshida
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Daisuke Kondo
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuya Asai
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Koichi Mikami
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
23
|
Arias-Ugarte R, Wekesa FS, Findlater M. Selective aldol condensation or cyclotrimerization reactions catalyzed by FeCl3. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Synthesis of octitols and the respective amino-derivatives from 'organo-aldols'. Carbohydr Res 2015; 403:98-103. [PMID: 25130931 DOI: 10.1016/j.carres.2014.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022]
Abstract
Two diastereoisomeric keto-octoses, obtained in the reaction of 2,3:4,5-diacetone-D-arabinose with protected dihydroxyacetone catalyzed with L- or D-proline, were converted into octitols by stereoselective reduction of the carbonyl group with zinc borohydride and final deprotection. The study on the preparation of the respective amino-derivatives by reductive amination of these organo-adducts is presented; stereochemical aspects of these processes are discussed.
Collapse
|
25
|
Enantioselective aldol reactions with aqueous 2,2-dimethoxyacetaldehyde organocatalyzed by binam-prolinamides under solvent-free conditions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tetasy.2014.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Rodríguez-Gimeno A, Cuenca AB, Gil-Tomás J, Medio-Simón M, Olmos A, Asensio G. FeCl3·6H2O-Catalyzed Mukaiyama-Aldol Type Reactions of Enolizable Aldehydes and Acetals. J Org Chem 2014; 79:8263-70. [DOI: 10.1021/jo501498a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alejandra Rodríguez-Gimeno
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Ana B. Cuenca
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Jesús Gil-Tomás
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Mercedes Medio-Simón
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Andrea Olmos
- Laboratorio
de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro
de Investigación en Química Sostenible, Universidad de Huelva, Campus El Carmen, 21007 Huelva, Spain
| | - Gregorio Asensio
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| |
Collapse
|
27
|
Pei QL, Cui BD, Han WY, Wu ZJ, Zhang XM, Yuan WC. A facile synthesis of 3-hydroxy-3-(trifluoromethyl)-1H-pyrrol-2(3H)-ones with Brønsted acid-catalyzed condensation–cyclization reactions of β-enamino esters and ethyl trifluoropyruvate. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Popik O, Pasternak-Suder M, Leśniak K, Jawiczuk M, Górecki M, Frelek J, Mlynarski J. Amine-catalyzed direct aldol reactions of hydroxy- and dihydroxyacetone: biomimetic synthesis of carbohydrates. J Org Chem 2014; 79:5728-39. [PMID: 24837738 DOI: 10.1021/jo500860g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article presents comprehensive studies on the application of primary, secondary, and tertiary amines as efficient organocatalysts for the de novo synthesis of ketoses and deoxyketoses. Mimicking the actions of aldolase enzymes, the synthesis of selected carbohydrates was accomplished in aqueous media by using proline- and serine-based organocatalysts. The presented methodology also provides direct access to unnatural L-carbohydrates from the (S)-glyceraldehyde precursor. Determination of the absolute configuration of all obtained sugars was feasible using a methodology consisting of concerted ECD and VCD spectroscopy.
Collapse
Affiliation(s)
- Oskar Popik
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
29
|
Trajkovic M, Balanac V, Ferjancic Z, Saicic RN. Total synthesis of (+)-swainsonine and (+)-8-epi-swainsonine. RSC Adv 2014. [DOI: 10.1039/c4ra11978a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enantioselective total synthesis of (+)-swaisonine that hinges on a combination of organocatalyzed aldolization and reductive amination, affords the title compound in 9 steps, with 24% overall yield.
Collapse
Affiliation(s)
- Milos Trajkovic
- Faculty of Chemistry
- University of Belgrade
- 11158 Belgrade 118, Serbia
| | - Vesna Balanac
- Faculty of Chemistry
- University of Belgrade
- 11158 Belgrade 118, Serbia
| | - Zorana Ferjancic
- Faculty of Chemistry
- University of Belgrade
- 11158 Belgrade 118, Serbia
| | - Radomir N. Saicic
- Faculty of Chemistry
- University of Belgrade
- 11158 Belgrade 118, Serbia
| |
Collapse
|
30
|
Oxazolidinone/enamine ratios in the reactions of α-silyloxy and α-alkoxy aldehydes with proline. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Popik O, Zambroń B, Mlynarski J. Biomimeticsyn-Aldol Reaction of Dihydroxyacetone Promoted by Water-Compatible Catalysts. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Bergeron-Brlek M, Teoh T, Britton R. A tandem organocatalytic α-chlorination-aldol reaction that proceeds with dynamic kinetic resolution: a powerful tool for carbohydrate synthesis. Org Lett 2013; 15:3554-7. [PMID: 23819733 DOI: 10.1021/ol401370b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A tandem, proline-catalyzed α-chlorination/aldol reaction is described that involves a dynamic kinetic resolution of α-chloroaldehyde intermediates. The resulting syn-chlorohydrins are produced with good to excellent diastereoselectivity in high enantiopurity and provide new opportunities for the synthesis of carbohydrates.
Collapse
Affiliation(s)
- Milan Bergeron-Brlek
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
33
|
Simon G, Eljezi T, Legeret B, Charmantray F, Castillo JA, Guérard-Hélaine C, Lemaire M, Bouzon M, Marlière P, Hélaine V, Hecquet L. Synthesis of Specially Designed Probes to Broaden Transketolase Scope. ChemCatChem 2013. [DOI: 10.1002/cctc.201200479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Huerta E, Stals PJM, Meijer EW, Palmans ARA. Consequences of Folding a Water-Soluble Polymer Around an Organocatalyst. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Huerta E, Stals PJM, Meijer EW, Palmans ARA. Consequences of Folding a Water-Soluble Polymer Around an Organocatalyst. Angew Chem Int Ed Engl 2012; 52:2906-10. [DOI: 10.1002/anie.201207123] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/10/2012] [Indexed: 11/06/2022]
|
36
|
Core–shell silica magnetic microspheres supported proline as a recyclable organocatalyst for the asymmetric aldol reaction. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcata.2012.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Verma S, Jain SL. Thiourea dioxide in water as a recyclable catalyst for the synthesis of structurally diverse dihydropyrido[2,3-d]pyrimidine-2,4-diones. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.03.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Komatsu Y, Watanabe R, Ikishima H, Nakano K, Ichikawa Y, Kotsuki H. Aminohydroxyacetone synthons: versatile intermediates for the organocatalytic asymmetric aldol reaction. Org Biomol Chem 2012; 10:2993-3001. [PMID: 22388925 DOI: 10.1039/c2ob07107j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical method for the synthesis of 1,3-aminohydroxyacetone synthons was developed, and their utility in the organocatalytic asymmetric aldol reaction was demonstrated in a short synthesis of aza-sugars.
Collapse
Affiliation(s)
- Yoshiyuki Komatsu
- Laboratory of Natural Products Chemistry, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Lu A, Cotanda P, Patterson JP, Longbottom DA, O'Reilly RK. Aldol reactions catalyzed by l-proline functionalized polymeric nanoreactors in water. Chem Commun (Camb) 2012; 48:9699-701. [DOI: 10.1039/c2cc35170f] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
|
41
|
Peña J, Moro RF, Basabe P, Marcos IS, Díez D. Solvent free l-proline-catalysed domino Knoevenagel/6π-electrocyclization for the synthesis of highly functionalised 2H-pyrans. RSC Adv 2012. [DOI: 10.1039/c2ra21306k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Monrad RN, Madsen R. Modern methods for shortening and extending the carbon chain in carbohydrates at the anomeric center. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Štambaský J, Kapras V, Štefko M, Kysilka O, Hocek M, Malkov AV, Kočovský P. A Modular Approach to Aryl-C-ribonucleosides via the Allylic Substitution and Ring-Closing Metathesis Sequence. A Stereocontrolled Synthesis of All Four α-/β- and d-/l-C-Nucleoside Stereoisomers. J Org Chem 2011; 76:7781-803. [DOI: 10.1021/jo201110z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jan Štambaský
- Department of Chemistry, WestChem, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Vojtěch Kapras
- Department of Chemistry, WestChem, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Martin Štefko
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, CZ-16610, Prague 6, Czech Republic
| | - Ondřej Kysilka
- Department of Chemistry, WestChem, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, CZ-16610, Prague 6, Czech Republic
| | - Andrei V. Malkov
- Department of Chemistry, WestChem, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Pavel Kočovský
- Department of Chemistry, WestChem, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| |
Collapse
|
44
|
Affiliation(s)
- Louis Marchetti
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
45
|
Enantioselective total synthesis and absolute configuration of the alleged structure of crassinervic acid. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Kobayashi S, Mori Y, Fossey JS, Salter MM. Catalytic Enantioselective Formation of C−C Bonds by Addition to Imines and Hydrazones: A Ten-Year Update. Chem Rev 2011; 111:2626-704. [DOI: 10.1021/cr100204f] [Citation(s) in RCA: 761] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shu̅ Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichiro Mori
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - John S. Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Matthew M. Salter
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
47
|
Wen L, Shen Q, Wan X, Lu L. Enantioselective Friedel−Crafts Alkylation of Indoles with Trifluoroethylidene Malonates by Copper−Bis(oxazoline) Complexes: Construction of Trifluoromethyl-Substituted Stereogenic Tertiary Carbon Center. J Org Chem 2011; 76:2282-5. [DOI: 10.1021/jo1024333] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lele Wen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Rd., Shanghai, 200032, China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Rd., Shanghai, 200032, China
| | - Xiaolong Wan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Rd., Shanghai, 200032, China
| | - Long Lu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Rd., Shanghai, 200032, China
| |
Collapse
|
48
|
Hiraga Y, Widianti T, Kunishi T, Abe M. The cooperative effect of a hydroxyl and carboxyl group on the catalytic ability of novel β-homoproline derivatives on direct asymmetric aldol reactions. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Zhao JF, Tan BH, Loh TP. In(iii)-pybox complex catalyzed enantioselective Mukaiyama aldol reactions between polymeric or hydrated glyoxylates and enolsilanes derived from aryl ketones. Chem Sci 2011. [DOI: 10.1039/c0sc00454e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Ikemoto T. Recent Developments of Organocatalysis and their Applications to Process Chemistry. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|