1
|
Ferjancic Z, Bihelovic F, Vulovic B, Matovic R, Trmcic M, Jankovic A, Pavlovic M, Djurkovic F, Prodanovic R, Djurdjevic Djelmas A, Kalicanin N, Zlatovic M, Sladic D, Vallet T, Vignuzzi M, Saicic RN. Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies. J Enzyme Inhib Med Chem 2024; 39:2289007. [PMID: 38086763 PMCID: PMC11721942 DOI: 10.1080/14756366.2023.2289007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
We developed new iminosugar-based glycosidase inhibitors against SARS-CoV-2. Known drugs (miglustat, migalastat, miglitol, and swainsonine) were chosen as lead compounds to develop three classes of glycosidase inhibitors (α-glucosidase, α-galactosidase, and mannosidase). Molecular modelling of the lead compounds, synthesis of the compounds with the highest docking scores, enzyme inhibition tests, and in vitro antiviral assays afforded rationally designed inhibitors. Two highly active α-glucosidase inhibitors were discovered, where one of them is the most potent iminosugar-based anti-SARS-CoV-2 agent to date (EC90 = 1.94 µM in A549-ACE2 cells against Omicron BA.1 strain). However, galactosidase inhibitors did not exhibit antiviral activity, whereas mannosidase inhibitors were both active and cytotoxic. As our iminosugar-based drug candidates act by a host-directed mechanism, they should be more resilient to drug resistance. Moreover, this strategy could be extended to identify potential drug candidates for other viral infections.
Collapse
Affiliation(s)
| | - Filip Bihelovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Bojan Vulovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Radomir Matovic
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Milena Trmcic
- Innovation Centre of the Faculty of Chemistry, Belgrade, Serbia
| | - Aleksandar Jankovic
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Milos Pavlovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Filip Djurkovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | | | - Nevena Kalicanin
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Mario Zlatovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Dusan Sladic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Thomas Vallet
- Institut Pasteur, Center for the Viral Populations and Pathogenesis, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Center for the Viral Populations and Pathogenesis, Paris, France
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Radomir N. Saicic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
2
|
Wu YC, Xu GS, Li HJ, Wu YC. Stereoselective Synthesis of Xylodonin A and 22-Hydroxyxylodonin A and Discovery of Analogues with Cytotoxic Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:884-892. [PMID: 38408342 DOI: 10.1021/acs.jnatprod.3c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The first and stereoselective synthesis of xylodonin A and 22-hydroxyxylodonin A, two drimane-type sesquiterpenoid natural products, was developed from the readily available (+)-sclareolide. This route features an allylic oxidation and acid-promoted dehydration for construction of the key intermediate 6-hydroxyisodrimenin. Representative analogues were synthesized, and their previously unknown bioactivities were revealed after biological evaluation. The analogue 19a exhibited cytotoxic activity against liver cancer HepG2 cells (IC50: 8.8 vs 5.9 μM) that was comparable to that of the clinical anticancer drug etoposide with lower toxicity to normal liver HL7702 cells (IC50 > 100 μM).
Collapse
Affiliation(s)
- Yue-Cheng Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, People's Republic of China
| | - Guang-Sen Xu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, People's Republic of China
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, People's Republic of China
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| |
Collapse
|
3
|
Mishra VK, Khanna A, Tiwari G, Tyagi R, Sagar R. Recent developments on the synthesis of biologically active glycohybrids. Bioorg Chem 2024; 145:107172. [PMID: 38340475 DOI: 10.1016/j.bioorg.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The exploration of hybridization emerges as a potent tool in advancing drug discovery research, with a significant emphasis on carbohydrate-containing hybrid scaffolds. Evidence indicates that linking carbohydrate molecules to privileged bioactive scaffolds enhances the bioactivity of drug molecules. This synergy results in a diverse range of activities, making carbohydrate scaffolds pivotal for synthesizing compound libraries with significant functional and structural diversity. Beyond their synthesis utility, these scaffolds offer applications in screening bioactive molecules, presenting alternative avenues for drug development. This comprehensive review spanning 2015 to 2023 focuses on synthesized glycohybrid molecules, revealing their bioactivity in areas such as anti-microbial, anti-cancer, anti-diabetic, anti-inflammatory activities, enzyme inhibition and pesticides. Numerous novel glycohybrids surpass positive control drugs in biological activity. This focused study not only highlights the diverse bioactivities of glycohybrids but also underscores their promising role in innovative drug development strategies.
Collapse
Affiliation(s)
- Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, 110067 New Delhi
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, 110067 New Delhi.
| |
Collapse
|
4
|
Byatt BJ, Kato A, Pyne SG. Synthesis of the Purported Structure of Glyphaeaside C and Proposed Revisions to the Structures of the Glyphaeaside Alkaloids. JOURNAL OF NATURAL PRODUCTS 2023; 86:1261-1273. [PMID: 37125736 DOI: 10.1021/acs.jnatprod.3c00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The 10 glyphaeaside alkaloids isolated from the roots of Glyphaea brevis were originally purported as piperidine-based 1-C-alkylated iminosugars, with the A-, B-, and C-type glyphaeasides bearing l-DFJ, DGJ, and DNJ ring configurations, respectively. Subsequent investigations have revealed glyphaeaside C as being a pyrrolidine-based iminosugar with a DMDP ring configuration via total synthesis of the revised structure. In this work, side chain diastereomers of the originally purported structure of glyphaeaside C (10) and two related α-1-C-alkylated DNJ derivatives were synthesized from a common precursor, which was prepared in turn via stereoselective Grignard addition to a protected d-glycosylamine, followed by a reductive amination-cyclization sequence. Glycosidase inhibitory activity studies revealed general structure 10 as having potent inhibition against various α-glucosidases and weak inhibition against almond β-glucosidase in agreement with similar DNJ-based iminosugars and in contrast to natural glyphaeaside C, suggesting that the (1,2-dihydroxy-3-phenyl)propyl moiety does not play a particularly vital role in the inhibitory modes of action of either compound. Furthermore, the absolute configuration of natural glyphaeaside C was proposed as that of d-DMDP, and the structures of the A- and B-type glyphaeasides were revised as 1-deoxy-DALDP and DALDP derivatives, respectively, based on interpretation of their reported NMR spectroscopic data.
Collapse
Affiliation(s)
- Brendan J Byatt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Sugitani, Toyama 2630, Japan
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Kato A, Nakagome I, Yoshimura K, Kanekiyo U, Kishida M, Shinzawa K, Lu TT, Li YX, Nash RJ, Fleet GWJ, Tanaka N, Yu CY. Introduction of C-alkyl branches to L-iminosugars changes their active site binding orientation. Org Biomol Chem 2022; 20:7250-7260. [PMID: 35838176 DOI: 10.1039/d2ob01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-ido-Deoxynojirimycin (L-ido-DNJ) itself showed no affinity for human lysosomal acid α-glucosidase (GAA), whereas 5-C-methyl-L-ido-DNJ showed a strong affinity for GAA, comparable to the glucose analog DNJ, with a Ki value of 0.060 μM. This excellent affinity for GAA and enzyme stabilization was observed only when methyl and ethyl groups were introduced. Docking simulation analysis revealed that the alkyl chains of 5-C-alkyl-L-ido-DNJs were stored in three different pockets, depending on their length, thereby the molecular orientation was changed. Comparison of the binding poses of DNJ and 5-C-methyl-L-ido-DNJ showed that they formed a common ionic interaction with Asp404, Asp518, and Asp616, but both the binding orientation and the distance between the ligand and each amino acid residue were different. 5-C-Methyl-L-ido-DNJ dose-dependently increased intracellular GAA activity in Pompe patient fibroblasts with the M519V mutation and also promoted enzyme transport to lysosomes. This study provides the first example of a strategy to design high-affinity ligands by introducing alkyl branches into rare sugars and L-sugar-type iminosugars to change the orientation of binding.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Izumi Nakagome
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kosuke Yoshimura
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Uta Kanekiyo
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Mana Kishida
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kenta Shinzawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert J Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Nobutada Tanaka
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li YX, Wang JZ, Shimadate Y, Kise M, Kato A, Jia YM, Fleet GWJ, Yu CY. Diastereoselective Synthesis, Glycosidase Inhibition, and Docking Study of C-7-Fluorinated Casuarine and Australine Derivatives. J Org Chem 2022; 87:7291-7307. [PMID: 35584209 DOI: 10.1021/acs.joc.2c00485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-7-fluorinated derivatives of two important polyhydroxylated pyrrolizidines, casuarine and australine, were synthesized with organocatalytic stereoselective α-fluorination of aldehydes as the key step. The strategy is extensively applicable to some synthetically challenging fluorinated iminosugars and carbohydrates. The docking studies indicated that the potent inhibitions of trehalase and amyloglucosidase by the fluorinated polyhydroxylated pyrrolizidines are due to the interaction modes dominated by fluorine atoms in these iminosugars with the amino acids' residues of the corresponding enzymes. Steady interactions were established between the C-7 fluoride and a hydrophobic pocket in amyloglucosidase by untypical anion-π interactions. These unexpected docking modes and related structure-activity relationship studies emphasize the value of fluorination in the design of polyhydroxylated pyrrolizidine glycosidase inhibitors.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.,Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Maki Kise
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.,Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.,Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Lindbäck E, Sydnes MO, Haarr MB, Lopéz Ó, Fernández-Bolaños JG. Functionalized d- and l-Arabino-Pyrrolidines as Potent and Selective Glycosidase Inhibitors. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1764-8950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe efficient synthesis of enantiomeric pairs of iminosugars including 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) and 1,4-dideoxy-1,4-imino-l-arabinitol (LAB) analogues with an amidine, hydrazide, hydrazide imide, or amide oxime moiety is described. The preparation of DAB and LAB analogues commenced from l-xylose and d-xylose, respectively. The obtained iminosugars are tested against a panel of glycosidases with pharmaceutical relevance, revealing enhanced activity for the DAB analogues in comparison with the LAB analogues. In particular, the d-arabino-configured amidine behaved as a potent (submicromolar range) and selective inhibitor of α-mannosidase.
Collapse
Affiliation(s)
- Emil Lindbäck
- Faculty of Science and Technology, Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger
| | - Magne O. Sydnes
- Faculty of Science and Technology, Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger
| | - Marianne B. Haarr
- Faculty of Science and Technology, Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger
| | - Óscar Lopéz
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla
| | | |
Collapse
|
8
|
Weber P, Fischer R, Nasseri SA, Stütz AE, Thonhofer M, Withers SG, Wolfsgruber A, Wrodnigg TM. New α-galactosidase-inhibiting aminohydroxycyclopentanes. RSC Adv 2021; 11:15943-15951. [PMID: 35481199 PMCID: PMC9029992 DOI: 10.1039/d1ra02507d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
A set of cyclopentanoid α-galactosidase ligands was prepared from a partially protected ω-eno-aldose via a reliable (2 + 3)-cycloaddition protocol with slightly modified conditions. The obtained N-benzylisoxazolidine ring was selectively opened and the configuration of the hydroxymethylgroup was inverted. Consecutive deprotection provided an aminocyclopentane, which was N-alkylated to furnish a set of potential α-galactosidase inhibitors. Their glycosidase inhibitory activities were screened with a panel of standard glycosidases of biological significance. A concise and robust synthesis of new cyclopentanoid competitive inhibitors of α-galactosidases related to Fabry's disease and other α-galactosidase related disorders.![]()
Collapse
Affiliation(s)
- Patrick Weber
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Roland Fischer
- Institute of Inorganic Chemistry
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Seyed A. Nasseri
- Chemistry Department
- University of British Columbia
- Vancouver
- V6T 1Z1 Canada
| | - Arnold E. Stütz
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Martin Thonhofer
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Stephen G. Withers
- Chemistry Department
- University of British Columbia
- Vancouver
- V6T 1Z1 Canada
| | - Andreas Wolfsgruber
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Tanja M. Wrodnigg
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| |
Collapse
|
9
|
Yan X, Shimadate Y, Kato A, Li YX, Jia YM, Fleet GWJ, Yu CY. Synthesis of Pyrrolidine Monocyclic Analogues of Pochonicine and Its Stereoisomers: Pursuit ofSimplified Structures and Potent β- N-Acetylhexosaminidase Inhibition. Molecules 2020; 25:E1498. [PMID: 32218360 PMCID: PMC7180638 DOI: 10.3390/molecules25071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Ten pairs of pyrrolidine analogues of pochonicine and its stereoisomers have been synthesized from four enantiomeric pairs of polyhydroxylated cyclic nitrones. Among the ten N-acetylamino pyrrolidine analogues, only compounds with 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) and pochonicine (1) configurations showed potent inhibition of β-N-acetylhexosaminidases (β-HexNAcases); while 1-amino analogues lost almost all their inhibitions towards the tested enzymes. The assay results reveal the importance of the N-acetylamino group and the possible right configurations of pyrrolidine ring required for this type of inhibitors.
Collapse
Affiliation(s)
- Xin Yan
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK;
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
10
|
Hanessian-Hullar reaction in the synthesis of highly substituted trans-3,4-dihydroxypyrrolidines: Rhamnulose iminosugar mimics inhibit α-glucosidase. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wu QK, Kinami K, Kato A, Li YX, Fleet GWJ, Yu CY, Jia YM. Synthesis and Glycosidase Inhibition of Broussonetine M and Its Analogues. Molecules 2019; 24:molecules24203712. [PMID: 31619020 PMCID: PMC6832352 DOI: 10.3390/molecules24203712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023] Open
Abstract
Cross-metathesis (CM) and Keck asymmetric allylation, which allows access to defined stereochemistry of a remote side chain hydroxyl group, are the key steps in a versatile synthesis of broussonetine M (3) from the d-arabinose-derived cyclic nitrone 14. By a similar strategy, ent-broussonetine M (ent-3) and six other stereoisomers have been synthesized, respectively, starting from l-arabino-nitrone (ent-14), l-lyxo-nitrone (ent-3-epi-14), and l-xylo-nitrone (2-epi-14) in five steps, in 26%–31% overall yield. The natural product broussonetine M (3) and 10’-epi-3 were potent inhibitors of β-glucosidase (IC50 = 6.3 μM and 0.8 μM, respectively) and β-galactosidase (IC50 = 2.3 μM and 0.2 μM, respectively); while their enantiomers, ent-3 and ent-10’-epi-3, were selective and potent inhibitors of rice α-glucosidase (IC50 = 1.2 μM and 1.3 μM, respectively) and rat intestinal maltase (IC50 = 0.29 μM and 18 μM, respectively). Both the configuration of the polyhydroxylated pyrrolidine ring and C-10’ hydroxyl on the alkyl side chain affect the specificity and potency of glycosidase inhibition.
Collapse
Affiliation(s)
- Qing-Kun Wu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kyoko Kinami
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, OX13TA Oxford, UK.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Dehoux-Baudoin C, Génisson Y. C
-Branched Imino Sugars: Synthesis and Biological Relevance. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cécile Dehoux-Baudoin
- SPCMIB, UMR5068 CNRS; Université Paul Sabatier-Toulouse 3; 118 route de Narbonne 31062 Toulouse cedex 09 France
| | - Yves Génisson
- SPCMIB, UMR5068 CNRS; Université Paul Sabatier-Toulouse 3; 118 route de Narbonne 31062 Toulouse cedex 09 France
| |
Collapse
|
13
|
Martínez RF, Jenkinson SF, Nakagawa S, Kato A, Wormald MR, Fleet GWJ, Hollinshead J, Nash RJ. Isolation from Stevia rebaudiana of DMDP acetic acid, a novel iminosugar amino acid: synthesis and glycosidase inhibition profile of glycine and β-alanine pyrrolidine amino acids. Amino Acids 2019; 51:991-998. [PMID: 31079215 DOI: 10.1007/s00726-019-02730-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
DMDP acetic acid [N-carboxymethyl-2,5-dideoxy-2,5-imino-D-mannitol] 5 from Stevia rebaudiana is the first isolated natural amino acid derived from iminosugars bearing an N-alkyl acid side chain; it is clear from GCMS studies that such derivatives with acetic and propionic acids are common in a broad range of plants including mulberry, Baphia, and English bluebells, but that they are very difficult to purify. Reaction of unprotected pyrrolidine iminosugars with aqueous glyoxal gives the corresponding N-acetic acids in very high yield; Michael addition of both pyrrolidine and piperidine iminosugars and that of polyhydroxylated prolines to tert-butyl acrylate give the corresponding N-propionic acids in which the amino group of β-alanine is incorporated into the heterocyclic ring. These easy syntheses allow the identification of this new class of amino acid in plant extracts and provide pure samples for biological evaluation. DMDP N-acetic and propionic acids are potent α-galactosidase inhibitors in contrast to potent β-galactosidase inhibition by DMDP.
Collapse
Affiliation(s)
- R Fernando Martínez
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, IACYS-Unidad de Química Verde y Desarrollo Sostenible, 06006, Badajoz, Spain
| | - Sarah F Jenkinson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Shinpei Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Mark R Wormald
- Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - George W J Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jackie Hollinshead
- Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth, SY23 3EB, Ceredigion, Wales, UK
| | - Robert J Nash
- Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth, SY23 3EB, Ceredigion, Wales, UK.
| |
Collapse
|
14
|
Synthesis and glycosidase inhibition potency of all- trans substituted 1- C -perfluoroalkyl iminosugars. Carbohydr Res 2018; 464:2-7. [DOI: 10.1016/j.carres.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
|
15
|
The synthesis of the molecular chaperone 2,5-dideoxy-2,5-imino-d-altritol via diastereoselective reductive amination and carbamate annulation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Hunt-Painter AA, Moggré GJ, Tyler PC, Stocker BL, Timmer MSM. Diastereoselective Carbamate Annulation for the Synthesis of 2,5-Dideoxy-2,5-iminoglycitols. ChemistrySelect 2017. [DOI: 10.1002/slct.201701818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alex A. Hunt-Painter
- School of Chemical and Physical Sciences; Victoria University of Wellington, PO Box; 600 Wellington New Zealand
| | - Gert-Jan Moggré
- School of Chemical and Physical Sciences; Victoria University of Wellington, PO Box; 600 Wellington New Zealand
| | - Peter C. Tyler
- Ferrier Institute; Victoria University of Wellington, PO Box; 600 Wellington New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences; Victoria University of Wellington, PO Box; 600 Wellington New Zealand
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences; Victoria University of Wellington, PO Box; 600 Wellington New Zealand
| |
Collapse
|
17
|
Strategy for designing selective α-l-rhamnosidase inhibitors: Synthesis and biological evaluation of l-DMDP cyclic isothioureas. Bioorg Med Chem 2017; 25:107-115. [DOI: 10.1016/j.bmc.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
18
|
Citro V, Cammisa M, Liguori L, Cimmaruta C, Lukas J, Cubellis MV, Andreotti G. The Large Phenotypic Spectrum of Fabry Disease Requires Graduated Diagnosis and Personalized Therapy: A Meta-Analysis Can Help to Differentiate Missense Mutations. Int J Mol Sci 2016; 17:ijms17122010. [PMID: 27916943 PMCID: PMC5187810 DOI: 10.3390/ijms17122010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/28/2022] Open
Abstract
Fabry disease is caused by mutations in the GLA gene and is characterized by a large genotypic and phenotypic spectrum. Missense mutations pose a special problem for graduating diagnosis and choosing a cost-effective therapy. Some mutants retain enzymatic activity, but are less stable than the wild type protein. These mutants can be stabilized by small molecules which are defined as pharmacological chaperones. The first chaperone to reach clinical trial is 1-deoxygalactonojirimycin, but others have been tested in vitro. Residual activity of GLA mutants has been measured in the presence or absence of pharmacological chaperones by several authors. Data obtained from transfected cells correlate with those obtained in cells derived from patients, regardless of whether 1-deoxygalactonojirimycin was present or not. The extent to which missense mutations respond to 1-deoxygalactonojirimycin is variable and a reference table of the results obtained by independent groups that is provided with this paper can facilitate the choice of eligible patients. A review of other pharmacological chaperones is provided as well. Frequent mutations can have residual activity as low as one-fourth of normal enzyme in vitro. The reference table with residual activity of the mutants facilitates the identification of non-pathological variants.
Collapse
Affiliation(s)
- Valentina Citro
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy.
| | - Marco Cammisa
- Istituto di Genetica e Biofisica 'A. Buzzati-Traverso', CNR, 80131 Napoli, Italy.
| | | | - Chiara Cimmaruta
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy.
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Italy.
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, University Rostock Medical Center, 18147 Rostock, Germany.
| | | | | |
Collapse
|
19
|
3-Azidoazetidines as the first scaffolds for β-amino azetidine carboxylic acid peptidomimetics: azetidine iminosugars containing an acetamido group do not inhibit β- N -acetylhexosaminidases. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Cheng WC, Wang JH, Li HY, Lu SJ, Hu JM, Yun WY, Chiu CH, Yang WB, Chien YH, Hwu WL. Bioevaluation of sixteen ADMDP stereoisomers toward alpha-galactosidase A: Development of a new pharmacological chaperone for the treatment of Fabry disease and potential enhancement of enzyme replacement therapy efficiency. Eur J Med Chem 2016; 123:14-20. [PMID: 27474919 DOI: 10.1016/j.ejmech.2016.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022]
Abstract
A unique molecular library consisting of all sixteen synthetic ADMDP (1-aminodeoxy-DMDP) stereoisomers has been prepared and evaluated for inhibitory activity against α-Gal A, and ability to impart thermal stabilization of this enzyme. The results of this testing led us to develop a novel pharmacological chaperone for the treatment of Fabry disease. 3-Epimer ADMDP was found to be an effective pharmacological chaperone, able to rescue α-Gal A activity in the lymphoblast of the N215S Fabry patient-derived cell line, without impairment of cellular β-galactosidase activity. When 3-epimer ADMDP was administered with rh-α-Gal A (enzyme replacement therapy) for the treatment of Fabry patient-derived cell lines, improvements in the efficacy of rh-α-Gal A was observed, which suggests this small molecule can also provide clinical benefit of enzyme replacement therapy in Fabry disease.
Collapse
Affiliation(s)
- Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan 701, Taiwan.
| | - Jen-Hon Wang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan 701, Taiwan
| | - Huang-Yi Li
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Sheng-Jhih Lu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Jia-Ming Hu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Wen-Yi Yun
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Cheng-Hsin Chiu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Wen-Bin Yang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Harit VK, Ramesh NG. Amino-functionalized iminocyclitols: synthetic glycomimetics of medicinal interest. RSC Adv 2016. [DOI: 10.1039/c6ra23513a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A review on the syntheses and biological activities of unnatural glycomimetics highlighting the effect of replacement of hydroxyl groups of natural iminosugars by amino functionalities is presented.
Collapse
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| | - Namakkal G. Ramesh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| |
Collapse
|
22
|
Kato A, Nakagome I, Sato K, Yamamoto A, Adachi I, Nash RJ, Fleet GWJ, Natori Y, Watanabe Y, Imahori T, Yoshimura Y, Takahata H, Hirono S. Docking study and biological evaluation of pyrrolidine-based iminosugars as pharmacological chaperones for Gaucher disease. Org Biomol Chem 2016; 14:1039-48. [DOI: 10.1039/c5ob02223a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-1-C-Alkylated 1,4-dideoxy-1,4-imino-d-arabinitols (DAB) derivatives as pharmacological chaperones for Gaucher disease.
Collapse
|
23
|
Kato A, Zhang ZL, Wang HY, Jia YM, Yu CY, Kinami K, Hirokami Y, Tsuji Y, Adachi I, Nash RJ, Fleet GWJ, Koseki J, Nakagome I, Hirono S. Design and Synthesis of Labystegines, Hybrid Iminosugars from LAB and Calystegine, as Inhibitors of Intestinal α-Glucosidases: Binding Conformation and Interaction for ntSI. J Org Chem 2015; 80:4501-15. [DOI: 10.1021/acs.joc.5b00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Zhao-Lan Zhang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Yao Wang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue-Mei Jia
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chu-Yi Yu
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kyoko Kinami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yuki Hirokami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yutaro Tsuji
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Robert J. Nash
- Institute
of Biological, Environmental and Rural Sciences, Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - George W. J. Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jun Koseki
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Izumi Nakagome
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
24
|
Kato A, Hirokami Y, Kinami K, Tsuji Y, Miyawaki S, Adachi I, Hollinshead J, Nash RJ, Kiappes JL, Zitzmann N, Cha JK, Molyneux RJ, Fleet GWJ, Asano N. Isolation and SAR studies of bicyclic iminosugars from Castanospermum australe as glycosidase inhibitors. PHYTOCHEMISTRY 2015; 111:124-131. [PMID: 25583438 DOI: 10.1016/j.phytochem.2014.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
We report the isolation and structural determination of fourteen iminosugars, containing five pyrrolizidines and five indolizidines, from Castanospermum australe. The structure of a new alkaloid was elucidated by spectroscopic methods as 6,8-diepi-castanospermine (13). Our side-by-side comparison between bicyclic and corresponding monocyclic iminosugars revealed that inhibition potency and spectrum against each enzyme are clearly changed by their core structures. Castanospermine (10) and 1-deoxynojirimycin (DNJ) have a common d-gluco configuration, and they showed the expected similar inhibition potency and spectrum. In sharp contrast, 6-epi-castanospermine (12) and 1-deoxymannojirimycin (manno-DNJ) both have the d-manno configuration but the α-mannosidase inhibition of 6-epi-castanospermine (12) was much better than that of manno-DNJ. 6,8-Diepi-castanospermine (13) could be regarded as a bicyclic derivative of talo-DNJ, but it showed a complete loss of α-galactosidase A inhibition. This behavior against α-galactosidase A is similar to that observed for 1-epi-australine (6) and altro-DMDP.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan.
| | - Yuki Hirokami
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Kyoko Kinami
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yutaro Tsuji
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Shota Miyawaki
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Jackie Hollinshead
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - Robert J Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - J L Kiappes
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jin K Cha
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, United States
| | - George W J Fleet
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.
| | - Naoki Asano
- BioApply Co., Ltd., 1-95 Tsuchishimizu, Kanazawa 920-0955, Japan
| |
Collapse
|
25
|
Petakamsetty R, Jain VK, Majhi PK, Ramapanicker R. Divergent synthesis of various iminocyclitols from d-ribose. Org Biomol Chem 2015; 13:8512-23. [DOI: 10.1039/c5ob01042j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A very efficient route to the diastereoselective synthesis of polyhydroxy pyrrolidines, piperidines and azepanes from an aldehyde derivative of ribose is reported.
Collapse
Affiliation(s)
- Ramu Petakamsetty
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Vipin Kumar Jain
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Pankaj Kumar Majhi
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Ramesh Ramapanicker
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| |
Collapse
|
26
|
Csatayová K, Davies SG, Fletcher AM, Ford JG, Klauber DJ, Roberts PM, Thomson JE. Asymmetric syntheses of (-)-3-epi-Fagomine, (2R,3S,4R)-dihydroxypipecolic acid, and several polyhydroxylated homopipecolic acids. J Org Chem 2014; 79:10932-44. [PMID: 25337869 DOI: 10.1021/jo501952t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A range of enantiopure polyhydroxylated piperidines, including (2R,3S,4R)-dihydroxypipecolic acid, (-)-3-epi-fagomine, (2S,3S,4R)-dihydroxyhomopipecolic acid, (2S,3R,4R)-dihydroxyhomopipecolic acid, and two trihydroxy-substituted homopipecolic acids, have been prepared using diastereoselective olefinic oxidations of a range of enantiopure tetrahydropyridines as the key step. The requisite substrates were readily prepared from tert-butyl sorbate using our diastereoselective hydroamination or aminohydroxylation protocols followed by ring-closing metathesis. After diastereoselective olefinic oxidation of the resultant enantiopure tetrahydropyridines and deprotection, enantiopure polyhydroxylated piperidines were isolated as single diastereoisomers (>99:1 dr) in good overall yield.
Collapse
Affiliation(s)
- Kristína Csatayová
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | | | | | | | | | | | | |
Collapse
|
27
|
Arora I, Kashyap VK, Singh AK, Dasgupta A, Kumar B, Shaw AK. Design, synthesis and biological evaluation of bicyclic iminosugar hybrids: conformational constraint as an effective tool for tailoring the selectivity of α-glucosidase inhibitors. Org Biomol Chem 2014; 12:6855-68. [DOI: 10.1039/c4ob00486h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Davies SG, Figuccia AL, Fletcher AM, Roberts PM, Thomson JE. Asymmetric syntheses of 2,5-dideoxy-2,5-imino-d-glucitol [(+)-DGDP] and 1,2,5-trideoxy-1-amino-2,5-imino-d-glucitol [(+)-ADGDP]. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Ayers BJ, Glawar AFG, Martínez RF, Ngo N, Liu Z, Fleet GWJ, Butters TD, Nash RJ, Yu CY, Wormald MR, Nakagawa S, Adachi I, Kato A, Jenkinson SF. Nine of 16 Stereoisomeric Polyhydroxylated Proline Amides Are Potent β-N-Acetylhexosaminidase Inhibitors. J Org Chem 2014; 79:3398-409. [DOI: 10.1021/jo500157p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Benjamin J. Ayers
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Andreas F. G. Glawar
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - R. Fernando Martínez
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Nigel Ngo
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Terry D. Butters
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Robert J. Nash
- Phytoquest Limited,
IBERS, Plas Gogerddan, Ceredigion, Aberystwyth, SY23 3EB, U.K
| | - Chu-Yi Yu
- CAS
Key Laboratory of Molecular Recognition and Function, Institute of
Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Mark R. Wormald
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Shinpei Nakagawa
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
30
|
Crabtree EV, Martínez RF, Nakagawa S, Adachi I, Butters TD, Kato A, Fleet GWJ, Glawar AFG. Synthesis of the enantiomers of XYLNAc and LYXNAc: comparison of β-N-acetylhexosaminidase inhibition by the 8 stereoisomers of 2-N-acetylamino-1,2,4-trideoxy-1,4-iminopentitols. Org Biomol Chem 2014; 12:3932-43. [DOI: 10.1039/c4ob00097h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Kumar KSA, Rathee JS, Subramanian M, Chattopadhyay S. Divergent Synthesis of 4-epi-Fagomine, 3,4-Dihydroxypipecolic Acid, and a Dihydroxyindolizidine and Their β-Galactosidase Inhibitory and Immunomodulatory Activities. J Org Chem 2013; 78:7406-13. [DOI: 10.1021/jo400448p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- K. S. Ajish Kumar
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - J. S. Rathee
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - M. Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S. Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
32
|
Balieu S, Guilleret A, Reynaud R, Martinez A, Haudrechy A. Stereoselective synthesis of (2S,3S,4R,5S)-3,4-dihydroxy-2,5-dihydroxymethyl pyrrolidine from L-sorbose. Carbohydr Res 2013; 374:14-22. [PMID: 23603481 DOI: 10.1016/j.carres.2013.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/05/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
One of the most frequently synthesized iminosugar derivatives is DMDP. Starting from L-sorbose, a practical method for the synthesis of derivatives of this five-membered iminocyclitol has been developed, involving straightforward steps and a convenient selective reduction of a ketoxime intermediate.
Collapse
Affiliation(s)
- Sébastien Balieu
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims, Reims, France
| | | | | | | | | |
Collapse
|
33
|
The ‘mirror-image’ postulate as a guide to the selection and evaluation of pyrrolidines as α-l-fucosidase inhibitors. Carbohydr Res 2013; 367:29-32. [DOI: 10.1016/j.carres.2012.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 11/20/2022]
|
34
|
Ganesan M, Salunke RV, Singh N, Ramesh NG. Protecting group directed diversity during Mitsunobu cyclization of a carbohydrate derived diamino triol. Synthesis of novel bridged bicyclic and six-membered iminocyclitols. Org Biomol Chem 2013. [DOI: 10.1039/c2ob27000e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|