1
|
Zeng L, Marshall O, McGrory R, Clarke R, Brown RJ, Kadodwala M, Thomson AR, Sutherland A. Synthesis of Fluorescent Dibenzofuran α-Amino Acids: Conformationally Rigid Analogues of Tyrosine. Org Lett 2025; 27:2475-2479. [PMID: 40025849 PMCID: PMC11915488 DOI: 10.1021/acs.orglett.5c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
We report two synthetic strategies for the preparation of dibenzofuran α-amino acids, expanding the structural toolbox of fluorescent probes. The strategies involved dibenzofuran synthesis via a Pd(II)-catalyzed C-O cyclization, alongside an efficient Negishi coupling approach for faster access to analogues. These rigid tyrosine mimics possess enhanced fluorescent properties compared to proteinogenic amino acids as demonstrated by application of the lead compound as a FRET donor for monitoring peptide hydrolysis by a serine protease.
Collapse
Affiliation(s)
- Liyao Zeng
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Olivia Marshall
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rochelle McGrory
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rebecca Clarke
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ryan J. Brown
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Malcolm Kadodwala
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew R. Thomson
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
2
|
Cooper GID, Saha I, Newman J, Shin RH, Harran PG. Indolizinylalanine Regioisomers: Tryptophan Isosteres with Bathochromic Fluorescence Emission. J Org Chem 2024; 89:14665-14672. [PMID: 39307984 DOI: 10.1021/acs.joc.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We have developed a high yielding synthesis of indolizine and directly elaborated the molecule into three optically active indolizinylalanine regioisomers. The protocols exploit metal catalyzed coupling of indolizinyl-halides with organozinc reagents derived from carbamoylated iodoalanine esters. The scalable protocols provide products in a form amenable to solid-phase peptide synthesis (SPPS). When incorporated into peptides, the indolizine heterocycle is more basic and markedly less nucleophilic than tryptophan. Its protonated vinylpyridinium form is deeply colored in solution while the neutral heterocycle is highly fluorescent. The fluorescence quantum yield of indolizine exceeds that of indole and aza-indoles in water, suggesting that indolizinylalanines could be powerful optical probes of protein structure and dynamics, functioning as true tryptophan isosteres.
Collapse
Affiliation(s)
- Gabriella I D Cooper
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ishika Saha
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jacob Newman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ruthy H Shin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Greenberg HC, Majumdar A, Cheema EK, Kozyryev A, Rokita SE. 19F NMR Reveals the Dynamics of Substrate Binding and Lid Closure for Iodotyrosine Deiodinase as a Complement to Steady-State Kinetics and Crystallography. Biochemistry 2024; 63:2225-2232. [PMID: 39137127 PMCID: PMC11371475 DOI: 10.1021/acs.biochem.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Active site lids are common features of enzymes and typically undergo conformational changes upon substrate binding to promote catalysis. Iodotyrosine deiodinase is no exception and contains a lid segment in all of its homologues from human to bacteria. The solution-state dynamics of the lid have now been characterized using 19F NMR spectroscopy with a CF3-labeled enzyme and CF3O-labeled ligands. From two-dimensional 19F-19F NMR exchange spectroscopy, interconversion rates between the free and bound states of a CF3O-substituted tyrosine (45 ± 10 s-1) and the protein label (40 ± 3 s-1) are very similar and suggest a correlation between ligand binding and conformational reorganization of the lid. Both occur at rates that are ∼100-fold faster than turnover, and therefore these steps do not limit catalysis. A simple CF3O-labeled phenol also binds to the active site and induces a conformational change in the lid segment that was not previously detectable by crystallography. Exchange rates of the ligand (130 ± 20 s-1) and protein (98 ± 8 s-1) in this example are faster than those above but remain self-consistent to affirm a correlation between ordering of the lid and binding of the ligand. Both ligands also protect the protein from limited proteolysis, as expected from their ability to stabilize a compact lid structure. However, the minimal turnover of simple phenol substrates indicates that such stabilization may be necessary but is not sufficient for efficient catalysis.
Collapse
Affiliation(s)
- Harrison C Greenberg
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ekroop Kaur Cheema
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Anton Kozyryev
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Edelmann S, Lumb JP. A para- to meta-isomerization of phenols. Nat Chem 2024; 16:1193-1199. [PMID: 38632366 DOI: 10.1038/s41557-024-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phenols and their derivatives are ubiquitous in nature and critically important industrial chemicals. Their properties are intimately linked to the relative substitution pattern of the aromatic ring, reflecting well-known electronic effects of the OH group. Because of these ortho-, para-directing effects, meta-substituted phenols have historically been more difficult to synthesize. Here we describe a procedure to transpose phenols that hinges on a regioselective diazotization of the corresponding ortho-quinone. The procedure affords the meta-substituted phenol directly from its more common and accessible para-substituted isomer, and demonstrates good chemoselectivity that enables its application in late-stage settings. By changing the electronic effect of the OH group and its trajectory of hydrogen bonding, our transposition can be used to diversify natural products and existing chemical libraries, and potentially shorten the length and cost of producing underrepresented arene isomers.
Collapse
Affiliation(s)
- Simon Edelmann
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Kalnins T, Vitkovska V, Kazak M, Zelencova-Gopejenko D, Ozola M, Narvaiss N, Makrecka-Kuka M, Domračeva I, Kinens A, Gukalova B, Konrad N, Aav R, Bonato F, Lucena-Agell D, Díaz JF, Liepinsh E, Suna E. Development of Potent Microtubule Targeting Agent by Structural Simplification of Natural Diazonamide. J Med Chem 2024; 67:9227-9259. [PMID: 38833507 DOI: 10.1021/acs.jmedchem.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The marine metabolite diazonamide A exerts low nanomolar cytotoxicity against a range of tumor cell lines; however, its highly complex molecular architecture undermines the therapeutic potential of the natural product. We demonstrate that truncation of heteroaromatic macrocycle in natural diazonamide A, combined with the replacement of the challenging-to-synthesize tetracyclic hemiaminal subunit by oxindole moiety leads to considerably less complex analogues with improved drug-like properties and nanomolar antiproliferative potency. The structurally simplified macrocycles are accessible in 12 steps from readily available indolin-2-one and tert-leucine with excellent diastereoselectivity (99:1 dr) in the key macrocyclization step. The most potent macrocycle acts as a tubulin assembly inhibitor and exerts similar effects on A2058 cell cycle progression and induction of apoptosis as does marketed microtubule-targeting agent vinorelbine.
Collapse
Affiliation(s)
- Toms Kalnins
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Viktorija Vitkovska
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Mihail Kazak
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | | | - Melita Ozola
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Nauris Narvaiss
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | | | - Ilona Domračeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Artis Kinens
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Baiba Gukalova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Nele Konrad
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, Harju Maakon 12618, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, Harju Maakon 12618, Estonia
| | - Francesca Bonato
- Unidad BICS, Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Daniel Lucena-Agell
- Unidad BICS, Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - J Fernando Díaz
- Unidad BICS, Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| |
Collapse
|
6
|
Clarke R, Zeng L, Atkinson BC, Kadodwala M, Thomson AR, Sutherland A. Fluorescent carbazole-derived α-amino acids: structural mimics of tryptophan. Chem Sci 2024; 15:5944-5949. [PMID: 38665535 PMCID: PMC11040653 DOI: 10.1039/d4sc01173b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Fluorescent tags are commonly used for imaging of proteins and peptides during biological events; however, the large size of dyes can disrupt protein structure and function, and typically require the use of a chemical spacer. Herein, we report the synthesis of a new class of fluorescent unnatural α-amino acid, containing carbazole side-chains designed to mimic l-tryptophan and thus, readily incorporated into peptides. The amino acids were constructed using a Negishi cross-coupling reaction as the key step and exhibited strong fluorescent emission, with high quantum yields in both organic solvents and water. Compatible with solid phase peptide synthesis, the carbazole amino acids were used to replace tryptophan in a β-hairpin model peptide and shown to be a close structural mimic with retention of conformation. They were also found to be effective fluorescent molecular reporters for biological events. Incorporation into a proline-rich ligand of the WW domain protein demonstrated that the fluorescent properties of a carbazole amino acid could be used to measure the protein-protein binding interaction of this important biological signalling process.
Collapse
Affiliation(s)
- Rebecca Clarke
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Liyao Zeng
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Bethany C Atkinson
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Malcolm Kadodwala
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew R Thomson
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
7
|
Zielińska A, Trzaska P, Budny M, Bosiak MJ. Kumada-Tamao-Corriu Type Reaction of Aromatic Bromo- and Iodoamines with Grignard Reagents. J Org Chem 2023; 88:16167-16175. [PMID: 37983162 PMCID: PMC10696545 DOI: 10.1021/acs.joc.3c01553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
The first example of the Kumada-Tamao-Corriu type reaction of unprotected bromoanilines with Grignard reagents is described. The method uses a palladium source and a newly designed Buchwald-type ligand as the catalytic system. Secondary and tertiary bromo- and iodoamines were also successfully coupled to alkyl Grignard reagents. The products of the competitive β-hydride elimination reaction were successfully reduced using a highly efficient electron-deficient phosphine ligand (BPhos). Mechanistic considerations allowed us to establish that the less electron-rich phosphine ligands stabilize the transition state much better than the electron-rich ones; hence, they increase the reaction yield and reduce the amount of β-hydride elimination products. The developed method proved to be tolerant of many functional groups and can be applied to many different aromatic bromo- and iodoamines. Multigram synthesis of p-toluidine from 4-bromoaniline was achieved with a palladium catalyst loading of only 0.03 mol%.
Collapse
Affiliation(s)
- Alicja
A. Zielińska
- Doctoral
School of Exact and Natural Sciences “Academia Scientiarum
Thoruniensis”, Nicolaus Copernicus
University in Toruń, 5 Grudziądzka Street, Toruń 87-100, Poland
- Noctiluca
SA, 7/41B Gagarina Street, Toruń 87-100, Poland
| | - Piotr Trzaska
- Department
of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, Toruń 87-100, Poland
- Noctiluca
SA, 7/41B Gagarina Street, Toruń 87-100, Poland
| | - Marcin Budny
- Synthex
Technologies Sp. z o.o., 7/134B Gagarina Street, Toruń 87-100, Poland
| | - Mariusz J. Bosiak
- Department
of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, Toruń 87-100, Poland
| |
Collapse
|
8
|
Kozyryev A, Lemen D, Dunn J, Rokita SE. Substrate Electronics Dominate the Rate of Reductive Dehalogenation Promoted by the Flavin-Dependent Iodotyrosine Deiodinase. Biochemistry 2023; 62:1298-1306. [PMID: 36892456 PMCID: PMC10073337 DOI: 10.1021/acs.biochem.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Iodotyrosine deiodinase (IYD) is unusual in its reliance on flavin to promote reductive dehalogenation of halotyrosines under aerobic conditions. Applications of this activity can be envisioned for bioremediation, but expansion of its specificity requires an understanding of the mechanistic steps that limit the rate of turnover. Key processes capable of controlling steady-state turnover have now been evaluated and described in this study. While proton transfer is necessary for converting the electron-rich substrate into an electrophilic intermediate suitable for reduction, kinetic solvent deuterium isotope effects suggest that this process does not contribute to the overall efficiency of catalysis under neutral conditions. Similarly, reconstituting IYD with flavin analogues demonstrates that a change in reduction potential by as much as 132 mV affects kcat by less than 3-fold. Furthermore, kcat/Km does not correlate with reduction potential and indicates that electron transfer is also not rate determining. Catalytic efficiency is most sensitive to the electronic nature of its substrates. Electron-donating substituents on the ortho position of iodotyrosine stimulate catalysis and conversely electron-withdrawing substituents suppress catalysis. Effects on kcat and kcat/Km range from 22- to 100-fold and fit a linear free-energy correlation with a ρ ranging from -2.1 to -2.8 for human and bacterial IYD. These values are consistent with a rate-determining process of stabilizing the electrophilic and nonaromatic intermediate poised for reduction. Future engineering can now focus on efforts to stabilize this electrophilic intermediate over a broad series of phenolic substrates that are targeted for removal from our environment.
Collapse
Affiliation(s)
- Anton Kozyryev
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Daniel Lemen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Jessica Dunn
- Chemistry Biology Interface Graduate Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
- Chemistry Biology Interface Graduate Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| |
Collapse
|
9
|
Jiang R, Zhou DY, Asano K, Suzuki T, Suzuki T. Catalytic asymmetric synthesis of (−)-arctigenin using a chiral Ir complex. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Ko T, Oliveira MM, Alapin JM, Morstein J, Klann E, Trauner D. Optical Control of Translation with a Puromycin Photoswitch. J Am Chem Soc 2022; 144:21494-21501. [PMID: 36394560 PMCID: PMC11302736 DOI: 10.1021/jacs.2c07374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Translation is an elementary cellular process that involves a large number of factors interacting in a concerted fashion with the ribosome. Numerous natural products have emerged that interfere with the ribosomal function, such as puromycin, which mimics an aminoacyl tRNA and causes premature chain termination. Here, we introduce a photoswitchable version of puromycin that, in effect, puts translation under optical control. Our compound, termed puroswitch, features a diazocine that allows for reversible and nearly quantitative isomerization and pharmacological modulation. Its synthesis involves a new photoswitchable amino acid building block. Puroswitch shows little activity in the dark and becomes substantially more active and cytotoxic, in a graded fashion, upon irradiation with various wavelengths of visible light. In vitro translation assays confirm that puroswitch inhibits translation with a mechanism similar to that of puromycin itself. Once incorporated into nascent proteins, puroswitch reacts with standard puromycin antibodies, which allows for tracking de novo protein synthesis using western blots and immunohistochemistry. As a cell-permeable small molecule, puroswitch can be used for nascent proteome profiling in a variety of cell types, including primary mouse neurons. We envision puroswitch as a useful biochemical tool for the optical control of translation and for monitoring newly synthesized proteins in defined locations and at precise time points.
Collapse
Affiliation(s)
- Tongil Ko
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Mauricio M. Oliveira
- Center for Neural Science, New York University, New York, New York, 10003, United States
| | - Jessica M. Alapin
- Center for Neural Science, New York University, New York, New York, 10003, United States
| | - Johannes Morstein
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York, 10003, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, New York, 10003, United States
| |
Collapse
|
11
|
Zhu F, Miller E, Powell WC, Johnson K, Beggs A, Evenson GE, Walczak MA. Umpolung Ala
B
Reagents for the Synthesis of Non‐Proteogenic Amino Acids, Peptides and Proteins**. Angew Chem Int Ed Engl 2022; 61:e202207153. [PMID: 35653581 PMCID: PMC9329247 DOI: 10.1002/anie.202207153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/07/2022]
Abstract
Non-proteogenic amino acids and functionalized peptides are important motifs in modern drug discovery. Here we report that AlaB can serve as universal building blocks in the synthesis of a diverse collection of modified amino acids, peptides, and proteins. First, we develop the synthesis of AlaB from redox-active esters of aspartic acid resulting in a series of β-boronoalanine derivatives. Next, we show that AlaB can be integrated into automated oligopeptide solid-phase synthesis. AlaB is compatible with common transformations used in preparative peptide chemistry such as native chemical ligation and radical desulfurization as showcased by total synthesis of AlaB -containing ubiquitin. Furthermore, AlaB reagents participate in Pd-catalyzed reactions, including C-C cross-couplings and macrocyclizations. Taken together, AlaB synthons are practical reagents to access modified peptides, proteins, and in the synthesis of cyclic/stapled peptides.
Collapse
Affiliation(s)
- Feng Zhu
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Eric Miller
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Wyatt C. Powell
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Kelly Johnson
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Alexander Beggs
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | | | | |
Collapse
|
12
|
Zhu F, Miller E, Powell W, Johnson K, Beggs A, Evenson G, Walczak MA. Umpolung AlaB Reagents for the Synthesis of Non‐Proteogenic Amino Acids, Peptides and Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zhu
- Shanghai Jiao Tong University Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs CHINA
| | - Eric Miller
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Wyatt Powell
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Kelly Johnson
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Alexander Beggs
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Garrett Evenson
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Maciej A. Walczak
- University of Colorado Boulder Department of Chemistry and Biochemistry 215 UCB 80309 Boulder UNITED STATES
| |
Collapse
|
13
|
Pérez-García RM, Riss PJ. Mild, Organo-Catalysed Borono-Deamination as a Key to Late-Stage Pharmaceutical Precursors and 18F-Labelled Radiotracers. Front Chem 2022; 10:884478. [PMID: 35559222 PMCID: PMC9089349 DOI: 10.3389/fchem.2022.884478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
A tris(pentafluorophenyl)borane catalysed method for the synthesis of boronic acid esters from aromatic amines in yields of up to 93% was devised. Mild conditions, benign reagents, short reaction times, low temperatures and a wide substrate scope characterize the method. The reaction was found applicable to the synthesis of boronic acid ester derivatives of complex drug molecules in up to 86% isolated yield and high purity suitable for labelling. These boronates were subsequently labelled with [18F]fluoride ion in radiochemical yields of up to 55% with and even without isolation of the boronate-intermediate.
Collapse
Affiliation(s)
- Raúl M. Pérez-García
- Section of Organic Chemistry, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Patrick J. Riss
- Section of Organic Chemistry, Department of Chemistry, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Oslo University Hospitals HF, Oslo, Norway
- GIGA Cyclotron Research Centre, Department of Chemistry, Liège, Belgium
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Patrick J. Riss,
| |
Collapse
|
14
|
García-Domínguez P, Areal A, Alvarez R, de Lera AR. Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines. Nat Prod Rep 2022; 39:1172-1225. [PMID: 35470828 DOI: 10.1039/d2np00006g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to the end of 2021Within the 2,5-dioxopiperazines-containing natural products, those generated from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle. The great variety of natural products, ranging from simple dimeric bispyrrolidinoindoline dioxopiperazines and tryptophan-derived dioxopiperazine/pyrrolidinoindoline dioxopiperazine analogs to complex polycyclic downstream metabolites containing transannular connections between the subunits, will be covered. These natural products are constructed by Nature using hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) assembly lines. Mining of microbial genome sequences has more recently allowed the study of the metabolic routes and the discovery of their hidden biosynthetic potential. The competition (ideally, also the combined efforts) between their isolation from the cultures of the producing microorganisms after global genome mining and heterologous expression and the synthetic campaigns, has more recently allowed the successful generation and structural confirmation of these natural products. Their biological activities as well as their proposed biogenetic routes and computational studies on biogenesis will also be covered.
Collapse
Affiliation(s)
| | - Andrea Areal
- CINBIO and Universidade de Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|
15
|
Mathew J, Ding S, Kunz KA, Stacy EE, Butler JH, Haney RS, Merino EF, Butschek GJ, Rizopoulos Z, Totrov M, Cassera MB, Carlier PR. Malaria Box-Inspired Discovery of N-Aminoalkyl-β-carboline-3-carboxamides, a Novel Orally Active Class of Antimalarials. ACS Med Chem Lett 2022; 13:365-370. [PMID: 35300096 PMCID: PMC8919280 DOI: 10.1021/acsmedchemlett.1c00663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Virtual ligand screening of a publicly available database of antimalarial hits using a pharmacophore derived from antimalarial MMV008138 identified TCMDC-140230, a tetrahydro-β-carboline amide, as worthy of exploration. All four stereoisomers of this structure were synthesized, but none potently inhibited growth of the malaria parasite Plasmodium falciparum. Interestingly, 7e, a minor byproduct of these syntheses, proved to be potent in vitro against P. falciparum and was orally efficacious (40 mg/kg) in an in vivo mouse model of malaria.
Collapse
Affiliation(s)
- Jopaul Mathew
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Sha Ding
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Kevin A Kunz
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Emily E Stacy
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Joshua H Butler
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 Green Street, Athens, Georgia 30602, United States
| | - Reagan S Haney
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 Green Street, Athens, Georgia 30602, United States
| | - Emilio F Merino
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 Green Street, Athens, Georgia 30602, United States
| | - Grant J Butschek
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 Green Street, Athens, Georgia 30602, United States
| | | | - Maxim Totrov
- Molsoft LLC, 11999 Sorrento Valley Road, San Diego, California 92121, United States
| | - Maria B Cassera
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 Green Street, Athens, Georgia 30602, United States
| | - Paul R Carlier
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Jiang R, Ismiyarto, Abe T, Zhou DY, Asano K, Suzuki T, Sasai H, Suzuki T. Using α- and β-Epimerizations of cis-2,3-Bis(hydroxymethyl)-γ-butyrolactone for the Synthesis of Both Enantiomers of Enterolactone. J Org Chem 2022; 87:5051-5056. [PMID: 35245066 DOI: 10.1021/acs.joc.1c02801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the context of asymmetric synthesis, epimerization is usually problematic. Here, we describe the use of the epimerization of cis-2,3-bis(hydroxymethyl)-γ-butyrolactone for the synthesis of enterolactones with anti-carcinogenic, anti-inflammatory, anti-angiogenic, and antioxidant activity. Selective α- or β-epimerization of a γ-butyrolactone was used to selectively synthesize both enantiomers of enterolactone. Theoretical and kinetic studies were performed to elucidate the epimerization mechanism.
Collapse
Affiliation(s)
- Rui Jiang
- Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ismiyarto
- Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tsukasa Abe
- Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Da-Yang Zhou
- Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kaori Asano
- Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
17
|
Dachwitz S, Scharkowski B, Sewald N. Negishi Cross-Coupling Provides Alkylated Tryptophans and Tryptophan Regioisomers. Chemistry 2021; 27:18043-18046. [PMID: 34713938 PMCID: PMC9299634 DOI: 10.1002/chem.202103353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Mild transition-metal catalysed cross-couplings enable direct functionalisation of biocatalytically halogenated tryptophans with alkyl iodides, representing a new alternative for late-stage derivatisations of halogenated aromatic amino acids. Moreover, this strategy enables preparation of (homo)tryptophan regioisomers in a simple two-step synthesis using a Pd-catalysed Negishi cross coupling. This method provides access to non-canonical constitutional surrogates of tryptophan, ready for use in peptide synthesis.
Collapse
Affiliation(s)
- Steffen Dachwitz
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Bjarne Scharkowski
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
18
|
Molkenthin M, Nau WM, Nachtsheim BJ. Efficient Hydro- and Organogelation by Minimalistic Diketopiperazines Containing a Highly Insoluble Aggregation-Induced, Blue-Shifted Emission Luminophore*. Chemistry 2021; 27:16488-16497. [PMID: 34677869 PMCID: PMC9297864 DOI: 10.1002/chem.202102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/17/2022]
Abstract
We report the synthesis, gelation abilities and aggregation-induced, blue-shifted emission (AIBSE) properties of two minimalistic diketopiperazine-based gelators. Despite containing a highly insoluble luminophore that makes up more than half of their respective molecular masses, efficient hydrogelation by multiple stimuli for one and efficient organogelation for the other compound are reported. Insights into the aggregation and gelation properties were gained through examination of the photophysical and material properties of selected gels, which are representative of the different modes of gelation. The synthesis of the gelators is highly modular and based on readily available amino acid building blocks, allowing the efficient and rapid diversification of these core structures and fine-tuning of gel properties.
Collapse
Affiliation(s)
- Martin Molkenthin
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße 728359BremenGermany
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| | - Boris J. Nachtsheim
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße 728359BremenGermany
| |
Collapse
|
19
|
Dowman LJ, Agten SM, Ripoll-Rozada J, Calisto BM, Pereira PJB, Payne RJ. Synthesis and evaluation of peptidic thrombin inhibitors bearing acid-stable sulfotyrosine analogues. Chem Commun (Camb) 2021; 57:10923-10926. [PMID: 34596182 DOI: 10.1039/d1cc04742f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tyrosine sulfation is an important post-translational modification of peptides and proteins which underpins and modulates many protein-protein interactions. In order to overcome the inherent instability of the native modification, we report the synthesis of two sulfonate analogues and their incorporation into two thrombin-inhibiting sulfopeptides. The effective mimicry of these sulfonate analogues for native sulfotyrosine was validated in the context of their thrombin inhibitory activity and binding mode, as determined by X-ray crystallography.
Collapse
Affiliation(s)
- Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydne, NSW 2006, Australia
| | - Stijn M Agten
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Jorge Ripoll-Rozada
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | | | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydne, NSW 2006, Australia
| |
Collapse
|
20
|
Zhu F, Powell WC, Jing R, Walczak MA. Organometallic Ala M Reagents for Umpolung Peptide Diversification. CHEM CATALYSIS 2021; 1:870-884. [PMID: 34738092 PMCID: PMC8562471 DOI: 10.1016/j.checat.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selective modifications of peptides and proteins have emerged as a promising strategy to develop novel mechanistic probes and prepare compounds with translational potentials. Here, we report alanine carbastannatranes AlaSn as a universal synthon in various C-C and C-heteroatom bond-forming reactions. These reagents are compatible with peptide manipulation techniques and can undergo chemoselective conjugation in minutes when promoted by Pd(0). Despite their increased nucleophilicity and propensity to transfer the alkyl group, C(sp3)-C(sp2) coupling with AlaSn can be accomplished at room temperature under buffered conditions (pH 6.5-8.5). We also show that AlaSn can be easily transformed into several canonical L- and D-amino acids in arylation, acylation, and etherification reactions. Furthermore, AlaSn can partake in macrocyclizations exemplified by the synthesis of medium size cyclic peptides with various topologies. Taken together, metalated alanine AlaSn demonstrates unparalleled scope and represents a new type of umpolung reagents suitable for structure-activity relationship studies and peptide diversification.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. C
- These authors contributed equally
| | - Wyatt C. Powell
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
- These authors contributed equally
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| |
Collapse
|
21
|
Voight EA, Greszler SN, Kym PR. Fueling the Pipeline via Innovations in Organic Synthesis. ACS Med Chem Lett 2021; 12:1365-1373. [PMID: 34531945 DOI: 10.1021/acsmedchemlett.1c00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
The paramount importance of synthetic organic chemistry in the pharmaceutical industry arises from the necessity to physically prepare all designed molecules to obtain key data to feed the design-synthesis-data cycle, with the medicinal chemist at the center of this cycle. Synthesis specialists accelerate the cycle of medicinal chemistry innovation by rapidly identifying and executing impactful synthetic methods and strategies to accomplish project goals, addressing the synthetic accessibility bottleneck that often plagues discovery efforts. At AbbVie, Discovery Synthesis Groups (DSGs) such as Centralized Organic Synthesis (COS) have been deployed as embedded members of medicinal chemistry teams, filling the gap between discovery and process chemistry. COS chemists provide synthetic tools, scaffolds, and lead compounds to fuel the pipeline. Examples of project contributions from neuroscience, cystic fibrosis, and virology illustrate the impact of the DSG approach. In the first ten years of innovative science in pursuit of excellence in synthesis, several advanced drug candidates, including ABBV-2222 (galicaftor) for cystic fibrosis and foslevodopa/foscarbidopa for Parkinson's disease, have emerged with key contributions from COS.
Collapse
Affiliation(s)
- Eric A. Voight
- Drug Discovery Science & Technology, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Stephen N. Greszler
- Drug Discovery Science & Technology, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Philip R. Kym
- Drug Discovery Science & Technology, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
22
|
Horx P, Geyer A. High five! Methyl probes at five ring positions of phenylalanine explore the hydrophobic core dynamics of zinc finger miniproteins. Chem Sci 2021; 12:11455-11463. [PMID: 34667551 PMCID: PMC8447250 DOI: 10.1039/d1sc02346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
The elucidation of internal dynamics in proteins is essential for the understanding of their stability and functionality. Breaking the symmetry of the degenerate rotation of the phenyl side chain provides additional structural information and allows a detailed description of the dynamics. Based on this concept, we propose a combination of synthetic and computational methods, to study the rotational mobility of the Phe ring in a sensitive zinc finger motif. The systematic methyl hopping around the phenylalanine ring yields o-, m-, p-tolyl and xylyl side chains that provide a vast array of additional NOE contacts, allowing the precise determination of the orientation of the aromatic ring. MD simulations and metadynamics complement these findings and facilitate the generation of free energy profiles for each derivative. Previous studies used a wide temperature window in combination with NMR spectroscopy to elucidate the side chain mobility of stable proteins. The zinc finger moiety exhibits a limited thermodynamic stability in a temperature range of only 40 K, making this approach impractical for this compound class. Therefore, we have developed a method that can be applied even to thermolabile systems and facilitates the detailed investigation of protein dynamics.
Collapse
Affiliation(s)
- Philip Horx
- Philipps-University Marburg 35043 Marburg Germany
| | - Armin Geyer
- Philipps-University Marburg 35043 Marburg Germany
| |
Collapse
|
23
|
Young BM, Rossi P, Slavish PJ, Cui Y, Sowaileh M, Das J, Kalodimos CG, Rankovic Z. Synthesis of Isotopically Labeled, Spin-Isolated Tyrosine and Phenylalanine for Protein NMR Applications. Org Lett 2021; 23:6288-6292. [PMID: 34379431 PMCID: PMC8884888 DOI: 10.1021/acs.orglett.1c02084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Isotopically labeled
amino acids are widely used to study the structure
and dynamics of proteins by NMR. Herein we describe a facile, gram-scale
synthesis of compounds 1b and 2b under standard
laboratory conditions from the common intermediate 7. 2b is obtained via simple deprotection, while 1b is accessed through a reductive deoxygenation/deuteration sequence
and deprotection. 1b and 2b provide improved
signal intensity using lower amounts of labeled precursor and are
alternatives to existing labeling approaches.
Collapse
Affiliation(s)
- Brandon M Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - P Jake Slavish
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yixin Cui
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Munia Sowaileh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jitendra Das
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
24
|
Faraggi TM, Rouget-Virbel C, Rincón JA, Barberis M, Mateos C, García-Cerrada S, Agejas J, de Frutos O, MacMillan DWC. Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis. Org Process Res Dev 2021; 25:1966-1973. [DOI: 10.1021/acs.oprd.1c00208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomer M. Faraggi
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Caroline Rouget-Virbel
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Juan A. Rincón
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Mario Barberis
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Carlos Mateos
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Susana García-Cerrada
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Javier Agejas
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Oscar de Frutos
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Wu X, Deng J, Guo G, Zheng Y, Xiong Q, Zheng T, Zhao X, Yu Z. Spatiotemporal Resolved Live Cell Membrane Tracking through Photo-click Reactions Enriched in Lipid Phase. Chemistry 2021; 27:11957-11965. [PMID: 34057766 DOI: 10.1002/chem.202101653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/04/2023]
Abstract
A set of photo-switchable monopeptides derived from cis-β-dibenzodiazocine-l-alanine (cis-DBDAA) have been designed and synthesized, which are capable of photo-click reacting with diaryltetrazoles or diarylsydnones in a hydrophobic phospholipid bilayer environment. The DBDAA monopeptides include both a hydrophobic tail on C-terminal, providing high affinity toward lipid membrane, and a modularized functional moiety on N-terminal, enabling rapid optimization of the self-assembly strength to form multifunctional supramolecules. With the cis-DBDAA monopeptides photo-switched into trans-configuration, we were able to disrupt the supramolecular assembly through an efficient photo-click reaction across the lipid bilayer of liposomes. We reveal that the performance of the photo-click reactions between the monopeptides and photo-generated nitrile imine intermediates is significantly enhanced by enrichment of both reactants in the hydrophobic membrane lamel of liposomes. Enrichment of the DBDAA monopeptide in lipid phase serves as a convenient method to introduce bioorthogonal chemical handles on live cell membranes, which enables fluorescence labelling of single cell's membrane with high spatiotemporal resolution to facilitate the studies on cell membrane dynamics.
Collapse
Affiliation(s)
- Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajie Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Guiling Guo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tingting Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
26
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
27
|
Nimje RY, Vytla D, Kuppusamy P, Velayuthaperumal R, Jarugu LB, Reddy CA, Chikkananjaiah NK, Rampulla RA, Cavallaro CL, Li J, Mathur A, Gupta A, Roy A. Synthesis of Differentially Protected Azatryptophan Analogs via Pd 2(dba) 3/XPhos Catalyzed Negishi Coupling of N-Ts Azaindole Halides with Zinc Derivative from Fmoc-Protected tert-Butyl ( R)-2-Amino-3-iodopropanoate. J Org Chem 2020; 85:11519-11530. [PMID: 32786620 DOI: 10.1021/acs.joc.0c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unnatural amino acids play an important role in peptide based drug discovery. Herein, we report a class of differentially protected azatryptophan derivatives synthesized from N-tosyl-3-haloazaindoles 1 and Fmoc-protected tert-butyl iodoalanine 2 via a Negishi coupling. Through ligand screening, Pd2(dba)3/XPhos was found to be a superior catalyst for the coupling of 1 with the zinc derivative of 2 to give tert-butyl (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(1-tosyl-1H-pyrrolo[2,3-b]pyridin-3-yl)propanoate derivatives 3 in 69-91% isolated yields. In addition, we have demonstrated that the protecting groups, namely, Ts, Fmoc, and tBu, can be easily removed selectively.
Collapse
Affiliation(s)
- Roshan Y Nimje
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| | - Devaiah Vytla
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| | - Prakasam Kuppusamy
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| | - Rajeswari Velayuthaperumal
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| | - Lokesh Babu Jarugu
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| | - China Anki Reddy
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| | - Nanjundaswamy Kanikahalli Chikkananjaiah
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| | - Richard A Rampulla
- Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Cullen L Cavallaro
- Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Jianqing Li
- Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Arvind Mathur
- Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| | - Amrita Roy
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Biocon Park, Plot No. 2 and 3, Bommasandra-Jigani Road, Bangalore-560 100, India
| |
Collapse
|
28
|
Peris E, Porcar R, Macia M, Alcázar J, García-Verdugo E, Luis SV. Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene-phosphine complexes for the Negishi reaction under flow conditions. Beilstein J Org Chem 2020; 16:1924-1935. [PMID: 32802209 PMCID: PMC7418103 DOI: 10.3762/bjoc.16.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
The combination of supported ionic liquids and immobilized NHC-Pd-RuPhos led to active and more stable systems for the Negishi reaction under continuous flow conditions than those solely based on NHC-Pd-RuPhos. The fine tuning of the NHC-Pd catalyst and the SILLPs is a key factor for the optimization of the release and catch mechanism leading to a catalytic system easily recoverable and reusable for a large number of catalytic cycles enhancing the long-term catalytic performance.
Collapse
Affiliation(s)
- Edgar Peris
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I, Avda Sos Baynat s/n, E-12071-Castellon, Spain
| | - Raúl Porcar
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I, Avda Sos Baynat s/n, E-12071-Castellon, Spain
| | - María Macia
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I, Avda Sos Baynat s/n, E-12071-Castellon, Spain
| | - Jesús Alcázar
- Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/ Jarama 75A, Toledo, Spain
| | - Eduardo García-Verdugo
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I, Avda Sos Baynat s/n, E-12071-Castellon, Spain
| | - Santiago V Luis
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I, Avda Sos Baynat s/n, E-12071-Castellon, Spain
| |
Collapse
|
29
|
Leroux M, Huang W, Lemke Y, Koller TJ, Karaghiosoff K, Knochel P. Pyrrole-Protected β-Aminoalkylzinc Reagents for the Enantioselective Synthesis of Amino-Derivatives. Chemistry 2020; 26:8951-8957. [PMID: 32196786 PMCID: PMC7497206 DOI: 10.1002/chem.202000870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Indexed: 11/09/2022]
Abstract
Chiral β-aminoalkylzinc halides were prepared starting from optically pure commercial β-amino-alcohols. These amino-alcohols were converted to the corresponding N-pyrrolyl-protected alkyl iodides which undergo a zinc insertion in the presence of LiCl (THF, 25 °C, 10-90 min). Subsequent Negishi cross-coupling or acylation reactions with acid chlorides produced amino-derivatives with retention of chirality. Diastereoselective CBS-reductions of some prepared N-pyrrolyl-ketones provided 1,3-subsituted N-pyrrolyl-alcohols with high diastereoselectivity. Additionally, a deprotection procedure involving an ozonolysis allowed the conversion of the pyrrole-ring into a formamide without loss of optical purity.
Collapse
Affiliation(s)
- Marcel Leroux
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Wan‐Yun Huang
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Yannick Lemke
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Thaddäus J. Koller
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
30
|
Awad LF, Ayoup MS. Fluorinated phenylalanines: synthesis and pharmaceutical applications. Beilstein J Org Chem 2020; 16:1022-1050. [PMID: 32509033 PMCID: PMC7237815 DOI: 10.3762/bjoc.16.91] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
Recent advances in the chemistry of peptides containing fluorinated phenylalanines (Phe) represents a hot topic in drug research over the last few decades. ᴅ- or ʟ-fluorinated phenylalanines have had considerable industrial and pharmaceutical applications and they have been expanded also to play an important role as potential enzyme inhibitors as well as therapeutic agents and topography imaging of tumor ecosystems using PET. Incorporation of fluorinated aromatic amino acids into proteins increases their catabolic stability especially in therapeutic proteins and peptide-based vaccines. This review seeks to summarize the different synthetic approaches in the literature to prepare ᴅ- or ʟ-fluorinated phenylalanines and their pharmaceutical applications with a focus on published synthetic methods that introduce fluorine into the phenyl, the β-carbon or the α-carbon of ᴅ-or ʟ-phenylalanines.
Collapse
Affiliation(s)
- Laila Fathy Awad
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| |
Collapse
|
31
|
Dardir AH, Hazari N, Miller SJ, Shugrue CR. Palladium-Catalyzed Suzuki-Miyaura Reactions of Aspartic Acid Derived Phenyl Esters. Org Lett 2019; 21:5762-5766. [PMID: 31290674 DOI: 10.1021/acs.orglett.9b02214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transition-metal-catalyzed transformations of amino acids and peptides could provide a powerful method for their site-selective modification. Here, we report non-decarbonylative Pd-catalyzed Suzuki-Miyaura reactions of phenyl ester derivatives of aspartic acid to form aryl-amino ketones. These products are potentially important in the synthesis of pharmaceuticals, and our methodology represents a new route to access molecules of this type.
Collapse
Affiliation(s)
- Amira H Dardir
- The Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Nilay Hazari
- The Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Scott J Miller
- The Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Christopher R Shugrue
- The Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| |
Collapse
|
32
|
Chen W, Huang Z, Tay NES, Giglio B, Wang M, Wang H, Wu Z, Nicewicz DA, Li Z. Direct arene C-H fluorination with 18F - via organic photoredox catalysis. Science 2019; 364:1170-1174. [PMID: 31221856 PMCID: PMC6680023 DOI: 10.1126/science.aav7019] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/06/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Positron emission tomography (PET) plays key roles in drug discovery and development, as well as medical imaging. However, there is a dearth of efficient and simple radiolabeling methods for aromatic C-H bonds, which limits advancements in PET radiotracer development. Here, we disclose a mild method for the fluorine-18 (18F)-fluorination of aromatic C-H bonds by an [18F]F- salt via organic photoredox catalysis under blue light illumination. This strategy was applied to the synthesis of a wide range of 18F-labeled arenes and heteroaromatics, including pharmaceutical compounds. These products can serve as diagnostic agents or provide key information about the in vivo fate of the labeled substrates, as showcased in preliminary tracer studies in mice.
Collapse
Affiliation(s)
- Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Zeng Huang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Nicholas E S Tay
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin Giglio
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Mengzhe Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
33
|
Sdahl M, Conrad J, Braunberger C, Beifuss U. Efficient and sustainable laccase-catalyzed iodination of p-substituted phenols using KI as iodine source and aerial O 2 as oxidant. RSC Adv 2019; 9:19549-19559. [PMID: 35519358 PMCID: PMC9065379 DOI: 10.1039/c9ra02541c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022] Open
Abstract
The laccase-catalyzed iodination of p-hydroxyarylcarbonyl- and p-hydroxyarylcarboxylic acid derivatives using KI as iodine source and aerial oxygen as the oxidant delivers the corresponding iodophenols in a highly efficient and sustainable manner with yields up to 93% on a preparative scale under mild reaction conditions.
Collapse
Affiliation(s)
- Mark Sdahl
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim Garbenstr. 30 Stuttgart D-70599 Germany +49 711 459 22951 +49 711 459 22171
| | - Jürgen Conrad
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim Garbenstr. 30 Stuttgart D-70599 Germany +49 711 459 22951 +49 711 459 22171
| | - Christina Braunberger
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim Garbenstr. 30 Stuttgart D-70599 Germany +49 711 459 22951 +49 711 459 22171
| | - Uwe Beifuss
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim Garbenstr. 30 Stuttgart D-70599 Germany +49 711 459 22951 +49 711 459 22171
| |
Collapse
|
34
|
Shin JA, Kim J, Lee H, Ha S, Lee HY. Cu(OTf)2-Promoted 1,4-Addition of Alkyl Bromides to Dehydroalanine. J Org Chem 2019; 84:4558-4565. [DOI: 10.1021/acs.joc.9b00369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jung-Ah Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Fourth R&D Institute-6, Agency for Defense Development, Daejeon 34186, Korea
| | - Jiheon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hongsoo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sura Ha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hee-Yoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
35
|
Montgomery M, O'Brien HM, Méndez-Gálvez C, Bromfield CR, Roberts JPM, Winnicka AM, Horner A, Elorriaga D, Sparkes HA, Bedford RB. The surprisingly facile formation of Pd(i)-phosphido complexes from ortho-biphenylphosphines and palladium acetate. Dalton Trans 2019; 48:3539-3542. [PMID: 30720818 DOI: 10.1039/c8dt04926b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The widely-used ortho-biphenylphosphine ligands SPhos and RuPhos not only undergo facile orthometallation with palladium acetate, yielding strained, four-membered dimeric palladacycles but more surprisingly, in the presence of alcoholic solvents, along with the less encumbered analogue MePhos, yield unusual dinuclear Pd(i) complexes, in which the Pd-centers are bridged by both a phosphide ligand and by the arene of a coordinated phosphine donor.
Collapse
Affiliation(s)
- Michelle Montgomery
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yao Z, Wu X, Zhang X, Xiong Q, Jiang S, Yu Z. Synthesis and evaluation of photo-activatable β-diarylsydnone-l-alanines for fluorogenic photo-click cyclization of peptides. Org Biomol Chem 2019; 17:6777-6781. [DOI: 10.1039/c9ob00898e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
β-Diarylsydnone-l-alanines were designed and introduced into peptides allowing photo-cyclization only in phosphate containing buffer with concomitant fluorescence generation in live cells.
Collapse
Affiliation(s)
- Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
37
|
Grigolato L, Brittain WD, Hudson AS, Czyzewska MM, Cobb SL. Synthesis of pentafluorosulfanyl (SF 5) containing aromatic amino acids. J Fluor Chem 2018; 212:166-170. [PMID: 30078911 PMCID: PMC6039762 DOI: 10.1016/j.jfluchem.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/18/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
Herein, a series of aromatic pentafluorosulfanyl (SF5) containing amino acids are reported. A Negishi cross-coupling strategy utilising a catalyst system of Pd(dba)2 and SPhos afforded the aforementioned SF5 amino acids in yields between 32% and 42%. Two dipeptides utilising both the amine and carboxylic functionalities of the synthesised SF5 containing amino acids were prepared, demonstrating their compatibility with common amide/peptide coupling reagents and strategies.
Collapse
Affiliation(s)
| | | | | | | | - Steven L. Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
38
|
Ozturk S, Forneris CC, Nguy AKL, Sorensen EJ, Seyedsayamdost MR. Modulating OxyB-Catalyzed Cross-Coupling Reactions in Vancomycin Biosynthesis by Incorporation of Diverse d-Tyr Analogues. J Org Chem 2018; 83:7309-7317. [DOI: 10.1021/acs.joc.8b00916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seyma Ozturk
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Clarissa C. Forneris
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andy K. L. Nguy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erik J. Sorensen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
39
|
Brittain WDG, Cobb SL. Negishi cross-couplings in the synthesis of amino acids. Org Biomol Chem 2018; 16:10-20. [PMID: 29199315 DOI: 10.1039/c7ob02682j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Negishi cross-coupling is a powerful C-C bond-forming reaction widely utilised in many areas of organic synthesis. This review details the use of Negishi cross-couplings in the synthesis of unnatural amino acids. The application of this reaction in the preparation of aromatic, heteroaromatic, and, complex amino acid derivatives are reviewed and presented herein.
Collapse
Affiliation(s)
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
40
|
Indole-Indole Ullmann Cross-Coupling for CAr
-N Bond Formation: Total Synthesis of (-)-Aspergilazine A. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Abstract
Nannocystin A is a novel 21-membered macrolactone isolated from myxobacterium Nanocystis sp. It is a potent elongation factor 1 inhibitor and inhibits cancer cell line growth at nanomolar concentrations. In this work, a concise asymmetric total synthesis of nannocystin A has been developed, which features Sharpless epoxidation, Stille coupling, and final macrolactamization.
Collapse
Affiliation(s)
- Qiang Liu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University , 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Ping Hu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University , 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Yun He
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University , 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| |
Collapse
|
42
|
The Suzuki–Miyaura Cross-Coupling as a Versatile Tool for Peptide Diversification and Cyclization. Catalysts 2017. [DOI: 10.3390/catal7030074] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
43
|
Featherston AL, Miller SJ. Synthesis and evaluation of phenylalanine-derived trifluoromethyl ketones for peptide-based oxidation catalysis. Bioorg Med Chem 2016; 24:4871-4874. [PMID: 27452284 PMCID: PMC5053897 DOI: 10.1016/j.bmc.2016.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 11/24/2022]
Abstract
We report the synthesis of phenylalanine-derived trifluoromethyl ketones for the in situ generation of dioxiranes for the purpose of oxidation catalysis. The key features of this synthesis include the use of a masked ketone strategy and a Negishi cross-coupling to access the parent amino acid. The derivatives can be readily incorporated into a peptide for use in oxidation chemistry and exhibit good stability and reactivity.
Collapse
Affiliation(s)
- Aaron L Featherston
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, United States.
| |
Collapse
|
44
|
Qi N, Allu SR, Wang Z, Liu Q, Guo J, He Y. Asymmetric Total Syntheses of Aetheramides and Their Stereoisomers: Stereochemical Assignment of Aetheramides. Org Lett 2016; 18:4718-21. [DOI: 10.1021/acs.orglett.6b02371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Qi
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - Srinivasa Rao Allu
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - Zhanlong Wang
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - Qiang Liu
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - Jian Guo
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| |
Collapse
|
45
|
Haas D, Hammann JM, Greiner R, Knochel P. Recent Developments in Negishi Cross-Coupling Reactions. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02718] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Diana Haas
- Ludwig-Maximilians-University, Department of Chemistry and Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Jeffrey M. Hammann
- Ludwig-Maximilians-University, Department of Chemistry and Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Robert Greiner
- Ludwig-Maximilians-University, Department of Chemistry and Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Paul Knochel
- Ludwig-Maximilians-University, Department of Chemistry and Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
46
|
Bender AM, Griggs NW, Gao C, Trask TJ, Traynor JR, Mosberg HI. Rapid Synthesis of Boc-2',6'-dimethyl-l-tyrosine and Derivatives and Incorporation into Opioid Peptidomimetics. ACS Med Chem Lett 2015; 6:1199-203. [PMID: 26713104 DOI: 10.1021/acsmedchemlett.5b00344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/19/2015] [Indexed: 12/30/2022] Open
Abstract
The unnatural amino acid 2',6'-dimethyl-l-tyrosine has found widespread use in the development of synthetic opioid ligands. Opioids featuring this residue at the N-terminus often display superior potency at one or more of the opioid receptor types, but the availability of the compound is hampered by its cost and difficult synthesis. We report here a short, three-step synthesis of Boc-2',6'-dimethyl-l-tyrosine (3a) utilizing a microwave-assisted Negishi coupling for the key carbon-carbon bond forming step, and employ this chemistry for the expedient synthesis of other unnatural tyrosine derivatives. Three of these derivatives (3c, 3d, 3f) have not previously been examined as Tyr(1) replacements in opioid ligands. We describe the incorporation of these tyrosine derivatives in a series of opioid peptidomimetics employing our previously reported tetrahydroquinoline (THQ) scaffold, and the binding and relative efficacy of each of the analogues at the three opioid receptor subtypes: mu (MOR), delta (DOR), and kappa (KOR).
Collapse
Affiliation(s)
- Aaron M. Bender
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department
of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao Gao
- Department
of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tyler J. Trask
- Department
of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department
of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
47
|
Demmer CS, Møller C, Brown PMGE, Han L, Pickering DS, Nielsen B, Bowie D, Frydenvang K, Kastrup JS, Bunch L. Binding mode of an α-amino acid-linked quinoxaline-2,3-dione analogue at glutamate receptor subtype GluK1. ACS Chem Neurosci 2015; 6:845-54. [PMID: 25856736 DOI: 10.1021/acschemneuro.5b00038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two α-amino acid-functionalized quinoxalines, 1a (CNG-10301) and 1b (CNG-10300), of a quinoxaline moiety coupled to an amino acid moiety were designed, synthesized, and characterized pharmacologically. While 1a displayed low affinity at native AMPA, KA, and NMDA receptors, and at homomeric GluK1,3 receptors, the affinity for GluK2 was in the midmicromolar range (Ki = 136 μM), 1b displayed low to midmicromolar range binding affinity at all the iGluRs (Ki = 9-126 μM). In functional experiments (outside-out patches excised from transfected HEK293T cells), 100 μM 1a partially blocked GluK1 (33% peak response), while GluK2 was unaffected (96% peak response). Furthermore, 1a was shown not to be an agonist at GluK1 and GluK2 at 100 μM. On the other hand, 100 μM 1b fully antagonized GluK1 (8% peak response) but only partially blocked GluK2 (33% peak response). An X-ray structure at 2.3 Å resolution of 1b in the GluK1-LBD (ligand-binding domain) disclosed an unexpected binding mode compared to the predictions made during the design phase; the quinoxaline moiety remains to act as an amino acid bioisostere, but the amino acid moiety is oriented into a new area within the GluK1 receptor. The structure of the GluK1-LBD with 1b showed a large variation in domain openings of the three molecules from 25° to 49°, demonstrating that the GluK1-LBD is capable of undergoing major domain movements.
Collapse
|
48
|
Lilley M, Mambwe B, Jackson RFW, Muimo R. 4-Phosphothiophen-2-yl alanine: a new 5-membered analogue of phosphotyrosine. Chem Commun (Camb) 2015; 50:9343-5. [PMID: 25002222 DOI: 10.1039/c4cc03393k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyclonal antibodies raised against 4-phosphothiophen-2-yl alanine 2a, a novel five-membered ring analogue of phosphotyrosine, showed high selectivity for phosphotyrosine and no cross-reactivity with other phosphorylated amino acids. Western blots showed that the polyclonal was similarly effective, but different in selectivity, to a commercially available monoclonal antibody.
Collapse
Affiliation(s)
- Matthew Lilley
- Department of Chemistry, The University of Sheffield, Dainton Building, Sheffield, S3 7HF, UK.
| | | | | | | |
Collapse
|
49
|
Böck K, Feil JE, Karaghiosoff K, Koszinowski K. Catalyst Activation, Deactivation, and Degradation in Palladium-Mediated Negishi Cross-Coupling Reactions. Chemistry 2015; 21:5548-60. [DOI: 10.1002/chem.201406408] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 11/11/2022]
|
50
|
Hudson AS, Caron L, Colgin N, Cobb SL. A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids. Amino Acids 2015; 47:779-85. [PMID: 25583604 DOI: 10.1007/s00726-014-1908-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.
Collapse
Affiliation(s)
- Alex S Hudson
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | | | | | | |
Collapse
|