1
|
Nguindjel AD, Franssen SCM, Korevaar PA. Reconfigurable Droplet-Droplet Communication Mediated by Photochemical Marangoni Flows. J Am Chem Soc 2024; 146:6006-6015. [PMID: 38391388 PMCID: PMC10921405 DOI: 10.1021/jacs.3c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Droplets are attractive building blocks for dynamic matter that organizes into adaptive structures. Communication among collectively operating droplets opens untapped potential in settings that vary from sensing, optics, protocells, computing, or adaptive matter. Inspired by the transmission of signals among decentralized units in slime mold Physarum polycephalum, we introduce a combination of surfactants, self-assembly, and photochemistry to establish chemical signal transfer among droplets. To connect droplets that float at an air-water interface, surfactant triethylene glycol monododecylether (C12E3) is used for its ability to self-assemble into wires called myelins. We show how the trajectory of these myelins can be directed toward selected photoactive droplets upon UV exposure. To this end, we developed a strategy for photocontrolled Marangoni flow, which comprises (1) the liquid crystalline coating formed at the surface of an oleic acid/sodium oleate (OA/NaO) droplet when in contact with water, (2) a photoacid generator that protonates sodium oleate upon UV exposure and therefore disintegrates the coating, and (3) the surface tension gradient that is generated upon depletion of the surfactant from the air-water interface by the uncoated droplet. Therefore, localized UV exposure of selected OA/NaO droplets results in attraction of the myelins such that they establish reconfigurable connections that self-organize among the C12E3 and OA/NaO droplets. As an example of communication, we demonstrate how the myelins transfer fluorescent dyes, which are selectively delivered in the droplet interior upon photochemical regulation of the liquid crystalline coating.
Collapse
Affiliation(s)
- Anne-Déborah
C. Nguindjel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Stan C. M. Franssen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
2
|
Liu B, Chen C, Teng G, Tian G, Zhang G, Gao Y, Zhang L, Wu Z, Zhang J. Chitosan-based organic/inorganic composite engineered for UV light-controlled smart pH-responsive pesticide through in situ photo-induced generation of acid. PEST MANAGEMENT SCIENCE 2022; 78:2299-2308. [PMID: 35233948 DOI: 10.1002/ps.6854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Confined by the volatile property, pesticides are overused and lost significantly during and after spraying, weakening the ecological microbalance among different species of lives. Acid-responsive pesticide is a type of smartly engineered pesticides that contribute to the improvement of utilization efficiency of pesticidal active ingredients in acid-controlled manner, whilst the implementation of acidic solutions may disturb the balance of microenvironment surrounding targeted plants or cause secondary pollution, underscoring the input of acid in a more precise strategy. RESULTS Chitosan was chemically modified with a photoacid generator (2-nitrobenzaldehyde) serving as a light-maneuvered acid self-supplier, based on which a smart pesticide was formulated by the integration of attapulgite and organophosphate insecticide chlorpyrifos. Under the irradiation of UV light (365 nm), the modified chitosan would undergo a photolytic reaction to generate an acid and pristine chitosan, which seized the labile protons and facilitated the release of chlorpyrifos based on its inherent pH-responsive flexibility. According to the pesticide release performance, the release rate of chlorpyrifos under UV light (27.2 mW/cm2 ) reached 78%, significantly higher than those under sunlight (22%, 4.2 mW/cm2 ) and in the dark (20%) within the same time, consistent with the pH reduction to 5.3 under UV light and no obvious pH change for the two other situations, exhibiting an attractive UV light-controlled, acid-propelled release behavior. CONCLUSION Compared to direct acid spray approach, the proposed in situ photo-induced generation of acid locally on the spots of applied pesticide circumvents the problem of acid contamination to nontargets, demonstrating higher efficiency and biocompatibility for the controlled delivery of acid-responsive pesticides and pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- University of Science and Technology of China, Hefei, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Guopeng Teng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- University of Science and Technology of China, Hefei, People's Republic of China
| | - Geng Tian
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, People's Republic of China
| | - Guilong Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, People's Republic of China
| | - Yujie Gao
- Hefei Institute of Technology Innovation Engineering, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Lihong Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| |
Collapse
|
3
|
Lu JY, Zhang PL, Chen QY. A Nano-BODIPY Encapsulated Zeolitic Imidazolate Framework As Photoresponsive Integrating Antibacterial Agent. ACS APPLIED BIO MATERIALS 2019; 3:458-465. [DOI: 10.1021/acsabm.9b00905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jin-Ye Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Peng-Li Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
4
|
Vázquez J, Romero MA, Dsouza RN, Pischel U. Phototriggered release of amine from a cucurbituril macrocycle. Chem Commun (Camb) 2016; 52:6245-8. [DOI: 10.1039/c6cc02347a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amines are released from a cucurbituril macrocycle by photoinduced pH jump and modulation of the competitiveness of a fluorescent guest.
Collapse
Affiliation(s)
- J. Vázquez
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| | - M. A. Romero
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| | - R. N. Dsouza
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - U. Pischel
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| |
Collapse
|
5
|
Nada AA, James R, Shelke NB, Harmon MD, Awad HM, Nagarale RK, Kumbar SG. A smart methodology to fabricate electrospun chitosan nanofiber matrices for regenerative engineering applications. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3292] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ahmed A. Nada
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Textile Research Division; National Research Center; Dokki Cairo 12622 Egypt
| | - Roshan James
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | - Namdev B. Shelke
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | - Matthew D. Harmon
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Department of Materials Science & Engineering and Biomedical Engineering; University of Connecticut; CT 06269 USA
| | - Hassan M. Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division; National Research Center; Dokki Cairo 12622 Egypt
| | - Rajaram K. Nagarale
- Department of Chemical Engineering; Indian Institute of Technology; Kanpur Uttar Pradesh 208016 India
| | - Sangamesh G. Kumbar
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Department of Materials Science & Engineering and Biomedical Engineering; University of Connecticut; CT 06269 USA
| |
Collapse
|
6
|
Kim S, Kim JK, Gao J, Song JH, An HJ, You TS, Lee TS, Jeong JR, Lee ES, Jeong JH, Beard MC, Jeong S. Lead sulfide nanocrystal quantum dot solar cells with trenched ZnO fabricated via nanoimprinting. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3803-8. [PMID: 23581816 DOI: 10.1021/am400443w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The improvement of power conversion efficiency, especially current density (Jsc), for nanocrystal quantum dot based heterojunction solar cells was realized by employing a trenched ZnO film fabricated using nanoimprint techniques. For an optimization of ZnO patterns, various patterned ZnO films were investigated using electrical and optical analysis methods by varying the line width, interpattern distance, pattern height, and residual layer. Analyzing the features of patterned ZnO films allowed us to simultaneously optimize both the pronounced electrical effects as well as optical properties. Consequently, we achieved an enhancement in Jsc from 7.82 to 12.5 mA cm(-2) by adopting the patterned ZnO with optimized trenched shape.
Collapse
Affiliation(s)
- Sarah Kim
- Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Yuseong-gu, Daejeon 305-343, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kehrloesser D, Behrendt PJ, Hampp N. Two-photon absorption triggered drug delivery from a polymer for intraocular lenses in presence of an UV-absorber. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Kim S, Kim SM, Park HH, Choi DG, Jung JW, Jeong JH, Jeong JR. Conformally direct imprinted inorganic surface corrugation for light extraction enhancement of light emitting diodes. OPTICS EXPRESS 2012; 20 Suppl 5:A713-21. [PMID: 23037538 DOI: 10.1364/oe.20.00a713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We describe the fabrication of corrugated inorganic oxide surface via direct single step conformal nanoimprinting to achieve enhanced light extraction in light emitting diodes (LEDs). Nanoscale zinc oxide (ZnO) and indium tin oxide (ITO) corrugated layer were created on a nonplanar GaN LED surface including metal electrode using ultraviolet (UV) assisted conformal nanoimprinting and subsequent inductively coupled plasma reactive ion etching (ICP-RIE) treatment. The total output powers of the surface corrugated LEDs increased by 45.6% for the patterned sapphire substrate LED and 41.9% for the flat c-plane substrate LED without any degradation of the electrical characteristics. The role of the nanoscale corrugations on the light extraction efficiency enhancement was examined using 3-dimensional finite-difference time-domain (FDTD) analysis. It was found that light scattering by subwavelength scale surface corrugation plays important role to redirect the trapped light into radiative modes. This straightforward inorganic oxide imprint method with inherent flexibility provides an efficient way to generate nanoscale surface textures for the production of high power LEDs and optoelectronic devices.
Collapse
Affiliation(s)
- Sarah Kim
- Nanomechanical System Research Center, Korea Institute of Machinery and Materials (KIMM), Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 2011; 8:1047-9. [DOI: 10.1038/nmeth.1744] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022]
|
10
|
Luchita G, Bondar MV, Yao S, Mikhailov IA, Yanez CO, Przhonska OV, Masunov AE, Belfield KD. Efficient photochromic transformation of a new fluorenyl diarylethene: one- and two-photon absorption spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3559-3567. [PMID: 21830820 DOI: 10.1021/am200783c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Efficient reversible phototransformation of a new diarylethene-fluorene derivative, 1,2-bis(5-(9,9-didecyl-7-nitro-9H-fluoren-2-yl)-2-methylthiophen-3-yl)cyclopent-1-ene (1), was demonstrated in organic media under low-intensity laser excitation. Linear photophysical characterization of 1 was performed at room temperature in solvents of different polarity and viscosity. Significantly, close to unity quantum yield for the cyclization reaction of 1 was shown in nonpolar solutions. The lifetimes of the excited states of the open (OF) and closed (CF) forms of 1 were measured by a femtosecond transient absorption technique, and corresponding values of ∼0.7 and ∼0.9 ps were shown in dichloromethane (DCM), respectively. Degenerate two-photon absorption (2PA) spectra of the OF and CF of 1 were obtained over a broad spectral range by the open aperture Z-scan method under 1 kHz femtosecond excitation. The values of 2PA cross sections of the OF in DCM (∼50-70 GM) were found to increase up to 1 order of magnitude (∼600 GM) after cyclization to the CF. The nature of cyclization and cylcoreversion processes were investigated by quantum chemistry with employment of DFT-based methods implemented in the Gaussian'09 program. The potential of 1 for application in optical data storage was shown using poly(methyl methacrylate)-doped films and two-photon fluorescence microscopy readout.
Collapse
Affiliation(s)
- Gheorghe Luchita
- Department of Chemistry, University of Central Florida, P.O. Box 162366, Orlando, Florida 32816, United States
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tseng YT, Yang CS, Tseng FG. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing. LAB ON A CHIP 2009; 9:2673-2682. [PMID: 19704983 DOI: 10.1039/b823449c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper proposes a novel perfusion-based micro opto-fluidic system (PMOFS) as a reusable immunosensor for in-situ and continuous protein detection. The PMOFS includes a fiber optic interferometry (FOI) sensor housed in a micro-opto-fluidic chip covered with a microdialysis membrane. It features a surface regeneration mechanism for continuous detection. Gold nanoparticles (GNPs) labeled anti-rabbit IgG were used to enhance the immune conjugation signal by the elongated optical path from GNPs conjugation. Surface regeneration of the sensor was achieved through local pH level manipulation by means of a photoactive molecule, o-Nitrobenzaldehyde (o-NBA), which triggered the elution of immune complexes. Experimental results showed that the pH level of the o-NBA solution can be reduced from 7 to 3.5 within 20 seconds under UV irradiation, sufficient for an effective elution process. The o-NBA molecules, contained within poly(ethylene glycol) diacrylate (PEG) complexes, were trapped within the sensing compartment by the microdialysis membrane and would not leak into the outside environment. The pH variation was also limited in the neighborhood of the sensor surface, resulting in a self-contained sensing system. In-situ immune detection and surface regeneration of the sensing probe has been successfully carried out for two identical cycles by the same sensing probe, and the cycle time can be less than 8 minutes, which is so far the fastest method for continuous monitoring on protein/peptide molecules. In addition, the interference fringe shift of the sensor is linearly related to the concentration of anti-cytochrome C antibody solution and the detection limit approaches 10 ng/ml.
Collapse
Affiliation(s)
- Yuan-Tai Tseng
- Institute of NanoEngineering and MicroSystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan, 300
| | | | | |
Collapse
|
12
|
Nag S, Bandyopadhyay A, Maiti S. Spatial pH Jump Measures Chemical Kinetics in a Steady-State System. J Phys Chem A 2009; 113:5269-72. [DOI: 10.1021/jp901296w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suman Nag
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Arkarup Bandyopadhyay
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - S. Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
13
|
Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C. Multi-photon excitation microscopy. Biomed Eng Online 2006; 5:36. [PMID: 16756664 PMCID: PMC1550243 DOI: 10.1186/1475-925x-5-36] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Accepted: 06/06/2006] [Indexed: 11/30/2022] Open
Abstract
Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments.
Collapse
Affiliation(s)
- Alberto Diaspro
- LAMBS-MicroScoBio Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
- IFOM The FIRC Institute for Molecular Oncology Foundation, Via Adamello, 16, 20139 Milan, Italy
- CNR- National Research Council, Institute of Biophysics, Via De Marini, 6, 16149 Genova, Italy
| | - Paolo Bianchini
- LAMBS-MicroScoBio Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giuseppe Vicidomini
- LAMBS-MicroScoBio Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
| | - Mario Faretta
- IFOM-IEO Consortium for Oncogenomics European Institute of Oncology, via Ripamonti 435, 20141 Milan, Italy
| | - Paola Ramoino
- DIPTERIS – Department for the Study of the Territory and its Resources, University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Cesare Usai
- CNR- National Research Council, Institute of Biophysics, Via De Marini, 6, 16149 Genova, Italy
| |
Collapse
|
14
|
Diaspro A. Rapid dissemination of two-photon excitation microscopy prompts new applications. Microsc Res Tech 2003; 63:1-2. [PMID: 14677126 DOI: 10.1002/jemt.10424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|