1
|
Uragami C, Yoshida M, Gardiner AT, Cogdell RJ, Hashimoto H. Excitation Energy Transfer Dynamics from Carotenoid to Bacteriochlorophyll a in the LH2 Complex of Rhodobacter sphaeroides: Insights from Reconstitution Experiments with Carotenoids and B800 Bacteriochlorophyll a. Molecules 2025; 30:814. [PMID: 40005125 PMCID: PMC11858093 DOI: 10.3390/molecules30040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Carotenoids are crucial for photosynthesis, playing key roles in light harvesting and photoprotection. In this study, spheroidene and bacteriochlorophyll a (Bchl a) were reconstituted into the chromatophores of the carotenoidless mutant Rhodobacter sphaeroides R26.1, resulting in the preparation of high-quality LH2 complexes. Global and target analyses of transient absorption data revealed that incorporating B800 Bchl a significantly enhances excitation energy transfer (EET) efficiency from carotenoids to Bchl a. EET predominantly occurs from the carotenoid S2 state, with additional pathways from the S1 state observed in native LH2. Unique relaxation dynamics were identified, including the generation of the carotenoid S* state in reconstituted LH2 with both spheroidene and B800 Bchl a and the formation of the carotenoid T1 state in reconstituted LH2. These findings underscore the critical influence of pigment composition and spatial organization on energy transfer mechanisms. They provide valuable insights into the molecular interplay that governs excitation energy transfer in photosynthetic light-harvesting systems.
Collapse
Affiliation(s)
- Chiasa Uragami
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (C.U.)
| | - Marina Yoshida
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (C.U.)
| | - Alastair T. Gardiner
- Institute of Microbiology, Czech Academy of Sciences, 379 81 Trebon, Czech Republic;
| | - Richard J. Cogdell
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (C.U.)
| |
Collapse
|
2
|
Yakovlev AG, Taisova AS. Participation of spirilloxanthin in excitation energy transfer in reaction centers from purple bacteria Rhodospirillum rubrum. PHOTOSYNTHESIS RESEARCH 2025; 163:13. [PMID: 39870888 DOI: 10.1007/s11120-024-01126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 01/29/2025]
Abstract
The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm. To reveal the dynamics of individual states, we applied global analysis using different kinetic schemes. We found that the energy transfer Spx → BChl a occurs during 0.22 ps with a low efficiency of ~ 31%. The monomeric BChl a acts as the primary energy acceptor, presumably in the B-branch of cofactors. Then the energy is transferred to the BChl a dimer within 0.25 ps and subsequently used for charge separation. As a result of internal conversion in Spx, the majority (~ 69%) of the excitation energy transfers in 0.2 ps from the singlet-excited state S2 to the states S1 and S*, which, in turn, relax to the ground state in 1.5 and 9 ps, respectively. We showed that the S1 and S* states in Spx are not involved in energy transfer to BChl a. The found parameters of energy transfer Spx→BChl a turned out to be close to those in the light-harvesting complexes LH1 of Rhodospirillum rubrum. The sequence of events in Spx after its excitation is discussed.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991
| |
Collapse
|
3
|
Zheng M, Zhou C, Wang W, Kuang T, Shen J, Tian L. Origin of Energy Dissipation in the Oligomeric Fucoxanthin-Chlorophyll a/c Binding Proteins. J Phys Chem Lett 2023; 14:7967-7974. [PMID: 37647015 DOI: 10.1021/acs.jpclett.3c01633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Fucoxanthin-chlorophyll proteins (FCPs) are a family of photosynthetic light-harvesting complex (LHC) proteins found in diatoms. They efficiently capture photons and regulate their functions, ensuring diatom survival in highly fluctuating light. FCPs are present in different oligomeric states in vivo, but functional differences among these FCP oligomers are not yet fully understood. Here we characterized two types of antenna complexes (FCP-B/C dimers and FCP-A tetramers) that coexist in the marine centric diatom Chaetoceros gracilis using both time-resolved fluorescence and transient absorption spectroscopy. We found that the FCP-B/C complex did not show fluorescence quenching, whereas FCP-A was severely quenched, via an ultrafast excitation energy transfer (EET) pathway from Chl a Qy to the fucoxanthin S1/ICT state. These results highlight the functional differences between FCP dimers and tetramers and indicate that the EET pathway from Chl a to carotenoids is an energy dissipation mechanism conserved in a variety of photosynthetic organisms.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Cuicui Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jianren Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- China National Botanical Garden, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
4
|
Yukihira N, Uragami C, Horiuchi K, Kosumi D, Gardiner AT, Cogdell RJ, Hashimoto H. Intramolecular charge-transfer enhances energy transfer efficiency in carotenoid-reconstituted light-harvesting 1 complex of purple photosynthetic bacteria. Commun Chem 2022; 5:135. [PMID: 36697849 PMCID: PMC9814923 DOI: 10.1038/s42004-022-00749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/04/2022] [Indexed: 01/28/2023] Open
Abstract
In bacterial photosynthesis, the excitation energy transfer (EET) from carotenoids to bacteriochlorophyll a has a significant impact on the overall efficiency of the primary photosynthetic process. This efficiency can be enhanced when the involved carotenoid has intramolecular charge-transfer (ICT) character, as found in light-harvesting systems of marine alga and diatoms. Here, we provide insights into the significance of ICT excited states following the incorporation of a higher plant carotenoid, β-apo-8'-carotenal, into the carotenoidless light-harvesting 1 (LH1) complex of the purple photosynthetic bacterium Rhodospirillum rubrum strain G9+. β-apo-8'-carotenal generates the ICT excited state in the reconstituted LH1 complex, achieving an efficiency of EET of up to 79%, which exceeds that found in the wild-type LH1 complex.
Collapse
Affiliation(s)
- Nao Yukihira
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Kota Horiuchi
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Daisuke Kosumi
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuou-ku, Kumamoto, 860-8555, Japan
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan.
| |
Collapse
|
5
|
Šebelík V, Duffy CD, Keil E, Polívka T, Hauer J. Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach. J Phys Chem B 2022; 126:3985-3994. [PMID: 35609122 PMCID: PMC9190705 DOI: 10.1021/acs.jpcb.2c00996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/03/2022] [Indexed: 11/30/2022]
Abstract
Carotenoids are an integral part of natural photosynthetic complexes, with tasks ranging from light harvesting to photoprotection. Their underlying energy deactivation network of optically dark and bright excited states is extremely efficient: after excitation of light with up to 2.5 eV of photon energy, the system relaxes back to ground state on a time scale of a few picoseconds. In this article, we summarize how a model based on the vibrational energy relaxation approach (VERA) explains the main characteristics of relaxation dynamics after one-photon excitation with special emphasis on the so-called S* state. Lineshapes after two-photon excitation are beyond the current model of VERA. We outline this future line of research in our article. In terms of experimental method development, we discuss which techniques are needed to better describe energy dissipation effects in carotenoids and within the first solvation shell.
Collapse
Affiliation(s)
- Václav Šebelík
- Dynamical
Spectroscopy, Department of Chemistry, Technical
University of Munich, Lichtenbergstraße 4, 85748 Garching bei Munich, Germany
| | - Christopher D.
P. Duffy
- Digital
Environment Research Institute, Queen Mary
University of London, London E1 4NS, U.K.
| | - Erika Keil
- Dynamical
Spectroscopy, Department of Chemistry, Technical
University of Munich, Lichtenbergstraße 4, 85748 Garching bei Munich, Germany
| | - Tomáš Polívka
- Department
of Physics, Faculty of Science, University
of South Bohemia, Branišovská 1760, 370
05 České Budějovice, Czech Republic
- Biology
Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Jürgen Hauer
- Dynamical
Spectroscopy, Department of Chemistry, Technical
University of Munich, Lichtenbergstraße 4, 85748 Garching bei Munich, Germany
| |
Collapse
|
6
|
Ultrafast laser spectroscopic studies on carotenoids in solution and on those bound to photosynthetic pigment-protein complexes. Methods Enzymol 2022; 674:1-51. [DOI: 10.1016/bs.mie.2022.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Yakovlev AG, Taisova AS, Fetisova ZG. Femtosecond excited-state dynamics in chlorosomal carotenoids of the photosynthetic bacterium Chloroflexus aurantiacus revealed by near infrared pump-probe spectroscopy. Phys Chem Chem Phys 2021; 23:12761-12770. [PMID: 34042141 DOI: 10.1039/d1cp00927c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In photosynthetic green bacteria, chlorosomes provide light harvesting with high efficiency. Chlorosomal carotenoids (Cars) participate in light harvesting together with the main pigment, bacteriochlorophyll (BChl) c/d/e. In the present work, we studied the excited-state dynamics in Cars from Chloroflexus (Cfx.) aurantiacus chlorosomes by near infrared pump-probe spectroscopy with 25 fs temporal resolution at room temperature. The S2 state of Cars was excited at a wavelength of ∼520 nm, and the absorption changes were probed at 860-1000 nm where the excited state absorption (ESA) of the Cars S2 state occurred. Global analysis of the spectroscopy data revealed an ultrafast (∼15 fs) and large (>130 nm) red shift of the S2 ESA spectrum together with the well-known S2 → S1 IC (∼190 fs) and Cars → BChl c EET (∼120 fs). The S2 lifetime was found to be ∼74 fs. Our findings are in line with earlier results on the excited-state dynamics in Cars in vitro. To explain the extremely fast S2 dynamics, we have tentatively proposed two alternative schemes. The first scheme assumed the formation of a vibrational wavepacket in the S2 state, the motion of which caused a dynamical red shift of the S2 ESA spectrum. The second scheme assumed the presence of two potential minima in the S2 state and incoherent energy transfer between them.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Alexandra S Taisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Zoya G Fetisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| |
Collapse
|
8
|
Hashimoto H, Uragami C, Yukihira N, Gardiner AT, Cogdell RJ. Understanding/unravelling carotenoid excited singlet states. J R Soc Interface 2018; 15:20180026. [PMID: 29643225 PMCID: PMC5938589 DOI: 10.1098/rsif.2018.0026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.
Collapse
Affiliation(s)
- Hideki Hashimoto
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Nao Yukihira
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Balevičius V, Abramavicius D, Polívka T, Galestian
Pour A, Hauer J. A Unified Picture of S* in Carotenoids. J Phys Chem Lett 2016; 7:3347-3352. [PMID: 27509302 PMCID: PMC5011297 DOI: 10.1021/acs.jpclett.6b01455] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/10/2016] [Indexed: 05/29/2023]
Abstract
In π-conjugated chain molecules such as carotenoids, coupling between electronic and vibrational degrees of freedom is of central importance. It governs both dynamic and static properties, such as the time scales of excited state relaxation as well as absorption spectra. In this work, we treat vibronic dynamics in carotenoids on four electronic states (|S0⟩, |S1⟩, |S2⟩, and |Sn⟩) in a physically rigorous framework. This model explains all features previously associated with the intensely debated S* state. Besides successfully fitting transient absorption data of a zeaxanthin homologue, this model also accounts for previous results from global target analysis and chain length-dependent studies. Additionally, we are able to incorporate findings from pump-deplete-probe experiments, which were incompatible to any pre-existing model. Thus, we present the first comprehensive and unified interpretation of S*-related features, explaining them by vibronic transitions on either S1, S0, or both, depending on the chain length of the investigated carotenoid.
Collapse
Affiliation(s)
- Vytautas Balevičius
- Department
of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius, Lithuania
| | - Darius Abramavicius
- Department
of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius, Lithuania
| | - Tomáš Polívka
- Institute
of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech
Republic
| | | | - Jürgen Hauer
- Photonics
Institute, TU Wien, Gusshausstrasse
27, 1040 Vienna, Austria
| |
Collapse
|
10
|
Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J Phys Chem B 2016; 120:5429-43. [PMID: 27285777 PMCID: PMC4921951 DOI: 10.1021/acs.jpcb.6b03305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Six light-harvesting-2 complexes
(LH2) from genetically modified
strains of the purple photosynthetic bacterium Rhodobacter
(Rb.) sphaeroides were studied using static and ultrafast
optical methods and resonance Raman spectroscopy. These strains were
engineered to incorporate carotenoids for which the number of conjugated
groups (N = NC=C + NC=O) varies from 9 to 15.
The Rb. sphaeroides strains incorporate their native
carotenoids spheroidene (N = 10) and spheroidenone
(N = 11), as well as longer-chain analogues including
spirilloxanthin (N = 13) and diketospirilloxantion
(N = 15) normally found in Rhodospirillum
rubrum. Measurements of the properties of the carotenoid
first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to
those in LH2 complexes from various other bacterial species and thus
are not significantly impacted by differences in polypeptide composition.
Instead, variations in carotenoid-to-BChl a energy
transfer are primarily regulated by the N-determined
energy of the carotenoid S1 excited state, which for long-chain
(N ≥ 13) carotenoids is not involved in energy
transfer. Furthermore, the role of the long-chain carotenoids switches
from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial
(∼2-fold) reduction of the B850* lifetime and the B850* fluorescence
quantum yield for LH2 housing the longest carotenoids.
Collapse
Affiliation(s)
| | - Qun Tang
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - David F Bocian
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
11
|
Takaya T, Iwata K. Development of a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer in resonance with transitions in the 900–1550 nm region. Analyst 2016; 141:4283-92. [DOI: 10.1039/c6an01051b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer has been developed for investigating the structural dynamics in charge-transfer processes.
Collapse
Affiliation(s)
- Tomohisa Takaya
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Toshima-ku
- Japan
| | - Koichi Iwata
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Toshima-ku
- Japan
| |
Collapse
|
12
|
Abstract
Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.
Collapse
Affiliation(s)
- Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| | - Chiasa Uragami
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| |
Collapse
|
13
|
Natural and artificial light-harvesting systems utilizing the functions of carotenoids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Bocian DF, Holten D, Hunter CN. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:640-55. [PMID: 25871644 DOI: 10.1016/j.bbabio.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/24/2022]
Abstract
Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
15
|
Fuciman M, Keşan G, LaFountain AM, Frank HA, Polívka T. Tuning the spectroscopic properties of aryl carotenoids by slight changes in structure. J Phys Chem B 2015; 119:1457-67. [PMID: 25558974 DOI: 10.1021/jp512354r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two carotenoids with aryl rings were studied by femtosecond transient absorption spectroscopy and theoretical computational methods, and the results were compared with those obtained from their nonaryl counterpart, β-carotene. Although isorenieratene has more conjugated C═C bonds than β-carotene, its effective conjugation length, Neff, is shorter than of β-carotene. This is evidenced by a longer S1 lifetime and higher S1 energy of isorenieratene compared to the values for β-carotene. On the other hand, although isorenieratene and renierapurpurin have the same π-electron conjugated chain structure, Neff is different for these two carotenoids. The S1 lifetime of renierapurpurin is shorter than that of isorenieratene, indicating a longer Neff for renierapurpurin. This conclusion is also consistent with a lower S1 energy of renierapurpurin compared to those of the other carotenoids. Density functional theory (DFT) was used to calculate equilibrium geometries of ground and excited states of all studied carotenoids. The terminal ring torsion in the ground state of isorenieratene (41°) is very close to that of β-carotene (45°), but equilibration of the bond lengths within the aryl rings indicates that the each aryl ring forms its own conjugated system. This results in partial detachment of the aryl rings from the overall conjugation making Neff of isorenieratene shorter than that of β-carotene. The different position of the methyl group at the aryl ring of renierapurpurin diminishes the aryl ring torsion to ∼20°. This planarization results in a longer Neff than that of isorenieratene, rationalizing the observed differences in spectroscopic properties.
Collapse
Affiliation(s)
- Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| | | | | | | | | |
Collapse
|
16
|
Niedzwiedzki DM, Cranston L. Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids. Phys Chem Chem Phys 2015; 17:13245-56. [DOI: 10.1039/c5cp00836k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photophysical properties of two typical aryl carotenoids, okenone and chlorobactene, were studied with application of femtosecond and microsecond time-resolved absorption spectroscopies.
Collapse
Affiliation(s)
- Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research Center and Department of Chemistry
- Washington University in St Louis
- USA
| | - Laura Cranston
- Institute of Molecular Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- University of Glasgow
- Glasgow Biomedical Research Centre
| |
Collapse
|
17
|
Hashimoto H, Sugisaki M, Yoshizawa M. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:69-78. [PMID: 25223589 DOI: 10.1016/j.bbabio.2014.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 11/16/2022]
Abstract
This review discusses the application of time-resolved vibrational spectroscopies to the studies of carotenoids in photosynthesis. The focus is on the ultrafast time regime and the study of photophysics and photochemistry of carotenoids by femtosecond time-resolved stimulated Raman and four-wave mixing spectroscopies. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Mitsuru Sugisaki
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masayuki Yoshizawa
- Department of Physics, Graduate School of Science, Tohoku University, Aramaki-aza-aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Takaya T, Iwata K. Relaxation mechanism of β-carotene from S2 (1Bu(+)) state to S1 (2Ag(-)) state: femtosecond time-resolved near-IR absorption and stimulated resonance Raman studies in 900-1550 nm region. J Phys Chem A 2014; 118:4071-8. [PMID: 24844607 DOI: 10.1021/jp504272h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carotenoids have two major low-lying excited states, the second lowest (S2 (1Bu(+))) and the lowest (S1 (2Ag(-))) excited singlet states, both of which are suggested to be involved in the energy transfer processes in light-harvesting complexes. Studying vibrational dynamics of S2 carotenoids requires ultrafast time-resolved near-IR Raman spectroscopy, although it has much less sensitivity than visible Raman spectroscopy. In this study, the relaxation mechanism of β-carotene from the S2 state to the S1 state is investigated by femtosecond time-resolved multiplex near-IR absorption and stimulated Raman spectroscopy. The energy gap between the S2 and S1 states is estimated to be 6780 cm(-1) from near-IR transient absorption spectra. The near-IR stimulated Raman spectrum of S2 β-carotene show three bands at 1580, 1240, and 1050 cm(-1). When excess energy of 4000 cm(-1) is added, the S1 C═C stretch band shows a large upshift with a time constant of 0.2 ps. The fast upshift is explained by a model that excess energy generated by internal conversion from the S2 state to the S1 state is selectively accepted by one of the vibronic levels of the S1 state and is redistributed among all the vibrational modes.
Collapse
Affiliation(s)
- Tomohisa Takaya
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | | |
Collapse
|
19
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
20
|
Christensen RL, Enriquez MM, Wagner NL, Peacock-Villada AY, Scriban C, Schrock RR, Polívka T, Frank HA, Birge RR. Energetics and dynamics of the low-lying electronic states of constrained polyenes: implications for infinite polyenes. J Phys Chem A 2013; 117:1449-65. [PMID: 23330819 DOI: 10.1021/jp310592s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state and ultrafast transient absorption spectra were obtained for a series of conformationally constrained, isomerically pure polyenes with 5-23 conjugated double bonds (N). These data and fluorescence spectra of the shorter polyenes reveal the N dependence of the energies of six (1)B(u)(+) and two (1)A(g)(-) excited states. The (1)B(u)(+) states converge to a common infinite polyene limit of 15,900 ± 100 cm(-1). The two excited (1)A(g)(-) states, however, exhibit a large (~9000 cm(-1)) energy difference in the infinite polyene limit, in contrast to the common value previously predicted by theory. EOM-CCSD ab initio and MNDO-PSDCI semiempirical MO theories account for the experimental transition energies and intensities. The complex, multistep dynamics of the 1(1)B(u)(+) → 2(1)A(g)(-) → 1(1)A(g)(-) excited state decay pathways as a function of N are compared with kinetic data from several natural and synthetic carotenoids. Distinctive transient absorption signals in the visible region, previously identified with S* states in carotenoids, also are observed for the longer polyenes. Analysis of the lifetimes of the 2(1)A(g)(-) states, using the energy gap law for nonradiative decay, reveals remarkable similarities in the N dependence of the 2(1)A(g)(-) decay kinetics of the carotenoid and polyene systems. These findings are important for understanding the mechanisms by which carotenoids carry out their roles as light-harvesting molecules and photoprotective agents in biological systems.
Collapse
|
21
|
Kosumi D, Maruta S, Horibe T, Nagaoka Y, Fujii R, Sugisaki M, Cogdell RJ, Hashimoto H. Ultrafast excited state dynamics of spirilloxanthin in solution and bound to core antenna complexes: Identification of the S* and T1 states. J Chem Phys 2012; 137:064505. [DOI: 10.1063/1.4737129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Alster J, Polívka T, Arellano JB, Hříbek P, Vácha F, Hála J, Pšenčík J. Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin. PHOTOSYNTHESIS RESEARCH 2012; 111:193-204. [PMID: 21833799 DOI: 10.1007/s11120-011-9670-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.
Collapse
Affiliation(s)
- J Alster
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Praha, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
Niedzwiedzki DM, Fuciman M, Kobayashi M, Frank HA, Blankenship RE. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2011; 110:49-60. [PMID: 21984346 DOI: 10.1007/s11120-011-9692-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
24
|
Nakamura R, Nakagawa K, Nango M, Hashimoto H, Yoshizawa M. Dark Excited States of Carotenoid Regulated by Bacteriochlorophyll in Photosynthetic Light Harvesting. J Phys Chem B 2011; 115:3233-9. [DOI: 10.1021/jp111718k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ryosuke Nakamura
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
- JST, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012, Japan
| | - Katsunori Nakagawa
- JST, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012, Japan
- Department of Life and Materials Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mamoru Nango
- JST, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012, Japan
- Department of Life and Materials Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Hashimoto
- JST, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012, Japan
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masayuki Yoshizawa
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
- JST, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
25
|
Niedzwiedzki DM, Kobayashi M, Blankenship RE. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2011; 107:177-186. [PMID: 21229315 DOI: 10.1007/s11120-011-9620-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/31/2010] [Indexed: 05/30/2023]
Abstract
Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q(x) band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.
Collapse
|
26
|
Unusual enhancement of triplet carotenoid formation in pigmentprotein complexes as revealed by femtosecond pump-probe spectroscopy. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.phpro.2011.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Gdor I, Zhu J, Loevsky B, Smolensky E, Friedman N, Sheves M, Ruhman S. Investigating excited state dynamics of salinixanthin and xanthorhodopsin in the near-infrared. Phys Chem Chem Phys 2010; 13:3782-7. [PMID: 21183996 DOI: 10.1039/c0cp01734e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited state dynamics of native Xanthorhodopsin (XR), of an XR sample with a reduced prosthetic group, and of the associated Carotenoid (CAR) salinixanthin (SX) in ethanol were investigated by hyperspectral Near Infrared (NIR) probing. Global kinetic analysis shows that: (1) unlike the transient spectra recorded in the visible, fitting of the NIR data requires only two phases of exponential spectral evolution, assigned to internal conversion from S(2) → S(1) and from S(1) → S(0) of the carotene. (2) The rate of the internal conversion from S(2) → S(1) in the reduced sample is well fit with a decay time of 130 fs, significantly longer than in XR and in SX, both of which are well fit with τ ≈ 100 fs. This increased lifetime is consistent with a ∼30% efficiency of ET from SX to retinal in XR. (3) S(1) of salinixanthin is verified to lie ∼12,700 cm(-1) above the ground electronic surface, excluding its involvement in the retinal sensitization in XR. (4) The oscillator strength of the S(1) → S(2) transition is determined to be no more than 0.16, despite its symmetry allowedness. (5) No long lived NIR absorbance decay assignable to the carotenoid S* state was detected in any of the samples. Inconsistencies concerning previously determined S(2) lifetimes and kinetic schemes used to model these data are discussed.
Collapse
Affiliation(s)
- Itay Gdor
- Institute of Chemistry and The Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Kosumi D, Maruta S, Horibe T, Fujii R, Sugisaki M, Cogdell RJ, Hashimoto H. Ultrafast Energy-Transfer Pathway in a Purple-Bacterial Photosynthetic Core Antenna, as Revealed by Femtosecond Time-Resolved Spectroscopy. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Kosumi D, Maruta S, Horibe T, Fujii R, Sugisaki M, Cogdell RJ, Hashimoto H. Ultrafast Energy-Transfer Pathway in a Purple-Bacterial Photosynthetic Core Antenna, as Revealed by Femtosecond Time-Resolved Spectroscopy. Angew Chem Int Ed Engl 2010; 50:1097-100. [DOI: 10.1002/anie.201003771] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/28/2010] [Indexed: 11/09/2022]
|
30
|
Niedzwiedzki DM, Enriquez MM, LaFountain AM, Frank HA. Ultrafast Time-resolved Absorption Spectroscopy of Geometric Isomers of Xanthophylls. Chem Phys 2010; 373:80-89. [PMID: 20689726 PMCID: PMC2913875 DOI: 10.1016/j.chemphys.2010.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper presents an ultrafast optical spectroscopic investigation of the excited state energies, lifetimes and spectra of specific geometric isomers of neoxanthin, violaxanthin, lutein, and zeaxanthin. All-trans- and 15,15'-cis-beta-carotene were also examined. The spectroscopy was done on molecules purified by HPLC frozen immediately to inhibit isomerization. The spectra were taken at 77 K to maintain the configurations and to provide better spectral resolution than seen at room temperature. The kinetics reveal that for all of the molecules except neoxanthin, the S(1) state lifetime of the cis-isomers is shorter than that of the all-trans isomers. The S(1) excited state energies of all the isomers were determined by recording S(1) --> S(2) transient absorption spectra. The results obtained in this manner at cryogenic temperatures provide an unprecedented level of precision in the measurement of the S(1) energies of these xanthophylls, which are critical components in light-harvesting pigment-protein complexes of green plants.
Collapse
Affiliation(s)
| | - Miriam M. Enriquez
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | - Amy M. LaFountain
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| |
Collapse
|
31
|
|
32
|
Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 2009; 130:214506. [DOI: 10.1063/1.3147008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Polívka T, Balashov SP, Chábera P, Imasheva ES, Yartsev A, Sundström V, Lanyi JK. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys J 2009; 96:2268-77. [PMID: 19289053 DOI: 10.1016/j.bpj.2009.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/17/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022] Open
Abstract
Xanthorhodopsin of the extremely halophilic bacterium Salinibacter ruber represents a novel antenna system. It consists of a carbonyl carotenoid, salinixanthin, bound to a retinal protein that serves as a light-driven transmembrane proton pump similar to bacteriorhodopsin of archaea. Here we apply the femtosecond transient absorption technique to reveal the excited-state dynamics of salinixanthin both in solution and in xanthorhodopsin. The results not only disclose extremely fast energy transfer rates and pathways, they also reveal effects of the binding site on the excited-state properties of the carotenoid. We compared the excited-state dynamics of salinixanthin in xanthorhodopsin and in NaBH(4)-treated xanthorhodopsin. The NaBH(4) treatment prevents energy transfer without perturbing the carotenoid binding site, and allows observation of changes in salinixanthin excited-state dynamics related to specific binding. The S(1) lifetimes of salinixanthin in untreated and NaBH(4)-treated xanthorhodopsin were identical (3 ps), confirming the absence of the S(1)-mediated energy transfer. The kinetics of salinixanthin S(2) decay probed in the near-infrared region demonstrated a change of the S(2) lifetime from 66 fs in untreated xanthorhodopsin to 110 fs in the NaBH(4)-treated protein. This corresponds to a salinixanthin-retinal energy transfer time of 165 fs and an efficiency of 40%. In addition, binding of salinixanthin to xanthorhodopsin increases the population of the S(*) state that decays in 6 ps predominantly to the ground state, but a small fraction (<10%) of the S(*) state generates a triplet state.
Collapse
Affiliation(s)
- Tomás Polívka
- Institute of Physical Biology, University of South Bohemia, Nové Hrady, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The structures of a number of stereoisomers of carotenoids have been revealed in three-dimensional X-ray crystallographic investigations of pigment-protein complexes from photosynthetic organisms. Despite these structural elucidations, the reason for the presence of stereoisomers in these systems is not well understood. An important unresolved issue is whether the natural selection of geometric isomers of carotenoids in photosynthetic pigment-protein complexes is determined by the structure of the protein binding site or by the need for the organism to accomplish a specific physiological task. The association of cis isomers of a carotenoid with reaction centers and trans isomers of the same carotenoid with light-harvesting pigment-protein complexes has led to the hypothesis that the stereoisomers play distinctly different physiological roles. A systematic investigation of the photophysics and photochemistry of purified, stable geometric isomers of carotenoids is needed to understand if a relationship between stereochemistry and biological function exists. In this work we present a comparative study of the spectroscopy and excited state dynamics of cis and trans isomers of three different open-chain carotenoids in solution. The molecules are neurosporene (n=9), spheroidene (n=10), and spirilloxanthin (n=13), where n is the number of conjugated pi-electron double bonds. The spectroscopic experiments were carried out on geometric isomers of the carotenoids purified by high performance liquid chromatography (HPLC) and then frozen to 77 K to inhibit isomerization. The spectral data taken at 77 K provide a high resolution view of the spectroscopic differences between geometric isomers. The kinetic data reveal that the lifetime of the lowest excited singlet state of a cis-isomer is consistently shorter than that of its corresponding all-trans counterpart despite the fact that the excited state energy of the cis molecule is typically higher than that of the trans molecule. Quantum theoretical calculations on an n=9 linear polyene were carried out to examine this process. The calculations indicate that the electronic coupling terms are significantly higher for the cis isomer, and when combined with the Franck-Condon factors, predict internal conversion rates roughly double those of the all-trans species. The electronic effects more than offset the decrease in coupling efficiencies associated with the higher system origin energies and explain the observed shorter cis isomer lifetimes.
Collapse
|
35
|
Cong H, Niedzwiedzki DM, Gibson GN, LaFountain AM, Kelsh RM, Gardiner AT, Cogdell RJ, Frank HA. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J Phys Chem B 2008; 112:10689-703. [PMID: 18671366 PMCID: PMC3628606 DOI: 10.1021/jp711946w] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.
Collapse
Affiliation(s)
- Hong Cong
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum. Biophys J 2008; 95:3349-57. [PMID: 18502793 DOI: 10.1529/biophysj.108.133835] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intact core antenna-reaction center (LH1-RC) core complex of thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum is peculiar in its long-wavelength LH1-Q(y) absorption (915 nm). We have attempted comparative studies on the excitation dynamics of bacteriochlorophyll (BChl) and carotenoid (Car) between the intact core complex and the EDTA-treated one with the Q(y) absorption at 889 nm. For both spectral forms, the overall Car-to-BChl excitation energy transfer efficiency is determined to be approximately 20%, which is considerably lower than the reported values, e.g., approximately 35%, for other photosynthetic purple bacteria containing the same kind of Car (spirilloxanthin). The RC trapping time constants are found to be 50 approximately 60 ps (170 approximately 200 ps) for RC in open (closed) state irrespective to the spectral forms and the wavelengths of Q(y) excitation. Despite the low-energy LH1-Q(y) absorption, the RC trapping time are comparable to those reported for other photosynthetic bacteria with normal LH1-Q(y) absorption at 880 nm. Selective excitation to Car results in distinct differences in the Q(y)-bleaching dynamics between the two different spectral forms. This, together with the Car band-shift signals in response to Q(y) excitation, reveals the presence of two major groups of BChls in the LH1 of Tch. tepidum with a spectral heterogeneity of approximately 240 cm(-1), as well as an alteration in BChl-Car geometry in the 889-nm preparation with respect to the native one.
Collapse
|
37
|
Cong H, Niedzwiedzki DM, Gibson GN, Frank HA. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature. J Phys Chem B 2008; 112:3558-67. [PMID: 18293955 DOI: 10.1021/jp0763681] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion of the S* population is converted into S1 (2(1)Ag-) during deactivation, but this process and the relative yield of S* was found to depend on temperature, consistent with it being associated with a twisted conformation of the xanthophyll. The results of the global fitting suggest that subpopulations of twisted conformers of xanthophylls already exist in the ground state prior to photoexcitation.
Collapse
Affiliation(s)
- Hong Cong
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA
| | | | | | | |
Collapse
|
38
|
Polívka T, Niedzwiedzki D, Fuciman M, Sundström V, Frank HA. Role of B800 in Carotenoid−Bacteriochlorophyll Energy and Electron Transfer in LH2 Complexes from the Purple BacteriumRhodobactersphaeroides. J Phys Chem B 2007; 111:7422-31. [PMID: 17547450 DOI: 10.1021/jp071395c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.
Collapse
Affiliation(s)
- Tomas Polívka
- Institute of Physical Biology, University of South Bohemia, Nove Hrady, Czech Republic.
| | | | | | | | | |
Collapse
|
39
|
Niedzwiedzki D, Koscielecki JF, Cong H, Sullivan JO, Gibson GN, Birge RR, Frank HA. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J Phys Chem B 2007; 111:5984-98. [PMID: 17441762 DOI: 10.1021/jp070500f] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular, for the longest molecule in the series, spirilloxanthin, the experiments and a detailed quantum computational analysis reveal the presence of two S* states associated with relaxed S1 (2(1)Ag-) conformations involving nearly planar 6-s-cis and 6-s-trans geometries. We propose that in polar solvents, the ground state of spirilloxanthin takes on a corkscrew conformation that generates a net solute dipole moment while decreasing the cavity formation energy. Upon excitation and relaxation into the S1 (2(1)Ag-) state, the polyene unravels and flattens into a more planar geometry with comparable populations of 6-s-trans and 6-s-cis conformations.
Collapse
Affiliation(s)
- Dariusz Niedzwiedzki
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Berera R, Moore GF, van Stokkum IHM, Kodis G, Liddell PA, Gervaldo M, van Grondelle R, Kennis JTM, Gust D, Moore TA, Moore AL. Charge separation and energy transfer in a caroteno–C60dyad: photoinduced electron transfer from the carotenoid excited states. Photochem Photobiol Sci 2006; 5:1142-9. [PMID: 17136280 DOI: 10.1039/b613971j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have designed and synthesized a molecular dyad comprising a carotenoid pigment linked to a fullerene derivative (C-C(60)) in which the carotenoid acts both as an antenna for the fullerene and as an electron transfer partner. Ultrafast transient absorption spectroscopy was carried out on the dyad in order to investigate energy transfer and charge separation pathways and efficiencies upon excitation of the carotenoid moiety. When the dyad is dissolved in hexane energy transfer from the carotenoid S(2) state to the fullerene takes place on an ultrafast (sub 100 fs) timescale and no intramolecular electron transfer was detected. When the dyad is dissolved in toluene, the excited carotenoid decays from its excited states both by transferring energy to the fullerene and by forming a charge-separated C.+ -C(60).- . The charge-separated state is also formed from the excited fullerene following energy transfer from the carotenoid. These pathways lead to charge separation on the subpicosecond time scale (possibly from the S(2) state and the vibrationally excited S(1) state of the carotenoid), on the ps time scale (5.5 ps) from the relaxed S(1) state of the carotenoid, and from the excited state of C(60) in 23.5 ps. The charge-separated state lives for 1.3 ns and recombines to populate both the low-lying carotenoid triplet state and the dyad ground state.
Collapse
Affiliation(s)
- Rudi Berera
- Department of Biophysics, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Papagiannakis E, H M van Stokkum I, Fey H, Büchel C, van Grondelle R. Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. PHOTOSYNTHESIS RESEARCH 2005; 86:241-50. [PMID: 16172942 DOI: 10.1007/s11120-005-1003-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 01/20/2005] [Indexed: 05/04/2023]
Abstract
We characterized the energy transfer pathways in the fucoxanthin-chlorophyll protein (FCP) complex of the diatom Cyclotella meneghiniana by conducting ultrafast transient absorption measurements. This light harvesting antenna has a distinct pigment composition and binds chlorophyll a (Chl-a), fucoxanthin and chlorophyll c (Chl-c) molecules in a 4:4:1 ratio. We find that upon excitation of fucoxanthin to its S2 state, a significant amount of excitation energy is transferred rapidly to Chl-a. The ensuing dynamics illustrate the presence of a complex energy transfer network that also involves energy transfer from the unrelaxed or 'hot' intermediates. Chl-c to Chl-a energy transfer occurs on a timescale of a 100 fs. We observe no significant spectral evolution in the Chl-a region of the spectrum. We have applied global and target analysis to model the measured excited state dynamics and estimate the spectra of the states involved; the energy transfer network is discussed in relation to the pigment organization of the FCP complex.
Collapse
Affiliation(s)
- Emmanouil Papagiannakis
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Billsten HH, Pan J, Sinha S, Pascher T, Sundström V, Polívka T. Excited-State Processes in the Carotenoid Zeaxanthin after Excess Energy Excitation. J Phys Chem A 2005; 109:6852-9. [PMID: 16834041 DOI: 10.1021/jp052227s] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aiming for better understanding of the large complexity of excited-state processes in carotenoids, we have studied the excitation wavelength dependence of the relaxation dynamics in the carotenoid zeaxanthin. Excitation into the lowest vibrational band of the S2 state at 485 nm, into the 0-3 vibrational band of the S2 state at 400 nm, and into the 2B(u)+ state at 266 nm resulted in different relaxation patterns. While excitation at 485 nm produces the known four-state scheme (S2 --> hot S1 --> S1 --> S0), excess energy excitation led to additional dynamics occurring with a time constant of 2.8 ps (400 nm excitation) and 4.9 ps (266 nm excitation), respectively. This process is ascribed to a conformational relaxation of conformers generated by the excess energy excitation. The zeaxanthin S state was observed regardless of the excitation wavelength, but its population increased after 400 and 266 nm excitation, suggesting that conformers generated by the excess energy excitation are important for directing the population toward the S state. The S2-S1 internal conversion time was shortened from 135 to 70 fs when going from 485 to 400 nm excitation, as a result of competition between the S2-S1 internal conversion from the vibrationally hot S2 state and S2 vibrational relaxation. The S1 lifetime of zeaxanthin was within experimental error the same for all excitation wavelengths, yielding approximately 9 ps. No long-lived species have been observed after excitation by femtosecond pulses regardless of the excitation wavelength, but excitation by nanosecond pulses at 266 nm generated both zeaxanthin triplet state and cation radical.
Collapse
Affiliation(s)
- Helena Hörvin Billsten
- Department of Chemical Physics, Chemical Center, Lund University, Box 124, 22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Ilagan RP, Christensen RL, Chapp TW, Gibson GN, Pascher T, Polívka T, Frank HA. Femtosecond Time-Resolved Absorption Spectroscopy of Astaxanthin in Solution and in α-Crustacyanin. J Phys Chem A 2005; 109:3120-7. [PMID: 16833638 DOI: 10.1021/jp0444161] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state absorption and femtosecond time-resolved spectroscopic studies have been carried out on astaxanthin dissolved in CS2, methanol, and acetonitrile, and in purified alpha-crustacyanin. The spectra of the S0 --> S2 and S1 --> S(n) transitions were found to be similarly dependent on solvent environment. The dynamics of the excited-state decay processes were analyzed with both single wavelength and global fitting procedures. In solution, the S1 lifetime of astaxanthin was found to be approximately 5 ps and independent of solvent. In alpha-crustacyanin, the lifetime was noticeably shorter at approximately 1.8 ps. Both fitting procedures led to the conclusion that the lifetime of the S2 state was either comparable to or shorter than the instrument response time. The data support the idea that dimerization of astaxanthin in alpha-crustacyanin is the primary molecular basis for the bathochromic shift of the S0 --> S2 and S1 --> S(n) transitions. Planarization of the astaxanthin molecule, which leads to a longer effective pi-electron conjugated chain and a lower S1 energy, accounts for the shorter tau1 in the protein.
Collapse
Affiliation(s)
- Robielyn P Ilagan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Gibasiewicz K, Croce R, Morosinotto T, Ihalainen JA, van Stokkum IHM, Dekker JP, Bassi R, van Grondelle R. Excitation energy transfer pathways in Lhca4. Biophys J 2005; 88:1959-69. [PMID: 15653744 PMCID: PMC1305248 DOI: 10.1529/biophysj.104.049916] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 12/27/2004] [Indexed: 11/18/2022] Open
Abstract
EET in reconstituted Lhca4, a peripheral light-harvesting complex from Photosystem I of Arabidopsis thaliana, containing 10 chlorophylls and 2 carotenoids, was studied at room temperature by femtosecond transient absorption spectroscopy. Two spectral forms of Lut were observed in the sites L1 and L2, characterized by significantly different interactions with nearby chlorophyll a molecules. A favorable interpretation of these differences is that the efficiency of EET to Chls is about two times lower from the "blue" Lut in the site L1 than from the "red" Lut in the site L2 due to fast IC in the former case. A major part of the energy absorbed by the "red" Lut, approximately 60%-70%, is transferred to Chls on a sub-100-fs timescale from the state S(2) but, in addition, minor EET from the hot S(1) state within 400-500 fs is also observed. EET from the S(1) state to chlorophylls occurs also within 2-3 ps and is ascribed to Vio and/or "blue" Lut. EET from Chl b to Chl a is biphasic and characterized by time constants of approximately 300 fs and 3.0 ps. These rates are ascribed to EET from Chl b spectral forms absorbing at approximately 644 nm and approximately 650 nm, respectively. About 25% of the excited Chls a decays very fast-within approximately 15 ps. This decay is proposed to be related to the presence of the interacting Chls A5 and B5 located next to the carotenoid in the site L2 and may imply some photoprotective role for Lhca4 in the photosystem I super-complex.
Collapse
Affiliation(s)
- K Gibasiewicz
- Faculty of Sciences, Division of Physics and Astronomy, Department of Biophysics, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hashimoto H, Yanagi K, Yoshizawa M, Polli D, Cerullo G, Lanzani G, De Silvestri S, Gardiner AT, Cogdell RJ. The very early events following photoexcitation of carotenoids. Arch Biochem Biophys 2004; 430:61-9. [PMID: 15325912 DOI: 10.1016/j.abb.2004.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 04/07/2004] [Indexed: 11/25/2022]
Abstract
The recent availability of laser pulses with 10-20 fs duration, tunable throughout the visible and near infrared wavelengths, has facilitated the investigation, with unprecedented temporal resolution, into the very early events of energy relaxation in carotenoids [Science 298 (2002) 2395; Synth. Metals 139 (2003) 893]. This has enabled us to clearly demonstrate the existence of an additional intermediate state, Sx, lying between the S2 (1(1)Bu+) and S1 (2(1)Ag-) states. In addition, by applying time-resolved stimulated Raman spectroscopy with femtosecond time resolution, it has also been shown that vibrational relaxation in electronic excited states plays an important role in these interconversions. In this mini-review, we describe briefly the current understanding of Sx and the other intermediate excited states that can be formed by relaxation from S2, mainly focusing attention on the above two topics. Emphasis is also placed on some of the major remaining unsolved issues in carotenoid photochemistry.
Collapse
Affiliation(s)
- Hideki Hashimoto
- Light and Control, PRESTO/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Polívka T, Pullerits T, Frank HA, Cogdell RJ, Sundström V. Ultrafast Formation of a Carotenoid Radical in LH2 Antenna Complexes of Purple Bacteria. J Phys Chem B 2004. [DOI: 10.1021/jp0483019] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomáš Polívka
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Harry A. Frank
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Richard J. Cogdell
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Villy Sundström
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
47
|
Polívka T, Sundström V. Ultrafast dynamics of carotenoid excited States-from solution to natural and artificial systems. Chem Rev 2004; 104:2021-71. [PMID: 15080720 DOI: 10.1021/cr020674n] [Citation(s) in RCA: 647] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomás Polívka
- Department of Chemical Physics, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|