1
|
Biancardi A, Barnes J, Caricato M. Point charge embedding for ONIOM excited states calculations. J Chem Phys 2017; 145:224109. [PMID: 27984901 DOI: 10.1063/1.4972000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid quantum mechanical methods can assist in the interpretation and prediction of the electronic spectra of large molecular structures. In this work, we study the performance of the ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics) hybrid method for the calculation of transition energies and oscillator strengths by embedding the core region in a field of fixed point charges. These charges introduce polarization effects from the substituent groups to the core region. We test various charge definitions, with particular attention to the issue of overpolarization near the boundary between layers. To minimize this issue, we fit the charges on the electrostatic potential of the entire structure in the presence of the link atoms used to cap dangling bonds. We propose two constrained fitting strategies: one that produces an average set of charges common to both model system calculations, EE(L1), and one that produces two separate sets of embedding charges, EE(L2). The results from our tests show that indeed electronic embedding with constrained-fitted charges tends to improve the performance of ONIOM compared to non-embedded calculations. However, the EE(L2) charges work best for transition energies, and the EE(L1) charges work best for oscillator strengths. This may be an indication that fixed point charges do not have enough flexibility to adapt to each system, and other effects (e.g., polarization of the embedding field) may be necessary.
Collapse
Affiliation(s)
- Alessandro Biancardi
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Jeremy Barnes
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| |
Collapse
|
2
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
3
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 819] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
4
|
Walczak E, Andruniów T. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin. Phys Chem Chem Phys 2015; 17:17169-81. [DOI: 10.1039/c5cp01939g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Similar to native rhodopsin, a two-mode space-saving isomerization mechanism drives the photoreaction in (de)methylated rhodopsin analogues.
Collapse
Affiliation(s)
- Elżbieta Walczak
- Department of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Tadeusz Andruniów
- Department of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| |
Collapse
|
5
|
Conductivity by Electron Pairs. Chem Phys 2012. [DOI: 10.1201/b11524-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Kaila VRI, Send R, Sundholm D. The effect of protein environment on photoexcitation properties of retinal. J Phys Chem B 2012; 116:2249-58. [PMID: 22166007 DOI: 10.1021/jp205918m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinal is the photon absorbing chromophore of rhodopsin and other visual pigments, enabling the vertebrate vision process. The effects of the protein environment on the primary photoexcitation process of retinal were studied by time-dependent density functional theory (TDDFT) and the algebraic diagrammatic construction through second order (ADC(2)) combined with our recently introduced reduction of virtual space (RVS) approximation method. The calculations were performed on large full quantum chemical cluster models of the bluecone (BC) and rhodopsin (Rh) pigments with 165-171 atoms. Absorption wavelengths of 441 and 491 nm were obtained at the B3LYP level of theory for the respective models, which agree well with the experimental values of 414 and 498 nm. Electrostatic rather than structural strain effects were shown to dominate the spectral tuning properties of the surrounding protein. The Schiff base retinal and a neighboring Glu-113 residue were found to have comparable proton affinities in the ground state of the BC model, whereas in the excited state, the proton affinity of the Schiff base is 5.9 kcal/mol (0.26 eV) higher. For the ground and excited states of the Rh model, the proton affinity of the Schiff base is 3.2 kcal/mol (0.14 eV) and 7.9 kcal/mol (0.34 eV) higher than for Glu-113, respectively. The protein environment was found to enhance the bond length alternation (BLA) of the retinyl chain and blueshift the first absorption maxima of the protonated Schiff base in the BC and Rh models relative to the chromophore in the gas phase. The protein environment was also found to decrease the intensity of the second excited state, thus improving the quantum yield of the photoexcitation process. Relaxation of the BC model on the excited state potential energy surface led to a vanishing BLA around the isomerization center of the conjugated retinyl chain, rendering the retinal accessible for cis-trans isomerization. The energy of the relaxed excited state was found to be 30 kcal/mol (1.3 eV) above the minimum ground state energy, and might be related to the transition state of the thermal activation process.
Collapse
Affiliation(s)
- Ville R I Kaila
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
7
|
Bhattacharya A, Bernstein ER. Nonadiabatic Decomposition of Gas-Phase RDX through Conical Intersections: An ONIOM-CASSCF Study. J Phys Chem A 2011; 115:4135-47. [DOI: 10.1021/jp109152p] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A. Bhattacharya
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - E. R. Bernstein
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| |
Collapse
|
8
|
Khrenova MG, Bochenkova AV, Nemukhin AV. Modeling reaction routes from rhodopsin to bathorhodopsin. Proteins 2010; 78:614-22. [PMID: 19787771 DOI: 10.1002/prot.22590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The quantum mechanical-molecular mechanical (QM/MM) theory was applied to calculate accurate structural parameters, vibrational and optical spectra of bathorhodopsin (BATHO), one of the primary photoproducts of the functional cycle of the visual pigment rhodopsin (RHO), and to characterize reaction routes from RHO to BATHO. The recently resolved crystal structure of BATHO (PDBID: 2G87) served as an initial source of coordinates of heavy atoms. Protein structures in the ground electronic state and vibrational frequencies were determined by using the density functional theory in the PBE0/cc-pVDZ approximation for the QM part and the AMBER force field parameters in the MM part. Calculated and assigned vibrational spectra of both model protein systems, BATHO and RHO, cover three main regions referring to the hydrogen-out-of-plan (HOOP) motion, the C==C ethylenic stretches, and the C--C single-bond stretches. The S(0)-S(1) electronic excitation energies of the QM part, including the chromophore group in the field of the protein matrix, were estimated by using the advanced quantum chemistry methods. The computed structural parameters as well as the spectral bands match perfectly the experimental findings. A structure of the transition state on the S(0) potential energy surface for the ground electronic state rearrangement from RHO to BATHO was located proving a possible route of the thermal protein activation to the primary photoproduct.
Collapse
Affiliation(s)
- M G Khrenova
- Department of Chemistry, MV Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | | | | |
Collapse
|
9
|
Caricato M, Vreven T, Trucks GW, Frisch MJ, Wiberg KB. Using the ONIOM hybrid method to apply equation of motion CCSD to larger systems: Benchmarking and comparison with time-dependent density functional theory, configuration interaction singles, and time-dependent Hartree–Fock. J Chem Phys 2009; 131:134105. [DOI: 10.1063/1.3236938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
The Oniom Method and its Applications to Enzymatic Reactions. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2009. [DOI: 10.1007/978-1-4020-9956-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Bearpark MJ, Larkin SM, Vreven T. Searching for Conical Intersections of Potential Energy Surfaces with the ONIOM Method: Application to Previtamin D. J Phys Chem A 2008; 112:7286-95. [DOI: 10.1021/jp802204w] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael J. Bearpark
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom, and Gaussian, Incorporated, 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492
| | - Susan M. Larkin
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom, and Gaussian, Incorporated, 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492
| | - Thom Vreven
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom, and Gaussian, Incorporated, 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492
| |
Collapse
|
12
|
Crozier PS, Stevens MJ, Woolf TB. How a small change in retinal leads to G-protein activation: initial events suggested by molecular dynamics calculations. Proteins 2007; 66:559-74. [PMID: 17109408 PMCID: PMC2848121 DOI: 10.1002/prot.21175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rhodopsin is the prototypical G-protein coupled receptor, coupling light activation with high efficiency to signaling molecules. The dark-state X-ray structures of the protein provide a starting point for consideration of the relaxation from initial light activation to conformational changes that may lead to signaling. In this study we create an energetically unstable retinal in the light activated state and then use molecular dynamics simulations to examine the types of compensation, relaxation, and conformational changes that occur following the cis-trans light activation. The results suggest that changes occur throughout the protein, with changes in the orientation of Helices 5 and 6, a closer interaction between Ala 169 on Helix 4 and retinal, and a shift in the Schiff base counterion that also reflects changes in sidechain interactions with the retinal. Taken together, the simulation is suggestive of the types of changes that lead from local conformational change to light-activated signaling in this prototypical system.
Collapse
Affiliation(s)
- Paul S Crozier
- Sandia National Laboratories, MS 1322, Albuquerque, New Mexico 87185-1322, USA.
| | | | | |
Collapse
|
13
|
Send R, Sundholm D. Coupled-cluster studies of the lowest excited states of the 11-cis-retinal chromophore. Phys Chem Chem Phys 2007; 9:2862-7. [PMID: 17538731 DOI: 10.1039/b616137e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first few excited states of the 11-cis-retinal (PSB11) chromophore have been studied at the coupled-cluster approximative singles and doubles (CC2) level using triple-zeta quality basis sets augmented with double sets of polarisation functions. The two lowest vertical excitation energies of 2.14 and 3.21 eV are in good agreement with recently reported experimental values of 2.03 and 3.18 eV obtained in molecular beam measurements. Calculations at the time-dependent density functional theory (TDDFT) level using the B3LYP hybrid functional yield vertical excitation energies of 2.34 and 3.10 eV for the two lowest states. Zero-point vibrational energy (ZPVE) corrections of -0.09 and -0.17 eV were deduced from the harmonic vibrational frequencies for the ground and excited states calculated at the density functional theory (DFT) and TDDFT level, respectively, using the B3LYP hybrid functional.
Collapse
Affiliation(s)
- Robert Send
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, 76128, Karlsruhe, Germany
| | | |
Collapse
|
14
|
Iozzi MF, Cossi M, Improta R, Rega N, Barone V. A polarizable continuum approach for the study of heterogeneous dielectric environments. J Chem Phys 2006; 124:184103. [PMID: 16709093 DOI: 10.1063/1.2188392] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a computational method, exploiting some features of the polarizable continuum model (PCM) to describe heterogeneous media; it belongs to the family of electrostatic embedding mixed methods, such as the more common quantum-mechanical (QM)/molecular mechanics approaches, with the electrostatic long range effects accounted for by a polarized continuum instead of atomic point charges. Provided effective dielectric constants are determined for the various parts of the system, the method is much faster than its atomistic counterpart, and allows for high-level QM calculations on the fragment of interest, using all the highly efficient computational tools developed for homogeneous PCM. Two case studies (the calculation of the pKa of solvent exposed acidic residues in a model protein, and the calculation of the electron spin resonance spectrum of a typical spin probe partially embedded in a membrane) are analyzed in some detail, to illustrate the application of the method to complex systems.
Collapse
Affiliation(s)
- Maria Francesca Iozzi
- Dipartimento di Chimica, Università Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy
| | | | | | | | | |
Collapse
|
15
|
Gensch T, Viappiani C. Introducing the Time-resolved methods in biophysics series. Photochem Photobiol Sci 2006; 5:1101-2. [PMID: 17136273 DOI: 10.1039/b615863n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|