1
|
Chen N, Li S, Zhao P, Liu R, Xie Y, Lin JL, Nijhuis CA, Xu B, Zhang L, Xu H, Li Y. Extreme long-lifetime self-assembled monolayer for air-stable molecular junctions. SCIENCE ADVANCES 2023; 9:eadh3412. [PMID: 37851815 PMCID: PMC10584343 DOI: 10.1126/sciadv.adh3412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The molecular electronic devices based on self-assembled monolayer (SAM) on metal surfaces demonstrate novel electronic functions for device minimization yet are unable to realize in practical applications, due to their instability against oxidation of the sulfur-metal bond. This paper describes an alternative to the thiolate anchoring group to form stable SAMs on gold by selenides anchoring group. Because of the formation of strong selenium-gold bonds, these stable SAMs allow us to incorporate them in molecular tunnel junctions to yield extremely stable junctions for over 200 days. A detailed structural characterization supported by spectroscopy and first-principles modeling shows that the oxidation process is much slower with the selenium-gold bond than the sulfur-gold bond, and the selenium-gold bond is strong enough to avoid bond breaking even when it is eventually oxidized. This proof of concept demonstrates that the extraordinarily stable SAMs derived from selenides are useful for long-lived molecular electronic devices and can possibly become important in many air-stable applications involving SAMs.
Collapse
Affiliation(s)
- Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuwei Li
- Center for Combustion Energy, Tsinghua University, Beijing 100084, China
- School of Vehicle and Mobility, and State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Peng Zhao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ran Liu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Christian A. Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Centre and Centre for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, Netherlands
| | - Bingqian Xu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing 100084, China
- School of Vehicle and Mobility, and State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Bobb-Semple D, Zeng L, Cordova I, Bergsman DS, Nordlund D, Bent SF. Substrate-Dependent Study of Chain Orientation and Order in Alkylphosphonic Acid Self-Assembled Monolayers for ALD Blocking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12849-12857. [PMID: 33079543 DOI: 10.1021/acs.langmuir.0c01974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For years, many efforts in area selective atomic layer deposition (AS-ALD) have focused on trying to achieve high-quality self-assembled monolayers (SAMs), which have been shown by a number of studies to be effective for blocking deposition. Herein, we show that in some cases where a densely packed SAM is not formed, significant ALD inhibition may still be realized. The formation of octadecylphosphonic acid (ODPA) SAMs was evaluated on four metal substrates: Cu, Co, W, and Ru. The molecular orientation, chain packing, and relative surface coverage were evaluated using near-edge X-ray absorption fine structure (NEXAFS), Fourier transform infrared (FTIR) spectroscopy, and electrochemical impedance spectroscopy (EIS). ODPA SAMs formed on Co, Cu, and W showed strong angular dependence of the NEXAFS signal whereas ODPA on Ru did not, suggesting a disordered layer was formed on Ru. Additionally, EIS and FTIR spectroscopy confirmed that Co and Cu form densely packed, "crystal-like" SAMs whereas Ru and W form less dense monolayers, a surprising result since W-ODPA was previously shown to inhibit the ALD of ZnO and Al2O3 best among all the substrates. This work suggests that multiple factors play a role in SAM-based AS-ALD, not just the SAM quality. Therefore, metrological averaging techniques (e.g., WCA and FTIR spectroscopy) commonly used for evaluating SAMs to predict their suitability for ALD inhibition should be supplemented by more atomically sensitive methods. Finally, it highlights important considerations for describing the mechanism of SAM-based selective ALD.
Collapse
Affiliation(s)
- Dara Bobb-Semple
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, United States
| | - Li Zeng
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, United States
| | - Isvar Cordova
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David S Bergsman
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dennis Nordlund
- Stanford Linear Accelerator Center, Menlo Park, California 94025, United States
| | - Stacey F Bent
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, United States
| |
Collapse
|
3
|
Werner P, Wächter T, Asyuda A, Wiesner A, Kind M, Bolte M, Weinhardt L, Terfort A, Zharnikov M. Electron Transfer Dynamics and Structural Effects in Benzonitrile Monolayers with Tuned Dipole Moments by Differently Positioned Fluorine Atoms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39859-39869. [PMID: 32805830 DOI: 10.1021/acsami.0c10513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To understand the influence of the molecular dipole moment on the electron transfer (ET) dynamics across the molecular framework, two series of differently fluorinated, benzonitrile-based self-assembled monolayers (SAMs) bound to Au(111) by either thiolate or selenolate anchoring groups were investigated. Within each series, the molecular structures were the same with the exception of the positions of two fluorine atoms affecting the dipole moment of the SAM-forming molecules. The SAMs exhibited a homogeneous anchoring to the substrate, nearly upright molecular orientations, and the outer interface comprised of the terminal nitrile groups. The ET dynamics was studied by resonant Auger electron spectroscopy in the framework of the core-hole clock method. Resonance excitation of the nitrile group unequivocally ensured an ET pathway from the tail group to the substrate. As only one of the π* orbitals of this group is hybridized with the π* system of the adjacent phenyl ring, two different ET times could be determined depending on the primary excited orbital being either localized at the nitrile group or delocalized over the entire benzonitrile moiety. The latter pathway turned out to be much more efficient, with the characteristic ET times being a factor 2.5-3 shorter than those for the localized orbital. The dynamic ET properties of the analogous thiolate- and selenolate-based adsorbates were found to be nearly identical. Finally and most importantly, these properties were found to be unaffected by the different patterns of the fluorine substitution used in the present study, thus showing no influence of the molecular dipole moment.
Collapse
Affiliation(s)
- Philipp Werner
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Tobias Wächter
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Andika Asyuda
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Adrian Wiesner
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Martin Kind
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Andreas Terfort
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Besharat Z, Ghadami Yazdi M, Wakeham D, Johnson M, Rutland MW, Göthelid M, Grönbeck H. Se-C Cleavage of Hexane Selenol at Steps on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2630-2636. [PMID: 29405715 DOI: 10.1021/acs.langmuir.7b03713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Selenols are considered as an alternative to thiols in self-assembled monolayers, but the Se-C bond is one limiting factor for their usefulness. In this study, we address the stability of the Se-C bond by a combined experimental and theoretical investigation of gas-phase-deposited hexane selenol (CH3(CH2)5SeH) on Au(111) using photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory (DFT). Experimentally, we find that initial adsorption leaves atomic Se on the surface without any carbon left on the surface, whereas further adsorption generates a saturated selenolate layer. The Se 3d component from atomic Se appears at 0.85 eV lower binding energy than the selenolate-related component. DFT calculations show that the most stable structure of selenols on Au(111) is in the form of RSe-Au-SeR complexes adsorbed on the unreconstructed Au(111) surface. This is similar to thiols on Au(111). Calculated Se 3d core-level shifts between elemental Se and selenolate in this structure nicely reproduce the experimentally recorded shifts. Dissociation of RSeH and subsequent formation of RH are found to proceed with high barriers on defect-free Au(111) terraces, with the highest barrier for scissoring R-Se. However, at steps, these barriers are considerably lower, allowing for Se-C bond breaking and hexane desorption, leaving elemental Se at the surface. Hexane is formed by replacing the Se-C bond with a H-C bond by using the hydrogen liberated from the selenol to selenolate transformation.
Collapse
Affiliation(s)
- Zahra Besharat
- Material Physics, MNF, SCI, KTH Royal Institute of Technology , Stockholm SE-164 40, Sweden
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology , Stockholm SE-100 44, Sweden
| | - Milad Ghadami Yazdi
- Material Physics, MNF, SCI, KTH Royal Institute of Technology , Stockholm SE-164 40, Sweden
| | - Deborah Wakeham
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology , Stockholm SE-100 44, Sweden
| | - Magnus Johnson
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology , Stockholm SE-100 44, Sweden
| | - Mark W Rutland
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology , Stockholm SE-100 44, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden , Box 5607, Stockholm SE-114 86, Sweden
| | - Mats Göthelid
- Material Physics, MNF, SCI, KTH Royal Institute of Technology , Stockholm SE-164 40, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology , Göteborg SE-412 96, Sweden
| |
Collapse
|
5
|
Karnaukh EA, Walker LM, Lynch KA, Wiita EG, Buzzeo MC. Electrochemical Study of Selenocystine Reactivity and Reduction at Metallic Surfaces. ChemElectroChem 2017. [DOI: 10.1002/celc.201600717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elizabeth A. Karnaukh
- Department of Chemistry, Barnard College Columbia University 3009 Broadway 10027 New York, NY USA
| | - Lindsey M. Walker
- Department of Chemistry, Barnard College Columbia University 3009 Broadway 10027 New York, NY USA
| | - Kelsey A. Lynch
- Department of Chemistry, Barnard College Columbia University 3009 Broadway 10027 New York, NY USA
| | - Elizabeth G. Wiita
- Department of Chemistry, Barnard College Columbia University 3009 Broadway 10027 New York, NY USA
| | - Marisa C. Buzzeo
- Department of Chemistry, Barnard College Columbia University 3009 Broadway 10027 New York, NY USA
| |
Collapse
|
6
|
|
7
|
Guo X, Yang YP, Li QZ, Li HB. Origin of selenium–gold interaction in F2CSe⋯AuY (Y = CN, F, Cl, Br, OH, and CH3): Synergistic effects. J Chem Phys 2016; 144:114306. [DOI: 10.1063/1.4944088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xin Guo
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Yu-Ping Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Hai-Bei Li
- School of Ocean, Shandong University, Weihai 264209, People’s Republic of China
| |
Collapse
|
8
|
Tong Y, Jiang T, Bendounan A, Harish MNK, Giglia A, Kubsky S, Sirotti F, Pasquali L, Sampath S, Esaulov VA. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:263-277. [PMID: 26977383 PMCID: PMC4778531 DOI: 10.3762/bjnano.7.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.
Collapse
Affiliation(s)
- Yongfeng Tong
- Institut des Sciences Moléculaires d’Orsay, UMR 8214 CNRS-Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Tingming Jiang
- Institut des Sciences Moléculaires d’Orsay, UMR 8214 CNRS-Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
- Dipartimento di Ingegneria ‘E. Ferrari’, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, Italy
| | - Azzedine Bendounan
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | | | - Angelo Giglia
- CNR-IOM, s.s.14, km 163.5 in Area Science Park, 34012 Trieste, Italy
| | - Stefan Kubsky
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Fausto Sirotti
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Luca Pasquali
- Dipartimento di Ingegneria ‘E. Ferrari’, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, Italy
- CNR-IOM, s.s.14, km 163.5 in Area Science Park, 34012 Trieste, Italy
- Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Srinivasan Sampath
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, CV Raman Avenue, Bangalore 560 012, India
| | - Vladimir A Esaulov
- Institut des Sciences Moléculaires d’Orsay, UMR 8214 CNRS-Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
9
|
Jiang T, Tong Y, Bendounan A, Nicolas F, Kubsky S, Esaulov VA. Selenium and benzeneselenol interaction with Cu(111). RSC Adv 2016. [DOI: 10.1039/c6ra17334a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Benzeneselenol (BSe) and Selenium interaction with a Cu(111) surface was studied to investigate adsorption characteristics, molecular orientation and possibility of Se–C bond scission leading to atomic Se presence on the surface.
Collapse
Affiliation(s)
- Tingming Jiang
- Institut des Sciences Moléculaires d'Orsay
- Université-Paris Sud
- 91405 Orsay
- France
- CNRS
| | - Yongfeng Tong
- Institut des Sciences Moléculaires d'Orsay
- Université-Paris Sud
- 91405 Orsay
- France
- CNRS
| | - Azzedine Bendounan
- Synchrotron SOLEIL
- L'Orme des Merisiers
- F-91192 Gif-sur-Yvette Cedex
- France
| | - François Nicolas
- Synchrotron SOLEIL
- L'Orme des Merisiers
- F-91192 Gif-sur-Yvette Cedex
- France
| | - Stefan Kubsky
- Synchrotron SOLEIL
- L'Orme des Merisiers
- F-91192 Gif-sur-Yvette Cedex
- France
| | - Vladimir A. Esaulov
- Institut des Sciences Moléculaires d'Orsay
- Université-Paris Sud
- 91405 Orsay
- France
- CNRS
| |
Collapse
|
10
|
Ossowski J, Wächter T, Silies L, Kind M, Noworolska A, Blobner F, Gnatek D, Rysz J, Bolte M, Feulner P, Terfort A, Cyganik P, Zharnikov M. Thiolate versus Selenolate: Structure, Stability, and Charge Transfer Properties. ACS NANO 2015; 9:4508-4526. [PMID: 25857927 DOI: 10.1021/acsnano.5b01109] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Selenolate is considered as an alternative to thiolate to serve as a headgroup mediating the formation of self-assembled monolayers (SAMs) on coinage metal substrates. There are, however, ongoing vivid discussions regarding the advantages and disadvantages of these anchor groups, regarding, in particular, the energetics of the headgroup-substrate interface and their efficiency in terms of charge transport/transfer. Here we introduce a well-defined model system of 6-cyanonaphthalene-2-thiolate and -selenolate SAMs on Au(111) to resolve these controversies. The exact structural arrangements in both types of SAMs are somewhat different, suggesting a better SAM-building ability in the case of selenolates. At the same time, both types of SAMs have similar packing densities and molecular orientations. This permitted reliable competitive exchange and ion-beam-induced desorption experiments which provided unequivocal evidence for a stronger bonding of selenolates to the substrate as compared to the thiolates. Regardless of this difference, the dynamic charge transfer properties of the thiolate- and selenolate-based adsorbates were found to be nearly identical, as determined by the core-hole-clock approach, which is explained by a redistribution of electron density along the molecular framework, compensating the difference in the substrate-headgroup bond strength.
Collapse
Affiliation(s)
- Jakub Ossowski
- †Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Tobias Wächter
- ‡Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Laura Silies
- §Institut für Anorganische und Analytische Chemie, Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| | - Martin Kind
- §Institut für Anorganische und Analytische Chemie, Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| | - Agnieszka Noworolska
- †Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Florian Blobner
- ∥Physikdepartment E20, Technische Universität München, 85747 Garching, Germany
| | - Dominika Gnatek
- †Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Jakub Rysz
- †Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Michael Bolte
- §Institut für Anorganische und Analytische Chemie, Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| | - Peter Feulner
- ∥Physikdepartment E20, Technische Universität München, 85747 Garching, Germany
| | - Andreas Terfort
- §Institut für Anorganische und Analytische Chemie, Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| | - Piotr Cyganik
- †Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Michael Zharnikov
- ‡Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Hohman JN, Thomas JC, Zhao Y, Auluck H, Kim M, Vijselaar W, Kommeren S, Terfort A, Weiss PS. Exchange Reactions between Alkanethiolates and Alkaneselenols on Au{111}. J Am Chem Soc 2014; 136:8110-21. [DOI: 10.1021/ja503432f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- J. Nathan Hohman
- California
NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - John C. Thomas
- California
NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yuxi Zhao
- California
NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Harsharn Auluck
- California
NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Moonhee Kim
- California
NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wouter Vijselaar
- Department
of Science and Technology, University of Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Sander Kommeren
- Department
of Science and Technology, University of Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Andreas Terfort
- Institut
für Anorganische und Analytische Chemie, Universität Frankfurt, Frankfurt 60438, Germany
| | - Paul S. Weiss
- California
NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Cometto FP, Calderón CA, Morán M, Ruano G, Ascolani H, Zampieri G, Paredes-Olivera P, Patrito EM. Formation, characterization, and stability of methaneselenolate monolayers on Au(111): an electrochemical high-resolution photoemission spectroscopy and DFT study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3754-3763. [PMID: 24645647 DOI: 10.1021/la404996q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigated the mechanism of formation and stability of self-assembled monolayers (SAMs) of methaneselenolate on Au(111) prepared by the immersion method in ethanolic solutions of dimethyl diselenide (DMDSe). The adsorbed species were characterized by electrochemical measurements and high-resolution photoelectron spectroscopy (HR-XPS). The importance of the headgroup on formation mechanism and the stability of the SAMs was addressed by comparatively studying methaneselenolate (MSe) and methanethiolate (MT) monolayers. Density Functional Theory (DFT) calculations were performed to identify the elementary reaction steps in the mechanisms of formation and decomposition of the monolayers. Reductive desorption and HR-XPS measurements indicated that a MSe monolayer is formed at short immersion times by the cleavage of the Se-Se bond of DMDSe. However, the monolayer decomposes at long immersion times at room temperature, as evidenced by the appearance of atomic Se on the surface. The decomposition is more pronounced for MSe than for MT monolayers. The MSe monolayer stability can be greatly improved by two modifications in the preparation method: immersion at low temperatures (-20 °C) and the addition of a reducing agent to the forming solution.
Collapse
Affiliation(s)
- F P Cometto
- Departamento de Fisicoquímica and ‡Departamento de Matemática y Física, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , 5000 Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Romashov LV, Ananikov VP. Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis. Chemistry 2013; 19:17640-60. [PMID: 24288138 DOI: 10.1002/chem.201302115] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-assembled monolayers (SAMs) of selenium have emerged into a rapidly developing field of nanotechnology with several promising opportunities in materials chemistry and catalysis. Comparison between sulfur-based self-assembled monolayers and newly developed selenium-based monolayers reveal outstanding complimentary features on surface chemistry and highlighted the key role of the headgroup element. Diverse structural properties and reactivity of organosulfur and organoselenium groups on the surface provide flexible frameworks to create new generations of materials and adaptive catalysts with unprecedented selectivity. Important practical utility of adaptive catalytic systems deals with development of sustainable technologies and industrial processes based on natural resources. Independent development of nanotechnology, materials science and catalysis has led to the discovery of common fundamental principles of the surface chemistry of chalcogen compounds.
Collapse
Affiliation(s)
- Leonid V Romashov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991 (Russia)
| | | |
Collapse
|
14
|
Grenader K, Kind M, Silies L, Peters A, Bats JW, Bolte M, Terfort A. Structural characterization of a series of aryl selenoacetates. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Claridge SA, Liao WS, Thomas JC, Zhao Y, Cao H, Cheunkar S, Serino AC, Andrews AM, Weiss PS. From the bottom up: dimensional control and characterization in molecular monolayers. Chem Soc Rev 2013; 42:2725-45. [PMID: 23258565 PMCID: PMC3596502 DOI: 10.1039/c2cs35365b] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Self-assembled monolayers are a unique class of nanostructured materials, with properties determined by their molecular lattice structures, as well as the interfaces with their substrates and environments. As with other nanostructured materials, defects and dimensionality play important roles in the physical, chemical, and biological properties of the monolayers. In this review, we discuss monolayer structures ranging from surfaces (two-dimensional) down to single molecules (zero-dimensional), with a focus on applications of each type of structure, and on techniques that enable characterization of monolayer physical properties down to the single-molecule scale.
Collapse
Affiliation(s)
- Shelley A. Claridge
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wei-Ssu Liao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John C. Thomas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuxi Zhao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huan Cao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sarawut Cheunkar
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andrew C. Serino
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science & Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
|
17
|
Canepa M, Maidecchi G, Toccafondi C, Cavalleri O, Prato M, Chaudhari V, Esaulov VA. Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold. Phys Chem Chem Phys 2013; 15:11559-65. [DOI: 10.1039/c3cp51304a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Nion A, Katsonis N, Marchenko A, Aubert C, Fichou D. Influence of molecular length on the adsorption of linear trimethylsilylacetylene derivatives at the n-tetradecane/Au(111) interface: chemisorption vs. physisorption. NEW J CHEM 2013. [DOI: 10.1039/c3nj00334e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Jewell AD, Kyran SJ, Rabinovich D, Sykes ECH. Effect of head-group chemistry on surface-mediated molecular self-assembly. Chemistry 2012; 18:7169-78. [PMID: 22532331 DOI: 10.1002/chem.201102956] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/16/2012] [Indexed: 11/07/2022]
Abstract
Surface molecular self-assembly is a fast advancing field with broad applications in sensing, patterning, device assembly, and biochemical applications. A vast number of practical systems utilize alkane thiols supported on gold surfaces. Whereas a strong Au-S bond facilitates robust self-assembly, the interaction is so strong that the surface is reconstructed, leaving etch pits that render the monolayers susceptible to degradation. By using different head group elements to adcust the molecule-surface interaction, a vast array of new systems with novel properties may be formed. In this paper we use a carefully chosen set of molecules to make a direct comparison of the self-assembly of thioether, selenoether, and phosphine species on Au(111). Using the herringbone reconstruction of gold as a sensitive readout of molecule-surface interaction strength, we correlate head-group chemistry with monolayer (ML) properties. It is demonstrated that the hard/soft rules of inorganic chemistry can be used to rationalize the observed trend of molecular interaction strengths with the soft gold surface, that is, P>Se>S. We find that the structure of the monolayers can be explained by the geometry of the molecules in terms of dipolar, quadrupolar, or van der Waals interactions between neighboring species driving the assembly of distinct ordered arrays. As this study directly compares one element with another in simple systems, it may serve as a guide for the design of self-assembled monolayers with novel structures and properties.
Collapse
Affiliation(s)
- April D Jewell
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
20
|
Zaluzhna O, Li Y, Zangmeister C, Allison TC, Tong YJ. Mechanistic insights on one-phase vs. two-phase Brust–Schiffrin method synthesis of Au nanoparticles with dioctyl-diselenides. Chem Commun (Camb) 2012; 48:362-4. [DOI: 10.1039/c1cc15955k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Choi JS, Kang HG, Ito E, Hara M, Noh JG. Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Campos MAC, Trilling AK, Yang M, Giesbers M, Beekwilder J, Paulusse JMJ, Zuilhof H. Self-assembled functional organic monolayers on oxide-free copper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8126-8133. [PMID: 21627331 DOI: 10.1021/la200932w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The preparation and characterization of self-assembled monolayers on copper with n-alkyl and functional thiols was investigated. Well-ordered monolayers were obtained, while the copper remained oxide-free. Direct attachment of N-succinimidyl mercaptoundecanoate (NHS-MUA) onto the copper surface allowed for the successful attachment of biomolecules, such as β-d-glucosamine, the tripeptide glutathione, and biotin. Notably, the copper surfaces remained oxide-free even after two reaction steps. All monolayers were characterized by static water contact angle measurements, X-ray photoelectron spectroscopy, and infrared reflection absorption spectroscopy. In addition, the biotinylated copper surfaces were employed in the immobilization of biomolecules such as streptavidin.
Collapse
Affiliation(s)
- Mabel A Caipa Campos
- Laboratory of Organic Chemistry, Wageningen University and Research Center, Dreijenplein 8, 6703 HB, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Khobragade D, Stensrud ES, Mucha M, Smith JR, Pohl R, Stibor I, Michl J. Preparation of covalent long-chain trialkylstannyl and trialkylsilyl salts and an examination of their adsorption on gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8483-8490. [PMID: 20397630 DOI: 10.1021/la101023b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report the attachment of alkyl residues to a gold surface through a tin atom. Covalent trialkylstannyl and trialkylsilyl salts of trifluoromethanesulfonic, trifluoroacetic, and p-toluenesulfonic acids containing one to three C(18)H(37) chains and two to no CH(3) groups in the molecule have been synthesized. They were tested for adsorption on gold from solution under ambient conditions using ellipsometry, FTIR spectroscopy, contact angle, and electrode-blocking measurements. All nine trialkylstannyl salts form similar stable monolayers with the loss of the acid residue and form no multilayers. The monolayers differ from those formed from alkanethiols. They are much thinner, less ordered, less hydrophobic, and only slightly electrode-blocking. Their stability to solvents, bases, acids, and reductants is somewhat lower than that of a 1-octadecanethiol monolayer, but their resistance to heat and oxidants, including air, is slightly better. The distinctive properties of these monolayers may be of interest in certain circumstances, but we expect the attachment of molecules to gold through a tin atom to be of the most value in work with single-molecule structures. The trialkylsilyl salts showed no tendency to adsorb onto gold under these conditions.
Collapse
Affiliation(s)
- Dushant Khobragade
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
24
|
de la Llave E, Scherlis DA. Selenium-based self-assembled monolayers: the nature of adsorbate-surface interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:173-178. [PMID: 19919031 DOI: 10.1021/la903660y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In recent years, self-assembled monolayers (SAMs) of selenols have been characterized using electrochemistry, scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy, and other experimental approaches. Interest in the relative stability and conductance of the Se-Au interface as compared to S-Au prompted different investigations which have led to contradictory results. From the theoretical side, on the other hand, the study of selenol-based SAMs has concentrated on the investigation of the electron transport across the Se-Au contact, whereas the structural and the thermodynamic features of the monolayer were essentially neglected. In this Article, we examine the binding of selenols to the Au(111) surface using density functional theory with plane wave basis sets and periodic boundary conditions. Our calculations provide insights on the geometry of the headgroup, the stability of the monolayer, and the electronic properties of the bond. In particular, we propose that the presence of a conjugated backbone might be a major factor determining the relative conductance at the monolayer, by differentially enhancing the intramolecular electron transport in selenols with respect to thiols. This surmise, if confirmed, would explain the conflictive data coming from the available experiments.
Collapse
Affiliation(s)
- Ezequiel de la Llave
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | | |
Collapse
|
25
|
Yang YT, Liao JD, Lee YL, Chang CW, Tsai HJ. Ultra-thin phospholipid layers physically adsorbed upon glass characterized by nano-indentation at the surface contact level. NANOTECHNOLOGY 2009; 20:195702. [PMID: 19420646 DOI: 10.1088/0957-4484/20/19/195702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dipalmitoylphosphatic acid was chosen as a model to interpret how molecules physically adsorbed upon glass responded to an infinitesimal oscillation force at the surface contact level. Oscillation of a nano-indentation tip toward the phospholipid layers was driven by a dynamic contact module at a constant harmonic frequency; the phase angle of the oscillation frequency was exponentially relaxed along the nano-scale displacement. The tip-on-molecule contact was thereafter identified and influenced by the characteristic of the physically adsorbed phospholipids. By applying the harmonic displacement of the nano-indentation tip and making a distinction between full contact displacements, the thickness of the phospholipid layers was thereafter estimated. Moreover, the additional force required to penetrate through the physically adsorbed molecules was minor compared to the analogous process for the chemically adsorbed ones. The importance of recognizing the physically adsorbed molecules is relevant to applications of contact mechanics for the distinction of various phospholipids. Furthermore it is very promising to interpret the mechanism by which cells convert mechanical stimuli into biochemical responses on the channels of phospholipids.
Collapse
Affiliation(s)
- Yun-Ta Yang
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
26
|
DiBenedetto SA, Facchetti A, Ratner MA, Marks TJ. Charge Conduction and Breakdown Mechanisms in Self-Assembled Nanodielectrics. J Am Chem Soc 2009; 131:7158-68. [DOI: 10.1021/ja9013166] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sara A. DiBenedetto
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Mark A. Ratner
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Tobin J. Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
27
|
Ie Y, Hirose T, Yao A, Yamada T, Takagi N, Kawai M, Aso Y. Synthesis of tripodal anchor units bearing selenium functional groups and their adsorption behaviour on gold. Phys Chem Chem Phys 2009; 11:4949-51. [DOI: 10.1039/b906286f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Chang CW, Liao JD. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au. NANOTECHNOLOGY 2008; 19:315703. [PMID: 21828795 DOI: 10.1088/0957-4484/19/31/315703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | | |
Collapse
|
29
|
|
30
|
Subramanian S, Sampath S. Enhanced stability of short- and long-chain diselenide self-assembled monolayers on gold probed by electrochemistry, spectroscopy, and microscopy. J Colloid Interface Sci 2007; 312:413-24. [PMID: 17451727 DOI: 10.1016/j.jcis.2007.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/10/2007] [Accepted: 03/12/2007] [Indexed: 11/16/2022]
Abstract
Well-ordered, compact, self-assembled monolayers (SAMs) of hexyl and dodecyl diselenides have been formed on oriented (111) gold surfaces. Monolayer formation has been effected by adsorption from neat diselenides as well as millimolar solutions of diselenides in alcohol. The monolayer formation is confirmed using electrochemical quartz crystal microbalance studies. The stability and permeability of the monolayers at various temperatures have been probed using reflection absorption infrared spectroscopy (RAIRS) and electrochemistry. The RAIRS studies in the dry state show the formation of highly ordered, compact structures when adsorbed from neat compounds compared to the monolayers adsorbed in the presence of alcohol. The monolayers adsorbed from neat diselenide are quite stable as a function of temperature irrespective of the chain length. The electrochemical studies based on the blocking behavior of the monolayers toward electron transfer between a diffusing species and the electrode surface reflect the stability and the compactness of the structure. The results point out that the presence of solvent molecules during the SAM formation hinders the organization of the monolayer structure, especially in the case of short-chain diselenide monolayers.
Collapse
Affiliation(s)
- S Subramanian
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
31
|
Shaporenko A, Cyganik P, Buck M, Terfort A, Zharnikov M. Self-assembled monolayers of aromatic selenolates on noble metal substrates. J Phys Chem B 2007; 109:13630-8. [PMID: 16852708 DOI: 10.1021/jp050731r] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembled monolayers (SAMs) formed from bis(biphenyl-4-yl) diselenide (BBPDSe) on Au(111) and Ag(111) substrates have been characterized by high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, infrared reflection absorption spectroscopy, water contact angle measurements, and scanning tunneling microscopy (STM). BBPDSe was found to form contamination-free, densely packed, and well-ordered biphenyl selenolate (BPSe) SAMs on both Au and Ag. Spectroscopic data suggest very similar packing density, orientational order, and molecular inclination in BPSe/Au and BPSe/Ag. STM data give a similar intermolecular spacing of 5.3 +/- 0.4 A on both Au and Ag but exhibit differences in the exact arrangement of the BPSe molecules on these two substrates, with the (2 square root[3] x square root[3])R30 degrees and (square root[3] x square root[3])R30 degrees unit cells on Au and Ag, respectively. There is strong evidence for adsorbate-mediated substrate restructuring in the case of Au, whereas no clear statement on this issue can be made in the case of Ag. The film quality of the BPSe SAMs is superior to their thiol analogues, which is presumably related to a better ability of the selenolates to adjust the surface lattice of the substrate to the most favorable 2D arrangement of the adsorbate molecules. This suggests that aromatic selenolates represent an attractive alternative to the respective thiols.
Collapse
Affiliation(s)
- A Shaporenko
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
32
|
Bănică A, Culeţu A, Bănică FG. Electrochemical and EQCM investigation of l-selenomethionine in adsorbed state at gold electrodes. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2006.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Weng CC, Liao JD, Wu YT, Wang MC, Klauser R, Zharnikov M. Modification of Monomolecular Self-Assembled Films by Nitrogen−Oxygen Plasma. J Phys Chem B 2006; 110:12523-9. [PMID: 16800581 DOI: 10.1021/jp060572r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The modification of octadecanethiolate self-assembled monolayers on Au and Ag by nitrogen-oxygen downstream microwave plasma with variable oxygen content (up to 1%) has been studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy. The primary processes were dehydrogenation, desorption of hydrocarbon and sulfur-containing species, and the oxidation of the alkyl matrix and headgroup-substrate interface. The exact character and the rates of the plasma-induced changes were found to be dependent on the substrate and plasma composition, with the processes in the aliphatic matrix and headgroup-substrate interface being mostly decoupled. In particular, the rates of all major plasma-induced processes were found to be directly proportional to the oxygen content in the plasma, which can be, thus, considered as a measure of the plasma reactivity. Along with the character of the observed changes, exhibiting a clear dominance of the oxidative processes, this suggests that the major effect of the oxygen-nitrogen downstream microwave plasma is provided by reactive oxygen-derived species in the downstream region, viz. long-living oxygen radicals and metastable species.
Collapse
Affiliation(s)
- Chih-Chiang Weng
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Shaporenko A, Cyganik P, Buck M, Ulman A, Zharnikov M. Self-assembled monolayers of semifluorinated alkaneselenolates on noble metal substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:8204-13. [PMID: 16114923 DOI: 10.1021/la050535b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Self-assembled monolayers (SAMs) formed from semifluorinated dialkyldiselenol (CF(3)(CF(2))(5)(CH(2))(2)Se-)(2) (F6H2SeSeH2F6) on polycrystalline Au(111) and Ag(111) were characterized by high-resolution X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, near edge X-ray absorption fine structure spectroscopy, scanning tunneling microscopy, and contact angle measurements. The Se-Se linkage of F6H2SeSeH2F6 was found to be cleaved upon the adsorption, followed by the formation of selenolate-metal bond. The resulting F6H2Se SAMs are well-ordered, densely packed, and contamination-free. The packing density of these films is governed by the bulky fluorocarbon part, which exhibits the expected helical conformation. A noncommensurate hexagonal arrangement of the F6H2Se molecules with an average nearest-neighbor spacing of about 5.8 +/- 0.2 A, close to the van der Waals diameter the fluorocarbon chain, was observed on Au(111). The orientation of the fluorocarbon chains in the F6H2Se SAMs does not depend on the substrate-the average tilt angle of these moieties was estimated to be about 21-22 degrees on both Au and Ag.
Collapse
Affiliation(s)
- A Shaporenko
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Abstract
The self-assembly of molecules into structurally organized monolayers (SAMs) uses the flexibility of organic chemistry and coordination chemistry to generate well-defined, synthetic surfaces with known molecular and macroscopic properties. The process of designing monolayers with a specified structure gives a high level of control over the molecular-level composition in the direction perpendicular to a surface; soft lithographic technique gives useful (if lower) resolution in the plane of the surface. Alkanethiolates adsorbed on gold, silver, mercury, palladium and platinum are currently the best-defined systems of SAMs. They provide substrates for a number of applications-from studies of wetting and electron transport to patterns for growing mammalian cells. SAMs have made organic surfaces a central part of surface science. Understanding the principles by which they form, and connecting molecular-level structure with macroscopic properties, opens a wide range of areas to study and exploitation.
Collapse
Affiliation(s)
- George M. Whitesides
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Jennah K. Kriebel
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138, USA
| | - J. Christopher Love
- Harvard Medical School, Department of Pathology, 200 Longwood Avenue, Building D2 – 1st Floor, Boston, MA 02115, USA
| |
Collapse
|