• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4628136)   Today's Articles (4196)   Subscriber (49615)
For: Ishida T, Fedorov DG, Kitaura K. All Electron Quantum Chemical Calculation of the Entire Enzyme System Confirms a Collective Catalytic Device in the Chorismate Mutase Reaction. J Phys Chem B 2005;110:1457-63. [PMID: 16471697 DOI: 10.1021/jp0557159] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Pan X, Van R, Pu J, Nam K, Mao Y, Shao Y. Free Energy Profile Decomposition Analysis for QM/MM Simulations of Enzymatic Reactions. J Chem Theory Comput 2023;19:8234-8244. [PMID: 37943896 PMCID: PMC10835707 DOI: 10.1021/acs.jctc.3c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
2
Georgiev DD. Quantum information theoretic approach to the mind–brain problem. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020;158:16-32. [DOI: 10.1016/j.pbiomolbio.2020.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022]
3
Ishida T. Computational analysis of carbohydrate recognition based on hybrid QM/MM modeling: a case study of norovirus capsid protein in complex with Lewis antigen. Phys Chem Chem Phys 2018;20:4652-4665. [PMID: 29372731 DOI: 10.1039/c7cp07701g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
4
Freindorf M, Tao Y, Sethio D, Cremer D, Kraka E. New mechanistic insights into the Claisen rearrangement of chorismate – a Unified Reaction Valley Approach study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1530464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
5
Thapa B, Beckett D, Jovan Jose KV, Raghavachari K. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach. J Chem Theory Comput 2018;14:1383-1394. [DOI: 10.1021/acs.jctc.7b01198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
6
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in GAMESS , and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
7
Pruitt SR, Steinmann C. Mapping Interaction Energies in Chorismate Mutase with the Fragment Molecular Orbital Method. J Phys Chem A 2017;121:1797-1807. [DOI: 10.1021/acs.jpca.6b12830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
8
Saha A, Raghavachari K. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor. J Chem Theory Comput 2016;11:2012-23. [PMID: 26574406 DOI: 10.1021/ct501045s] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
9
Vasilevskaya T, Thiel W. Periodic Boundary Conditions in QM/MM Calculations: Implementation and Tests. J Chem Theory Comput 2016;12:3561-70. [DOI: 10.1021/acs.jctc.6b00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
Nakata H, Fedorov DG, Nagata T, Kitaura K, Nakamura S. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method. J Chem Theory Comput 2015;11:3053-64. [DOI: 10.1021/acs.jctc.5b00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Christensen AS, Steinmann C, Fedorov DG, Jensen JH. Hybrid RHF/MP2 geometry optimizations with the effective fragment molecular orbital method. PLoS One 2014;9:e88800. [PMID: 24558430 PMCID: PMC3928295 DOI: 10.1371/journal.pone.0088800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022]  Open
12
Choutko A, Eichenberger AP, van Gunsteren WF, Dolenc J. Exploration of swapping enzymatic function between two proteins: a simulation study of chorismate mutase and isochorismate pyruvate lyase. Protein Sci 2013;22:809-22. [PMID: 23595942 DOI: 10.1002/pro.2264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/31/2013] [Indexed: 01/09/2023]
13
Nakata H, Nagata T, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Analytic second derivatives of the energy in the fragment molecular orbital method. J Chem Phys 2013;138:164103. [DOI: 10.1063/1.4800990] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Steinmann C, Fedorov DG, Jensen JH. Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio biochemistry. PLoS One 2013;8:e60602. [PMID: 23593259 PMCID: PMC3625203 DOI: 10.1371/journal.pone.0060602] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/28/2013] [Indexed: 12/02/2022]  Open
15
Fedorov DG, Nagata T, Kitaura K. Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 2012;14:7562-77. [DOI: 10.1039/c2cp23784a] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
16
Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV. Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chem Rev 2011;112:632-72. [DOI: 10.1021/cr200093j] [Citation(s) in RCA: 836] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
17
Brorsen K, Fedorov DG. Fully analytic energy gradient in the fragment molecular orbital method. J Chem Phys 2011;134:124115. [DOI: 10.1063/1.3568010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Claeyssens F, Ranaghan KE, Lawan N, Macrae SJ, Manby FR, Harvey JN, Mulholland AJ. Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions. Org Biomol Chem 2011;9:1578-90. [PMID: 21243152 DOI: 10.1039/c0ob00691b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
19
McGeagh JD, Ranaghan KE, Mulholland AJ. Protein dynamics and enzyme catalysis: insights from simulations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010;1814:1077-92. [PMID: 21167324 DOI: 10.1016/j.bbapap.2010.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/25/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
20
Ishida T. Effects of Point Mutation on Enzymatic Activity: Correlation between Protein Electronic Structure and Motion in Chorismate Mutase Reaction. J Am Chem Soc 2010;132:7104-18. [DOI: 10.1021/ja100744h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
21
Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S. Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems. J Chem Theory Comput 2010. [DOI: 10.1021/ct100006n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
22
Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 2009;48:1198-229. [PMID: 19173328 DOI: 10.1002/anie.200802019] [Citation(s) in RCA: 1801] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
23
Senn H, Thiel W. QM/MM-Methoden für biomolekulare Systeme. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802019] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
24
Li H, Fedorov DG, Nagata T, Kitaura K, Jensen JH, Gordon MS. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. J Comput Chem 2009;31:778-90. [DOI: 10.1002/jcc.21363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
25
Fedorov DG, Jensen JH, Deka RC, Kitaura K. Covalent Bond Fragmentation Suitable To Describe Solids in the Fragment Molecular Orbital Method. J Phys Chem A 2008;112:11808-16. [DOI: 10.1021/jp805435n] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
26
Ishida T. Probing protein environment in an enzymatic process: All-electron quantum chemical analysis combined with ab initio quantum mechanical/molecular mechanical modeling of chorismate mutase. J Chem Phys 2008;129:125105. [DOI: 10.1063/1.2977458] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
27
Jiménez A, Clapés P, Crehuet R. A dynamic view of enzyme catalysis. J Mol Model 2008;14:735-46. [DOI: 10.1007/s00894-008-0283-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
28
Fedorov DG, Kitaura K. Extending the Power of Quantum Chemistry to Large Systems with the Fragment Molecular Orbital Method. J Phys Chem A 2007;111:6904-14. [PMID: 17511437 DOI: 10.1021/jp0716740] [Citation(s) in RCA: 437] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
29
Time-dependent density functional theory with the multilayer fragment molecular orbital method. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.07.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
30
Watanabe T, Inadomi Y, Fukuzawa K, Nakano T, Tanaka S, Nilsson L, Nagashima U. DNA and Estrogen Receptor Interaction Revealed by Fragment Molecular Orbital Calculations. J Phys Chem B 2007;111:9621-7. [PMID: 17649990 DOI: 10.1021/jp071710v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Fedorov DG, Ishimura K, Ishida T, Kitaura K, Pulay P, Nagase S. Accuracy of the three-body fragment molecular orbital method applied to Møller-Plesset perturbation theory. J Comput Chem 2007;28:1476-1484. [PMID: 17330884 DOI: 10.1002/jcc.20645] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
32
Lassila JK, Keeffe JR, Kast P, Mayo SL. Exhaustive Mutagenesis of Six Secondary Active-Site Residues in Escherichia coli Chorismate Mutase Shows the Importance of Hydrophobic Side Chains and a Helix N-Capping Position for Stability and Catalysis. Biochemistry 2007;46:6883-91. [PMID: 17506527 DOI: 10.1021/bi700215x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
33
Higashi M, Hayashi S, Kato S. Transition state determination of enzyme reaction on free energy surface: Application to chorismate mutase. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
34
Nakanishi I, Fedorov DG, Kitaura K. Molecular recognition mechanism of FK506 binding protein: An all-electron fragment molecular orbital study. Proteins 2007;68:145-58. [PMID: 17387719 DOI: 10.1002/prot.21389] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
35
Fedorov DG, Ishida T, Uebayasi M, Kitaura K. The Fragment Molecular Orbital Method for Geometry Optimizations of Polypeptides and Proteins. J Phys Chem A 2007;111:2722-32. [PMID: 17388363 DOI: 10.1021/jp0671042] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
36
Komeiji Y, Ishida T, Fedorov DG, Kitaura K. Change in a protein's electronic structure induced by an explicit solvent: Anab initio fragment molecular orbital study of ubiquitin. J Comput Chem 2007;28:1750-62. [PMID: 17340606 DOI: 10.1002/jcc.20686] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
37
NAKANO T, MOCHIZUKI Y, AMARI S, KOBAYASHI M, FUKUZAWA K, TANAKA S. Application of Fragment Molecular Orbital (FMO) Method to Nano-Bio Field. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2007. [DOI: 10.2477/jccj.6.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
38
FUKUZAWA K, NAKANO T, KATO A, MOCHIZUKI Y, TANAKA S. Applications of the Fragment Molecular Orbital Method for Bio-Macromolecules. ACTA ACUST UNITED AC 2007. [DOI: 10.2477/jccj.6.185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
39
Ryde U. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry. Dalton Trans 2006:607-25. [PMID: 17268593 DOI: 10.1039/b614448a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Fedorov DG, Kitaura K. The three-body fragment molecular orbital method for accurate calculations of large systems. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.10.052] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
41
Dahlke EE, Truhlar DG. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters. J Chem Theory Comput 2006;3:46-53. [DOI: 10.1021/ct600253j] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
42
Gunner MR, Mao J, Song Y, Kim J. Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006;1757:942-68. [PMID: 16905113 PMCID: PMC2760439 DOI: 10.1016/j.bbabio.2006.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
43
Fedorov DG, Kitaura K. Pair interaction energy decomposition analysis. J Comput Chem 2006;28:222-37. [PMID: 17109433 DOI: 10.1002/jcc.20496] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA