1
|
Dey P, Santra S, Ghosh D. Effect of the protein environment on the excited state phenomena in a bacteriophytochrome. Phys Chem Chem Phys 2024; 26:20875-20882. [PMID: 39044617 DOI: 10.1039/d4cp02112f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The excited state processes of a bacteriophytochrome are studied using high-level multireference methods. The various non-radiative channels of deactivation are identified for the chromophore. The effects of the protein environment and substituents are elucidated for these excited state processes. It is observed that while the excited states are completely delocalized in the Franck-Condon (FC) region, they acquire significant charge transfer character near the conical intersections. Earlier studies have emphasized the delocalized nature of the excited states in the FC region, which leads to absorption spectra with minimal Stokes shift [Rumyantsev et al., Sci. Rep., 2015, 5, 18348]. The effect of the protein environment on the vertical excitation energies was minimal, while that on the conical intersection (CI) energetics was significant. This may lead one to believe that it is charge transfer driven. However, energy decomposition analysis shows that it is the effect of the dispersion of nearby residues and the steric effect on the rings and substituents that lead to the large effect of proteins on the energetics of the CIs.
Collapse
Affiliation(s)
- Pradipta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
2
|
Staheli CF, Barney J, Clark TR, Bowles M, Jeppesen B, Oblinsky DG, Steffensen MB, Dean JC. Spectroscopic and Photophysical Investigation of Model Dipyrroles Common to Bilins: Exploring Natural Design for Steering Torsion to Divergent Functions. Front Chem 2021; 9:628852. [PMID: 33681146 PMCID: PMC7925881 DOI: 10.3389/fchem.2021.628852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Biliproteins are a unique class of photosynthetic proteins in their diverse, and at times, divergent biophysical function. The two contexts of photosynthetic light harvesting and photoreception demonstrate characteristically opposite criteria for success, with light harvesting demanding structurally-rigid chromophores which minimize excitation quenching, and photoreception requiring structural flexibility to enable conformational isomerization. The functional plasticity borne out in these two biological contexts is a consequence of the structural plasticity of the pigments utilized by biliproteins―linear tetrapyrroles, or bilins. In this work, the intrinsic flexibility of the bilin framework is investigated in a bottom-up fashion by reducing the active nuclear degrees of freedom through model dipyrrole subunits of the bilin core and terminus free of external protein interactions. Steady-state spectroscopy was carried out on the dipyrrole (DPY) and dipyrrinone (DPN) subunits free in solution to characterize their intrinsic spectroscopic properties including absorption strengths and nonradiative activity. Transient absorption (TA) spectroscopy was utilized to determine the mechanism and kinetics of nonradiative decay of the dipyrrole subunits, revealing dynamics dominated by rapid internal conversion with some Z→E isomerization observable in DPY. Computational analysis of the ground state conformational landscapes indicates enhanced complexity in the asymmetric terminal subunit, and the prediction was confirmed by heterogeneity of species and kinetics observed in TA. Taken together, the large oscillator strengths (f ∼ 0.6) of the dipyrrolic derivatives and chemically-efficient spectral tunability seen through the ∼100 nm difference in absorption spectra, validate Nature's "selection" of multi-pyrrole pigments for light capture applications. However, the rapid deactivation of the excited state via their natural torsional activity when free in solution would limit their effective biological function. Comparison with phytochrome and phycocyanin 645 crystal structures reveals binding motifs within the in vivo bilin environment that help to facilitate or inhibit specific inter-pyrrole twisting vital for protein operation.
Collapse
Affiliation(s)
- Clayton F Staheli
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Jaxon Barney
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States.,Department of Chemistry, The Pennsylvania State University, State College, PA, United States
| | - Taime R Clark
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Maxwell Bowles
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States.,Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Bridger Jeppesen
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Mackay B Steffensen
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Jacob C Dean
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| |
Collapse
|
3
|
Jähnigen S, Sebastiani D. Carbon Atoms Speaking Out: How the Geometric Sensitivity of 13C Chemical Shifts Leads to Understanding the Colour Tuning of Phycocyanobilin in Cph1 and AnPixJ. Molecules 2020; 25:E5505. [PMID: 33255423 PMCID: PMC7727823 DOI: 10.3390/molecules25235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.
Collapse
Affiliation(s)
| | - Daniel Sebastiani
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany;
| |
Collapse
|
4
|
Khan FI, Hassan F, Anwer R, Juan F, Lai D. Comparative Analysis of Bacteriophytochrome Agp2 and Its Engineered Photoactivatable NIR Fluorescent Proteins PAiRFP1 and PAiRFP2. Biomolecules 2020; 10:biom10091286. [PMID: 32906690 PMCID: PMC7564321 DOI: 10.3390/biom10091286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Two photoactivatable near infrared fluorescent proteins (NIR FPs) named “PAiRFP1” and “PAiRFP2” are formed by directed molecular evolution from Agp2, a bathy bacteriophytochrome of Agrobacterium tumefaciens C58. There are 15 and 24 amino acid substitutions in the structure of PAiRFP1 and PAiRFP2, respectively. A comprehensive molecular exploration of these bacteriophytochrome photoreceptors (BphPs) are required to understand the structure dynamics. In this study, the NIR fluorescence emission spectra for PAiRFP1 were recorded upon repeated excitation and the fluorescence intensity of PAiRFP1 tends to increase as the irradiation time was prolonged. We also predicted that mutations Q168L, V244F, and A480V in Agp2 will enhance the molecular stability and flexibility. During molecular dynamics (MD) simulations, the average root mean square deviations of Agp2, PAiRFP1, and PAiRFP2 were found to be 0.40, 0.49, and 0.48 nm, respectively. The structure of PAiRFP1 and PAiRFP2 were more deviated than Agp2 from its native conformation and the hydrophobic regions that were buried in PAiRFP1 and PAiRFP2 core exposed to solvent molecules. The eigenvalues and the trace of covariance matrix were found to be high for PAiRFP1 (597.90 nm2) and PAiRFP2 (726.74 nm2) when compared with Agp2 (535.79 nm2). It was also found that PAiRFP1 has more sharp Gibbs free energy global minima than Agp2 and PAiRFP2. This comparative analysis will help to gain deeper understanding on the structural changes during the evolution of photoactivatable NIR FPs. Further work can be carried out by combining PCR-based directed mutagenesis and spectroscopic methods to provide strategies for the rational designing of these PAiRFPs.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: ; Tel.: +86-182-0052-9516
| |
Collapse
|
5
|
Takeda K, Terazima M. Dynamics of Conformational Changes in Full-Length Phytochrome from Cyanobacterium Synechocystis sp. PCC6803 (Cph1) Monitored by Time-Resolved Translational Diffusion Detection. Biochemistry 2019; 58:2720-2729. [DOI: 10.1021/acs.biochem.9b00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Modi V, Donnini S, Groenhof G, Morozov D. Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of a Bacteriophytochrome. J Phys Chem B 2019; 123:2325-2334. [PMID: 30762368 PMCID: PMC6727380 DOI: 10.1021/acs.jpcb.9b01117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
The
tetrapyrrole chromophore biliverdin IXα (BV) in the bacteriophytochrome
from Deinococcus radiodurans (DrBphP)
is usually assumed to be fully protonated, but this assumption has
not been systematically validated by experiments or extensive computations.
Here, we use force field molecular dynamics simulations and quantum
mechanics/molecular mechanics calculations with density functional
theory and XMCQDPT2 methods to investigate the effect of the five
most probable protonation forms of BV on structural stability, binding
pocket interactions, and absorption spectra in the two photochromic
states of DrBphP. While agreement with X-ray structural data and measured
UV/vis spectra suggest that in both states the protonated form of
the chromophore dominates, we also find that a minor population with
a deprotonated D-ring could contribute to the red-shifted tail in
the absorption spectra.
Collapse
|
7
|
Takeda K, Terazima M. Photoinduced Orientation Change of the Dimer Structure of the Pr-I State of Cph1Δ2. Biochemistry 2018; 57:5058-5071. [DOI: 10.1021/acs.biochem.8b00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Stöppler D, Song C, van Rossum BJ, Geiger MA, Lang C, Mroginski MA, Jagtap AP, Sigurdsson ST, Matysik J, Hughes J, Oschkinat H. Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel Stöppler
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| | - Chen Song
- Universität Leipzig; Institut für Analytische Chemie; Linnéstr. 3 04103 Leipzig Germany
| | - Barth-Jan van Rossum
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Michel-Andreas Geiger
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| | - Christina Lang
- Justus-Liebig-Universität Gießen; Institut für Pflanzenphysiologie; Senckenbergstr. 3 35390 Gießen Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 135 10623 Berlin Germany
| | | | | | - Jörg Matysik
- Universität Leipzig; Institut für Analytische Chemie; Linnéstr. 3 04103 Leipzig Germany
| | - Jon Hughes
- Justus-Liebig-Universität Gießen; Institut für Pflanzenphysiologie; Senckenbergstr. 3 35390 Gießen Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| |
Collapse
|
9
|
Stöppler D, Song C, van Rossum BJ, Geiger MA, Lang C, Mroginski MA, Jagtap AP, Sigurdsson ST, Matysik J, Hughes J, Oschkinat H. Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Angew Chem Int Ed Engl 2016; 55:16017-16020. [DOI: 10.1002/anie.201608119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/30/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Stöppler
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| | - Chen Song
- Universität Leipzig; Institut für Analytische Chemie; Linnéstr. 3 04103 Leipzig Germany
| | - Barth-Jan van Rossum
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Michel-Andreas Geiger
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| | - Christina Lang
- Justus-Liebig-Universität Gießen; Institut für Pflanzenphysiologie; Senckenbergstr. 3 35390 Gießen Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 135 10623 Berlin Germany
| | | | | | - Jörg Matysik
- Universität Leipzig; Institut für Analytische Chemie; Linnéstr. 3 04103 Leipzig Germany
| | - Jon Hughes
- Justus-Liebig-Universität Gießen; Institut für Pflanzenphysiologie; Senckenbergstr. 3 35390 Gießen Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| |
Collapse
|
10
|
Song C, Lang C, Kopycki J, Hughes J, Matysik J. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1. Front Mol Biosci 2015; 2:42. [PMID: 26284254 PMCID: PMC4516977 DOI: 10.3389/fmolb.2015.00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022] Open
Abstract
Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in previous MAS NMR and crystallographic studies. AmS precipitation might nevertheless provide useful protein structure/functional information for full-length Cph1 in cases where neither X-ray crystallography nor conventional NMR methods are available.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden Leiden, Netherlands ; Institut für Analytische Chemie, Fakultät für Chemie and Mineralogie, Universität Leipzig Leipzig, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jakub Kopycki
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jörg Matysik
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden Leiden, Netherlands ; Institut für Analytische Chemie, Fakultät für Chemie and Mineralogie, Universität Leipzig Leipzig, Germany
| |
Collapse
|
11
|
Singer P, Fey S, Göller AH, Hermann G, Diller R. Femtosecond Dynamics in the Lactim Tautomer of Phycocyanobilin: A Long-Wavelength Absorbing Model Compound for the Phytochrome Chromophore. Chemphyschem 2014; 15:3824-31. [DOI: 10.1002/cphc.201402383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Indexed: 11/11/2022]
|
12
|
Chizhov I, Zorn B, Manstein DJ, Gärtner W. Kinetic and thermodynamic analysis of the light-induced processes in plant and cyanobacterial phytochromes. Biophys J 2014; 105:2210-20. [PMID: 24209867 DOI: 10.1016/j.bpj.2013.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/06/2013] [Accepted: 09/04/2013] [Indexed: 02/08/2023] Open
Abstract
The light-induced processes of the biological photoreceptor phytochrome (recombinant phyA of oat and recombinant CphA from the cyanobacterium Tolypothrix PCC7601) have been investigated in a time-resolved manner in the temperature range from 0 to 30°C. Both proteins were heterologously expressed and assembled in vitro with phycocyanobilin. The Pr state of plant phytochrome phyA is converted to the Pfr state after formation of four intermediates with an overall quantum yield of ~18%. The reversal reaction (Pfr-to-Pr) shows several intermediates, all of which, even the first detectable one, exhibit already all spectral features of the Pr state. The canonical phytochrome CphA from Tolypothrix showed a similar intermediate sequence as its plant ortholog. Whereas the kinetics for the forward reaction (Pr-to-Pfr) was nearly identical for both proteins, the reverse process (Pr formation) in the cyanobacterial phytochrome was slower by a factor of three. As found for the Pfr-to-Pr intermediates in the plant protein, also in CphA all detectable intermediates showed the spectral features of the Pr form. For both phytochromes, activation parameters for both the forward and the backward reaction pathways were determined.
Collapse
Affiliation(s)
- Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
13
|
Gottlieb SM, Chang CW, Martin SS, Rockwell NC, Lagarias JC, Larsen DS. Optically Guided Photoactivity: Coordinating Tautomerization, Photoisomerization, Inhomogeneity, and Reactive Intermediates within the RcaE Cyanobacteriochrome. J Phys Chem Lett 2014; 5:1527-1533. [PMID: 26270091 DOI: 10.1021/jz500378n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The RcaE cyanobacteriochrome uses a linear tetrapyrrole chromophore to sense the ratio of green and red light to enable the Fremyella diplosiphon cyanobacterium to control the expression of the photosynthetic infrastructure for efficient utilization of incident light. The femtosecond photodynamics of the embedded phycocyanobilin chromophore within RcaE were characterized with dispersed femtosecond pump-dump-probe spectroscopy, which resolved a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates. These reactions were integrated within a central model that incorporated a rapid (200 fs) excited-state Le Châtelier redistribution between parallel evolving populations ascribed to different tautomers. Three photoproducts were resolved and originates from four independent subpopulations, each with different dump-induced behavior: Lumi-Go was depleted, Lumi-Gr was unaffected, and Lumi-Gf was enhanced. This suggests that RcaE may be engineered to act either as an in vivo fluorescent probe (after single-pump excitation) or as an in vivo optogenetic sample (after pump and dump excitation).
Collapse
Affiliation(s)
- Sean M Gottlieb
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - Shelley S Martin
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - Nathan C Rockwell
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - J Clark Lagarias
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
14
|
Xu XL, Gutt A, Mechelke J, Raffelberg S, Tang K, Miao D, Valle L, Borsarelli CD, Zhao KH, Gärtner W. Combined mutagenesis and kinetics characterization of the bilin-binding GAF domain of the protein Slr1393 from the Cyanobacterium Synechocystis PCC6803. Chembiochem 2014; 15:1190-9. [PMID: 24764310 DOI: 10.1002/cbic.201400053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 01/11/2023]
Abstract
The gene slr1393 from Synechocystis sp. PCC6803 encodes a protein composed of three GAF domains, a PAS domain, and a histidine kinase domain. GAF3 is the sole domain able to bind phycocyanobilin (PCB) as chromophore and to accomplish photochemistry: switching between a red-absorbing parental and a green-absorbing photoproduct state (λmax =649 and 536 nm, respectively). Conversions in both directions were followed by time-resolved absorption spectroscopy with the separately expressed GAF3 domain of Slr1393. Global fit analysis of the recorded absorbance changes yielded three lifetimes (3.2 μs, 390 μs, and 1.5 ms) for the red-to-green conversion, and 1.2 μs, 340 μs, and 1 ms for the green-to-red conversion. In addition to the wild-type (WT) protein, 24 mutated proteins were studied spectroscopically. The design of these site-directed mutations was based on sequence alignments with related proteins and by employing the crystal structure of AnPixJg2 (PDB ID: 3W2Z), a Slr1393 orthologous from Anabaena sp. PCC7120. The structure of AnPixJg2 was also used as template for model building, thus confirming the strong structural similarity between the proteins, and for identifying amino acids to target for mutagenesis. Only amino acids in close proximity to the chromophore were exchanged, as these were considered likely to have an impact on the spectral and dynamic properties. Three groups of mutants were found: some showed absorption features similar to the WT protein, a second group showed modified absorbance properties, and the third group had lost the ability to bind the chromophore. The most unexpected result was obtained for the exchange at residue 532 (N532Y). In vivo assembly yielded a red-absorbing, WT-like protein. Irradiation, however, not only converted it into the green-absorbing form, but also produced a 660 nm, further-red-shifted absorbance band. This photoproduct was fully reversible to the parental form upon green light irradiation.
Collapse
Affiliation(s)
- Xiu-Ling Xu
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim (Germany)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Watermann T, Elgabarty H, Sebastiani D. Phycocyanobilin in solution – a solvent triggered molecular switch. Phys Chem Chem Phys 2014; 16:6146-52. [DOI: 10.1039/c3cp54307b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chromophore phycocyanobilin changes its spectroscopic behaviour upon solvent change. Our calculations trace this effect back to conformational switching, induced by changes in the hydrogen bonding pattern.
Collapse
Affiliation(s)
- Tobias Watermann
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- 06120 Halle (Saale), Germany
| | - Hossam Elgabarty
- Institute of Physical Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz, Germany
| | - Daniel Sebastiani
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- 06120 Halle (Saale), Germany
| |
Collapse
|
16
|
Song C, Psakis G, Kopycki J, Lang C, Matysik J, Hughes J. The D-ring, not the A-ring, rotates in Synechococcus OS-B' phytochrome. J Biol Chem 2013; 289:2552-62. [PMID: 24327657 DOI: 10.1074/jbc.m113.520031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phytochrome photoreceptors in plants and microorganisms switch photochromically between two states, controlling numerous important biological processes. Although this phototransformation is generally considered to involve rotation of ring D of the tetrapyrrole chromophore, Ulijasz et al. (Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L., and Vierstra, R. D. (2010) Nature 463, 250-254) proposed that the A-ring rotates instead. Here, we apply magic angle spinning NMR to the two parent states following studies of the 23-kDa GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domain fragment of phytochrome from Synechococcus OS-B'. Major changes occur at the A-ring covalent linkage to the protein as well as at the protein residue contact of ring D. Conserved contacts associated with the A-ring nitrogen rule out an A-ring photoflip, whereas loss of contact of the D-ring nitrogen to the protein implies movement of ring D. Although none of the methine bridges showed a chemical shift change comparable with those characteristic of the D-ring photoflip in canonical phytochromes, denaturation experiments showed conclusively that the same occurs in Synechococcus OS-B' phytochrome upon photoconversion. The results are consistent with the D-ring being strongly tilted in both states and the C15=C16 double bond undergoing a Z/E isomerization upon light absorption. More subtle changes are associated with the A-ring linkage to the protein. Our findings thus disprove A-ring rotation and are discussed in relation to the position of the D-ring, photoisomerization, and photochromicity in the phytochrome family.
Collapse
Affiliation(s)
- Chen Song
- From the Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, NL-2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Falklöf O, Durbeej B. Red-light absorption and fluorescence of phytochrome chromophores: A comparative theoretical study. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Falklöf O, Durbeej B. Modeling of phytochrome absorption spectra. J Comput Chem 2013; 34:1363-74. [DOI: 10.1002/jcc.23265] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Olle Falklöf
- Division of Computational Physics; IFM; Linköping University; SE-581 83; Linköping; Sweden
| | - Bo Durbeej
- Division of Computational Physics; IFM; Linköping University; SE-581 83; Linköping; Sweden
| |
Collapse
|
19
|
Song C, Rohmer T, Tiersch M, Zaanen J, Hughes J, Matysik J. Solid-State NMR Spectroscopy to Probe Photoactivation in Canonical Phytochromes. Photochem Photobiol 2013; 89:259-73. [DOI: 10.1111/php.12029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/28/2012] [Indexed: 01/17/2023]
Affiliation(s)
| | - Thierry Rohmer
- Leids Instituut voor Chemisch Onderzoek; Universiteit Leiden; Leiden; The Netherlands
| | | | - Jan Zaanen
- Instituut-Lorentz for Theoretical Physics; Universiteit Leiden; Leiden; The Netherlands
| | - Jon Hughes
- Pflanzenphysiologie; Justus-Liebig-Universität; Giessen; Germany
| | | |
Collapse
|
20
|
Gärtner W. Kurt Schaffner: from organic photochemistry to photobiology. Photochem Photobiol Sci 2012; 11:872-80. [DOI: 10.1039/c2pp05405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Ulijasz AT, Vierstra RD. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:498-506. [PMID: 21733743 DOI: 10.1016/j.pbi.2011.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 05/31/2023]
Abstract
Phytochromes are nature's primary photoreceptors dedicated to detecting the red and far-red regions of the visible light spectrum, a region also essential for photosynthesis and thus crucial to the survival of plants and other photosynthetic organisms. Given their roles in measuring competition and diurnal/seasonal light fluctuations, understanding how phytochromes work at the molecular level would greatly aid in engineering crop plants better suited to specific agricultural settings. Recently, scientists have determined the three-dimensional structures of prokaryotic phytochromes, which now provide clues as to how these modular photoreceptors might work at the atomic level. The models point toward a largely unifying mechanism whereby novel knot, hairpin, and dimeric interfaces transduce photoreversible bilin isomerization into protein conformational changes that alter signal output.
Collapse
Affiliation(s)
- Andrew T Ulijasz
- Department of Biological Sciences, 3209 North Maryland Avenue, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | | |
Collapse
|
22
|
Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc Natl Acad Sci U S A 2011; 108:3842-7. [PMID: 21325055 DOI: 10.1073/pnas.1013377108] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phytochrome photoreceptors mediate light responses in plants and in many microorganisms. Here we report studies using (1)H-(13)C magic-angle spinning NMR spectroscopy of the sensor module of cyanobacterial phytochrome Cph1. Two isoforms of the red-light absorbing Pr ground state are identified. Conclusive evidence that photoisomerization occurs at the C15-methine bridge leading to a β-facial disposition of the ring D is presented. In the far-red-light absorbing Pfr state, strong hydrogen-bonding interactions of the D-ring carbonyl group to Tyr-263 and of N24 to Asp-207 hold the chromophore in a tensed conformation. Signaling is triggered when Asp-207 is released from its salt bridge to Arg-472, probably inducing conformational changes in the tongue region. A second signal route is initiated by partner swapping of the B-ring propionate between Arg-254 and Arg-222.
Collapse
|
23
|
Strambi A, Durbeej B. Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study. Photochem Photobiol Sci 2011; 10:569-79. [DOI: 10.1039/c0pp00307g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Rohmer T, Lang C, Gärtner W, Hughes J, Matysik J. Role of the protein cavity in phytochrome chromoprotein assembly and double-bond isomerization: a comparison with model compounds. Photochem Photobiol 2010; 86:856-61. [PMID: 20492561 DOI: 10.1111/j.1751-1097.2010.00740.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Difference patterns of (13)C NMR chemicals shifts for the protonation of a free model compound in organic solution, as reported in the literature (M. Stanek, K. Grubmayr [1998] Chem. Eur. J.4, 1653-1659), were compared with changes in the protonation state occurring during holophytochrome assembly from phycocyanobilin (PCB) and the apoprotein. Both processes induce identical changes in the NMR signals, indicating that the assembly process is linked to protonation of the chromophore, yielding a cationic cofactor in a heterogeneous, quasi-liquid protein environment. The identity of both difference patterns implies that the protonation of a model compound in solution causes a partial stretching of the geometry of the macrocycle as found in the protein. In fact, the similarity of the difference pattern within the bilin family for identical chemical transformations represents a basis for future theoretical analysis. On the other hand, the change of the (13)C NMR chemical shift pattern upon the Pr --> Pfr photoisomerization is very different to that of the free model compound upon ZZZ --> ZZE photoisomerization. Hence, the character of the double-bond isomerization in phytochrome is essentially different from that of a classical photoinduced double-bond isomerization, emphasizing the role of the protein environment in the modulation of this light-induced process.
Collapse
Affiliation(s)
- Thierry Rohmer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Röben M, Hahn J, Klein E, Lamparter T, Psakis G, Hughes J, Schmieder P. NMR Spectroscopic Investigation of Mobility and Hydrogen Bonding of the Chromophore in the Binding Pocket of Phytochrome Proteins. Chemphyschem 2010; 11:1248-57. [DOI: 10.1002/cphc.200900897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Bongards C, Gärtner W. The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles. Acc Chem Res 2010; 43:485-95. [PMID: 20055450 DOI: 10.1021/ar800133x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In plants and bacteria, phytochromes serve as light-inducible, red-/far-red light sensitive photoreceptors that control a wide range of photomorphogenetic processes. Phytochromes comprise a protein moiety and a covalently bound bilin chromophore. Bilins are open-chain tetrapyrrole compounds that derive biosynthetically from ubiquitous porphyrins. The investigations of phytochromes reveal that precise interactions between the protein moiety and its bilin chromophore are essential for the proper functioning of this photoreceptor; accordingly, synthetic manipulation of the parts is an important method for studying the whole. Although variations in the protein structure are readily accomplished by routine mutagenesis protocols, the generation of structurally modified bilins is a laborious, multistep process. Recent improvement in the synthesis of open-chain tetrapyrroles now permits the generation of novel, structurally modified (and even selectively isotope-labeled) chromophores. Furthermore, by using the capability of recombinant apo-phytochrome to bind the chromophore autocatalytically, researchers can now generate novel chromoproteins with modified functions. In the protein-bound state, the phytochrome chromophore is photoisomerized at one double bond, in the bridge between the last two of the four pyrrole rings (the C and D rings), generating the thermally stable, physiologically active P(fr) form. This conversion--photoisomerization from the form absorbing red light (P(r)) to the form absorbing far-red light (P(fr))--covers 12 orders of magnitude, from subpicoseconds to seconds. Such spectroscopic and kinetic studies yield a wealth of time-resolved spectral data, even more so, if proteins with changed sequence or chromophore structure are utilized. In particular, bilins with a changed substitution pattern at the photoisomerizing ring D have shed light on the chromophore-protein interactions during the photoisomerization. The mechanisms generating and stabilizing the light-induced P(fr) form of phytochromes are now seen in greater detail. On the other hand, the use of bilins with selective incorporation of stable isotopes identify light-induced conformational motions when studied by vibrational (FTIR and Raman) and NMR spectroscopy. In this Account, we present spectroscopic investigations that provide structural details in these biological photoreceptors with great precision and document the dynamics elicited by light excitation. This approach yields important information that complements the data deduced from crystal structure.
Collapse
Affiliation(s)
- Christian Bongards
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Abstract
The complete three-dimensional sensory module structures of the Pr ground state of Synechocystis 6803 Cph1 and the unusual Pfr ground state of the bacteriophytochrome PaBphP (PDB codes 2VEA and 3C2W respectively) have now been solved, revealing an asymmetrical dumbbell form made up of a PAS (Period/ARNT/Singleminded)–GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) bidomain carrying the chromophore and the smaller PHY (phytochrome-specific) domain. The PHY domain is structurally related to the GAF family, but carries an unusual tongue-like structure which contacts the larger lobe to seal the chromophore pocket. In 2VEA, the tongue makes intimate contact with the helical N-terminus; both the N-terminus and the tongue structures are quite different in 3C2W. As expected, the structures reveal ZZZssa and ZZEssa chromophore conformations in 2VEA and 3C2W respectively, associated with tautomeric differences in several nearby tyrosine residues. Two salt bridges on opposite sides of the chromophore, as well as the associations of the C-ring propionates also differ. It is still unclear, however, which of these structural differences are associated with bacteriophytochromes compared with Cph1 and plant-type phytochromes, the unusual 3C2W Pfr ground state functionality compared with the Pr ground state or the Pr compared with Pfr photoisomerism. To access the latter unambiguously, both Pr and Pfr structures of the same molecule are required. New solid-phase NMR data for Cph1 in the Pr, Pfr and freeze-trapped intermediate states reveal unexpected changes in the chromophore during Pfr→Pr photoconversion. These, together with our efforts to solve the three-dimensional structure of a complete phytochrome molecule are also described.
Collapse
|
28
|
Rohmer T, Lang C, Bongards C, Gupta KBSS, Neugebauer J, Hughes J, Gärtner W, Matysik J. Phytochrome as Molecular Machine: Revealing Chromophore Action during the Pfr → Pr Photoconversion by Magic-Angle Spinning NMR Spectroscopy. J Am Chem Soc 2010; 132:4431-7. [DOI: 10.1021/ja9108616] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thierry Rohmer
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Christina Lang
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Christian Bongards
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Karthick Babu Sai Sankar Gupta
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Johannes Neugebauer
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jon Hughes
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Gärtner
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
29
|
Möglich A, Yang X, Ayers RA, Moffat K. Structure and function of plant photoreceptors. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:21-47. [PMID: 20192744 DOI: 10.1146/annurev-arplant-042809-112259] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental-and as yet imperfectly answered-question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins), formation or rupture of a covalent bond (LOV sensors), or electron transfer (BLUF sensors and cryptochromes).
Collapse
Affiliation(s)
- Andreas Möglich
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
30
|
Borucki B, Seibeck S, Heyn MP, Lamparter T. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis. Biochemistry 2009; 48:6305-17. [PMID: 19496558 DOI: 10.1021/bi900436v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The functional role of the covalent attachment of the bilin chromophores biliverdin (BV) and phycocyanobilin (PCB) was investigated for phytochrome Agp1 from Agrobacterium tumefaciens using circular dichroism (CD) and transient absorption spectroscopy. Covalent and noncovalent adducts with these chromophores were prepared by using wild-type (WT) Agp1 (covalent BV and noncovalent PCB binding), mutant C20A in which the covalent BV binding site is eliminated, and mutant V249C in which the covalent PCB binding site is introduced. While the CD spectra of the P(r) forms of all these photochromic adducts are qualitatively the same, the CD spectrum of the P(fr) form of the covalent PCB adduct is unique in having a positive rotational strength in the Q-band which we assign to the Z-E isomerization of the C-D methine bridge. In the three other adducts, the Q-band CD in the P(fr) state is almost zero, suggesting that upon photoconversion a negative contribution from an out-of-plane rotation of the A ring of the chromophore compensates for the positive contribution from ring D. The contribution from ring A is absent or strongly reduced in the shorter pi-conjugation system of the covalent PCB adduct. The results from CD spectroscopy are consistent with a uniform geometry of the bilin chromophore in the covalent and noncovalent adducts. Transient absorption spectroscopy showed that the spectral changes and the kinetics of the P(r) to P(fr) photoconversion are not substantially affected by the covalent attachment of BV and PCB. The kinetics in the BV and PCB adducts mainly differ in the formation of P(fr) that is accelerated by 2 orders of magnitude in the PCB adducts, whereas the sequence of spectral transitions and the associated proton transfer processes are quite similar. We conclude that the P(r) to P(fr) photoconversion in the BV and PCB adducts of Agp1 involves the same relaxation processes and is thus governed by specific protein-cofactor interactions rather than by the chemical structure of the chromophore or the mode of attachment. The strongly reduced photostability of the noncovalent BV adduct suggests that covalent attachment in native Agp1 phytochrome prevents irreversible photobleaching and stabilizes the chromophore. The N-terminal peptide segment including amino acids 2-19 is essential for covalent attachment of the chromophore but dispensable for the spectral and kinetic properties of Agp1.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
31
|
Inomata K, Khawn H, Chen LY, Kinoshita H, Zienicke B, Molina I, Lamparter T. Assembly of Agrobacterium Phytochromes Agp1 and Agp2 with Doubly Locked Bilin Chromophores. Biochemistry 2009; 48:2817-27. [DOI: 10.1021/bi802334u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Katsuhiko Inomata
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Htoi Khawn
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Li-Yi Chen
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Hideki Kinoshita
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Benjamin Zienicke
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Isabel Molina
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Tilman Lamparter
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
32
|
Durbeej B. On the primary event of phytochrome: quantum chemical comparison of photoreactions at C4, C10 and C15. Phys Chem Chem Phys 2009; 11:1354-61. [PMID: 19224036 DOI: 10.1039/b811813b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytochromes are widespread photoreceptors responsive to red and far-red light that exist in two photochromic forms Pr (inactive) and Pfr (active). The Pr --> Pfr conversion proceeds through a series of events initiated by Z-->E photoisomerization of the tetrapyrrole chromophore, believed to occur at C15 of the methine bridge between rings C and D. Recent crystal structures show that ring D in Pr is less tightly packed by the protein than rings A, B and C, which should favor the C15 reaction over reactions at C4 (AB methine bridge) and C10 (BC). In the present work, quantum chemical methods are used to establish the intrinsic reactivity of the chromophore towards all three possible Z-->E isomerization events in the absence of steric effects and specific interactions with the protein. Using a level of theory that reproduces spectroscopic data with an accuracy of approximately 0.2 eV, it is demonstrated that isolated conditions allow the C10 photoreaction to substantially dominate. This finding suggests that the different degrees of ring-packing observed in the protein are crucial not only to facilitate a reaction at C15, but also to prevent an intrinsically more favorable reaction at C10 from taking place.
Collapse
Affiliation(s)
- Bo Durbeej
- Department of Chemistry, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy.
| |
Collapse
|
33
|
Schwinté P, Gärtner W, Sharda S, Mroginski MA, Hildebrandt P, Siebert F. The Photoreactions of Recombinant Phytochrome CphA from the CyanobacteriumCalothrixPCC7601: A Low-Temperature UV-Vis and FTIR Study. Photochem Photobiol 2009; 85:239-49. [DOI: 10.1111/j.1751-1097.2008.00426.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Light-induced chromophore activity and signal transduction in phytochromes observed by 13C and 15N magic-angle spinning NMR. Proc Natl Acad Sci U S A 2008; 105:15229-34. [PMID: 18832155 DOI: 10.1073/pnas.0805696105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Both thermally stable states of phytochrome, Pr and Pfr, have been studied by (13)C and (15)N cross-polarization (CP) magic-angle spinning (MAS) NMR using cyanobacterial (Cph1) and plant (phyA) phytochrome sensory modules containing uniformly (13)C- and (15)N-labeled bilin chromophores. Two-dimensional homo- and heteronuclear experiments allowed most of the (13)C chemical shifts to be assigned in both states. Chemical shift differences reflect changes of the electronic structure of the cofactor at the atomic level as well as its interactions with the chromophore-binding pocket. The chromophore in cyanobacterial and plant phytochromes shows very similar features in the respective Pr and Pfr states. The data are interpreted in terms of a strengthened hydrogen bond at the ring D carbonyl. The red shift in the Pfr state is explained by the increasing length of the conjugation network beyond ring C including the entire ring D. Enhanced conjugation within the pi-system stabilizes the more tensed chromophore in the Pfr state. Concomitant changes at the ring C propionate carboxylate and the ring D carbonyl are explained by a loss of hydrogen bonding to Cph1-His-290 and transmittance of conformational changes to the ring C propionate via a water network. These and other conformational changes may lead to modified surface interactions, e.g., along the tongue region contacting the bilin chromophore.
Collapse
|
35
|
The structure of a complete phytochrome sensory module in the Pr ground state. Proc Natl Acad Sci U S A 2008; 105:14709-14. [PMID: 18799745 DOI: 10.1073/pnas.0806477105] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytochromes are red/far-red photochromic biliprotein photoreceptors, which in plants regulate seed germination, stem extension, flowering time, and many other light effects. However, the structure/functional basis of the phytochrome photoswitch is still unclear. Here, we report the ground state structure of the complete sensory module of Cph1 phytochrome from the cyanobacterium Synechocystis 6803. Although the phycocyanobilin (PCB) chromophore is attached to Cys-259 as expected, paralleling the situation in plant phytochromes but contrasting to that in bacteriophytochromes, the ZZZssa conformation does not correspond to that expected from Raman spectroscopy. We show that the PHY domain, previously considered unique to phytochromes, is structurally a member of the GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) family. Indeed, the tandem-GAF dumbbell revealed for phytochrome sensory modules is remarkably similar to the regulatory domains of cyclic nucleotide (cNMP) phosphodiesterases and adenylyl cyclases. A unique feature of the phytochrome structure is a long, tongue-like protrusion from the PHY domain that seals the chromophore pocket and stabilizes the photoactivated far-red-absorbing state (Pfr). The tongue carries a conserved PRxSF motif, from which an arginine finger points into the chromophore pocket close to ring D forming a salt bridge with a conserved aspartate residue. The structure that we present provides a framework for light-driven signal transmission in phytochromes.
Collapse
|
36
|
Cornilescu G, Ulijasz AT, Cornilescu CC, Markley JL, Vierstra RD. Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state. J Mol Biol 2008; 383:403-13. [PMID: 18762196 DOI: 10.1016/j.jmb.2008.08.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 01/31/2023]
Abstract
The unique photochromic absorption behavior of phytochromes (Phys) depends on numerous reversible interactions between the bilin chromophore and the associated polypeptide. To help define these dynamic interactions, we determined by NMR spectroscopy the first solution structure of the chromophore-binding cGMP phosphodiesterase/adenylcyclase/FhlA (GAF) domain from a cyanobacterial Phy assembled with phycocyanobilin (PCB). The three-dimensional NMR structure of Synechococcus OS-B' cyanobacterial Phy 1 in the red-light-absorbing state of Phy (Pr) revealed that PCB is bound to Cys138 of the GAF domain via the A-ring ethylidene side chain and is buried within the GAF domain in a ZZZsyn,syn,anti configuration. The D ring of the chromophore sits within a hydrophobic pocket and is tilted by approximately 80 degrees relative to the B/C rings by contacts with Lys52 and His169. The solution structure revealed remarkable flexibility for PCB and several adjacent amino acids, indicating that the Pr chromophore has more freedom in the binding pocket than anticipated. The propionic acid side chains of rings B and C and Arg101 and Arg133 nearby are especially mobile and can assume several distinct and energetically favorable conformations. Mutagenic studies on these arginines, which are conserved within the Phy superfamily, revealed that they have opposing roles, with Arg101 and Arg133 helping stabilize and destabilize the far-red-light-absorbing state of Phy (Pfr), respectively. Given the fact that the Synechococcus OS-B' GAF domain can, by itself, complete the Pr --> Pfr photocycle, it should now be possible to determine the solution structure of the Pfr chromophore and surrounding pocket using this Pr structure as a framework.
Collapse
Affiliation(s)
- Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
37
|
Ulijasz AT, Cornilescu G, von Stetten D, Kaminski S, Mroginski MA, Zhang J, Bhaya D, Hildebrandt P, Vierstra RD. Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion. J Biol Chem 2008; 283:21251-66. [PMID: 18480055 PMCID: PMC3258942 DOI: 10.1074/jbc.m801592200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/30/2008] [Indexed: 11/06/2022] Open
Abstract
Photointerconversion between the red light-absorbing (Pr) form and the far-red light-absorbing (Pfr) form is the central feature that allows members of the phytochrome (Phy) superfamily to act as reversible switches in light perception. Whereas the chromophore structure and surrounding binding pocket of Pr have been described, those for Pfr have remained enigmatic for various technical reasons. Here we describe a novel pair of Phys from two thermophilic cyanobacteria, Synechococcus sp. OS-A and OS-B', that overcome several of these limitations. Like other cyanobacterial Phys, SyA-Cph1 and SyB-Cph1 covalently bind the bilin phycocyanobilin via their cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains and then assume the photointerconvertible Pr and Pfr states with absorption maxima at 630 and 704 nm, respectively. However, they are naturally missing the N-terminal Per/Arndt/Sim domain common to others in the Phy superfamily. Importantly, truncations containing only the GAF domain are monomeric, photochromic, and remarkably thermostable. Resonance Raman and NMR spectroscopy show that all four pyrrole ring nitrogens of phycocyanobilin are protonated both as Pr and following red light irradiation, indicating that the GAF domain by itself can complete the Pr to Pfr photocycle. (1)H-(15)N two-dimensional NMR spectra of isotopically labeled preparations of the SyB-Cph1 GAF domain revealed that a number of amino acids change their environment during photoconversion of Pr to Pfr, which can be reversed by subsequent photoconversion back to Pr. Through three-dimensional NMR spectroscopy before and after light photoexcitation, it should now be possible to define the movements of the chromophore and binding pocket during photoconversion. We also generated a series of strongly red fluorescent derivatives of SyB-Cph1, which based on their small size and thermostability may be useful as cell biological reporters.
Collapse
Affiliation(s)
- Andrew T. Ulijasz
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Gabriel Cornilescu
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - David von Stetten
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Steve Kaminski
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Maria Andrea Mroginski
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Junrui Zhang
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Devaki Bhaya
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Peter Hildebrandt
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Richard D. Vierstra
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| |
Collapse
|
38
|
Hahn J, Strauss HM, Schmieder P. Heteronuclear NMR Investigation on the Structure and Dynamics of the Chromophore Binding Pocket of the Cyanobacterial Phytochrome Cph1. J Am Chem Soc 2008; 130:11170-8. [DOI: 10.1021/ja8031086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janina Hahn
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Holger M. Strauss
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| |
Collapse
|
39
|
Narikawa R, Fukushima Y, Ishizuka T, Itoh S, Ikeuchi M. A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion. J Mol Biol 2008; 380:844-55. [PMID: 18571200 DOI: 10.1016/j.jmb.2008.05.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 01/08/2023]
Abstract
We report the discovery of a novel cyanobacteriochrome, the green/red photoreceptor AnPixJ (All1069), isolated from the heterocyst-forming cyanobacterium Anabaena (Nostoc) sp. PCC 7120. Cyanobacteriochromes are a recently emerging tetrapyrrole-based photoreceptor superfamily that are distantly related to the conventional red/far-red photoreceptor phytochromes (Phys). The chromophore-binding domains of AnPixJ produced in cyanobacterial and Escherichia coli cells both showed a reversible and full photoconversion between a green-absorbing form (lambda(max)=543 nm) and a red-absorbing form (lambda(max)=648 nm). Denaturation analysis revealed that the green-absorbing form and the red-absorbing form covalently ligated phycocyanobilin with E-configuration and Z-configuration at the C15C16 double bond, respectively. Time-resolved spectral analysis showed the formation of the first intermediate state peaking at 680 nm from the dark-stable red-absorbing form. This step resembles the first photoconversion step from the red-absorbing form to the red-shifted lumi-R intermediate state of the Phys. These results suggest that the Pr of AnPixJ is almost equivalent to that of the Phys and starts a primary photoreaction with Z-to-E isomerization in a mechanism similar to that in the Phys, but is finally photoconverted to the unique green-absorbing form.
Collapse
Affiliation(s)
- Rei Narikawa
- Department of Life Sciences Biology, Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-0041, Japan
| | | | | | | | | |
Collapse
|
40
|
FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations. Biophys J 2008; 95:1256-67. [PMID: 18390618 DOI: 10.1529/biophysj.108.131441] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fourier transform infrared spectroscopy was used to analyze the chromophore structure in the parent states Pr and Pfr of plant phytochrome phyA and the respective photoproducts lumi-R and lumi-F. The spectra were obtained from phyA adducts assembled with either uniformly or selectively isotope-labeled phytochromobilin and phycocyanobilin. The interpretation of the experimental spectra is based on the spectra of chromophore models calculated by density functional theory. Global (13)C-labeling of the tetrapyrrole allows for the discrimination between chromophore and protein bands in the Fourier transform infrared difference spectra. All infrared difference spectra display a prominent difference band attributable to a stretching mode with large contributions from the methine bridge between the inner pyrrole rings (B-C stretching). Due to mode coupling, frequencies and isotopic shifts of this mode suggest that the Pr chromophore may adopt a distorted ZZZssa or ZZZasa geometry with a twisted A-B methine bridge. The transition to lumi-R is associated with only minor changes of the amide I bands indicating limited protein structural changes during the isomerization site of the C-D methine bridge. Major protein structural changes occur upon the transition to Pfr in which the chromophore adopts a ZZEssa or ZZEasa-like state. In addition, specific interactions with the protein alter the structure of the B-C methine bridge as concluded from the substantial downshift of the respective stretching mode. These interactions are removed during the photoreaction to lumi-F (ZZE-->ZZZ), which involves only small protein structural changes.
Collapse
|
41
|
Anders Borg O, Durbeej B. Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome? Phys Chem Chem Phys 2008; 10:2528-37. [PMID: 18446253 DOI: 10.1039/b719190a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical calculations aimed at identifying the factors controlling the acidity of phytochromobilin, the tetrapyrrole chromophore of the plant photoreceptor phytochrome, are reported. Phytochrome is converted from an inactive (Pr) to an active form (Pfr) through a series of events initiated by a Z --> E photoisomerization of phytochromobilin, forming the Lumi-R intermediate, and much controversy exists as to whether the protonation state of the chromophore (cationic in Pr with all nitrogens protonated) changes during the photoactivation. Here, relative ground (S0) and excited-state (S1) pKa s of all four pyrrole moieties of phytochromobilin in all 64 possible configurations with respect to the three methine bridges are calculated in a protein-like environment, using a recently benchmarked level of theory. Accordingly, the relationships between acidity and chromophore geometry and charge distribution, hydrogen bonding, and light absorption are investigated in some detail, and discussed in terms of possible mechanisms making a proton transfer reaction more probable along the Pr --> Pfr reaction than in the parent cationic Pr state. It is found that charge distribution in the cationic species, intra-molecular hydrogen bonding in the neutral, and hydrogen bonding with two highly conserved aspartate and histidine residues have a significant effect on the acidity, while overall chromophore geometry and electronic state are less important factors. Furthermore, based on the calculations, two processes that may facilitate a proton transfer by substantially lowering the pKa s relative to their Pr values are identified: (i) a thermal Z,anti --> Z,syn isomerization at C5, occurring after formation of Lumi-R; (ii) a perturbation of the hydrogen bonding network which in Pr comprises the nitrogens of pyrroles A, B and C and the two aspartate and histidine residues.
Collapse
Affiliation(s)
- O Anders Borg
- Department of Quantum Chemistry, Uppsala University, Box 518, S-75120, Uppsala, Sweden
| | | |
Collapse
|
42
|
Losi A, Gärtner W. Bacterial bilin- and flavin-binding photoreceptors. Photochem Photobiol Sci 2008; 7:1168-78. [DOI: 10.1039/b802472c] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Hahn J, Kühne R, Schmieder P. Solution-State15N NMR Spectroscopic Study of α-C-Phycocyanin: Implications for the Structure of the Chromophore-Binding Pocket of the Cyanobacterial Phytochrome Cph1. Chembiochem 2007; 8:2249-55. [DOI: 10.1002/cbic.200700256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Locked 5Zs-biliverdin blocks the Meta-RAto Meta-RCtransition in the functional cycle of bacteriophytochrome Agp1. FEBS Lett 2007; 581:5425-9. [DOI: 10.1016/j.febslet.2007.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/05/2007] [Accepted: 10/17/2007] [Indexed: 11/18/2022]
|
45
|
Borg OA, Durbeej B. Relative Ground and Excited-State pKa Values of Phytochromobilin in the Photoactivation of Phytochrome: A Computational Study. J Phys Chem B 2007; 111:11554-65. [PMID: 17845025 DOI: 10.1021/jp0727953] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of the plant photoreceptor phytochrome from an inactive (Pr) to an active form (Pfr) is accomplished by a red-light induced Z --> E photoisomerization of its phytochromobilin chromophore. In recent years, the question whether the photoactivation involves a change in chromophore protonation state has been the subject of many experimental studies. Here, we have used quantum chemical methods to calculate relative ground and excited-state pKa values of the different pyrrole moieties of phytochromobilin in a protein-like environment. Assuming (based on experimental data) a Pr ZaZsZa chromophore and considering isomerizations at C15 and C5, it is found that moieties B and C are the strongest acids both in the ground state and in the bright first singlet excited state, which is rationalized in simple geometric and electronic terms. It is also shown that neither light absorption nor isomerization increases the acidity of phytochromobilin relative to the reference Pr state with all pyrrolenic nitrogens protonated. Hence, provided that the subset of chromophore geometries under investigation is biologically relevant, there appears to be no intrinsic driving force for a proton-transfer event. In a series of benchmark calculations, the performance of ab initio and time-dependent density functional theory methods for excited-state studies of phytochromobilin is evaluated in light of available experimental data.
Collapse
Affiliation(s)
- O Anders Borg
- Department of Quantum Chemistry, Uppsala University, Box 518, S-75120 Uppsala, Sweden
| | | |
Collapse
|
46
|
Makhynya Y, Hussain Z, Bauschlicher T, Schwinte P, Siebert F, Gärtner W. Synthesis of Selectively13C-Labelled Bilin Compounds. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600677] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|