1
|
Fox AC, Boettger JD, Berger EL, Burton AS. The Role of the CuCl Active Complex in the Stereoselectivity of the Salt-Induced Peptide Formation Reaction: Insights from Density Functional Theory Calculations. Life (Basel) 2023; 13:1796. [PMID: 37763200 PMCID: PMC10532638 DOI: 10.3390/life13091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
The salt-induced peptide formation (SIPF) reaction is a prebiotically plausible mechanism for the spontaneous polymerization of amino acids into peptides on early Earth. Experimental investigations of the SIPF reaction have found that in certain conditions, the l enantiomer is more reactive than the d enantiomer, indicating its potential role in the rise of biohomochirality. Previous work hypothesized that the distortion of the CuCl active complex toward a tetrahedral-like structure increases the central chirality on the Cu ion, which amplifies the inherent parity-violating energy differences between l- and d-amino acid enantiomers, leading to stereoselectivity. Computational evaluations of this theory have been limited to the protonated-neutral l + l forms of the CuCl active complex. Here, density functional theory methods were used to compare the energies and geometries of the homochiral (l + l and d + d) and heterochiral (l + d) CuCl-amino acid complexes for both the positive-neutral and neutral-neutral forms for alanine, valine, and proline. Significant energy differences were not observed between different chiral active complexes (i.e., d + d, l + l vs. l + d), and the distortions of active complexes between stereoselective systems and non-selective systems were not consistent, indicating that the geometry of the active complex is not the primary driver of the observed stereoselectivity of the SIPF reaction.
Collapse
Affiliation(s)
- Allison C. Fox
- NASA Postdoctoral Program, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Jason D. Boettger
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Eve L. Berger
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Aaron S. Burton
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| |
Collapse
|
2
|
Comparative QM/MM study on the inhibition mechanism of β-Hydroxynorvaline to Threonyl-tRNA synthetase. J Mol Graph Model 2022; 115:108224. [DOI: 10.1016/j.jmgm.2022.108224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
|
3
|
Bozkurt E, Soares TA, Rothlisberger U. Can Biomimetic Zinc Compounds Assist a (3 + 2) Cycloaddition Reaction? A Theoretical Perspective. J Chem Theory Comput 2017; 13:6382-6390. [DOI: 10.1021/acs.jctc.7b00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esra Bozkurt
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Thereza A. Soares
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Fundamental Chemistry, Federal University of Pernambuco, Recife 50740-560, Brazil
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Aboelnga MM, Gauld JW. Roles of the Active Site Zn(II) and Residues in Substrate Discrimination by Threonyl-tRNA Synthetase: An MD and QM/MM Investigation. J Phys Chem B 2017; 121:6163-6174. [PMID: 28592109 DOI: 10.1021/acs.jpcb.7b03782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Threonyl-tRNA synthetase (ThrRS) is a Zn(II) containing enzyme that catalyzes the activation of threonine and its subsequent transfer to the cognate tRNA. This process is accomplished with remarkable fidelity, with ThrRS being able to discriminate its cognate substrate from similar analogues such as serine and valine. Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) methods have been used to elucidate the role of Zn(II) in the aminoacylation mechanism of ThrRS. More specifically, the role of Zn(II) and active site residues in ThrRS's ability to discriminate between its cognate substrate l-threonine and the noncognate l-serine, l-valine, and d-threonine has been examined. The present results suggest that a role of the Zn(II) ion, with its Lewis acidity, is to facilitate deprotonation of the side chain hydroxyl groups of the aminoacyl moieties of cognate Thr-AMP and noncognate Ser-AMP substrates. In their deprotonated forms, these substrates are able to adopt a conformation preferable for aminoacyl transfer from aa-AMP onto the Ado-3'OH of the tRNAThr cosubstrate. Relative to the neutral substrates, when the substrates are first deprotonated with the assistance of the Zn(II) ion, the barrier for the rate-limiting step is decreased significantly by 42.0 and 39.2 kJ mol-1 for l-Thr-AMP and l-Ser-AMP, respectively. An active site arginyl also plays a key role in stabilizing the buildup of negative charge on the substrate's bridging phosphate oxygen during the mechanism. For the enantiomeric substrate analogue d-Thr-AMP, product formation is highly disfavored, and as a result, the reverse reaction has a very low barrier of 16.0 kJ mol-1.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario, N9B 3P4, Canada.,Department of Chemistry, Faculty of Science, University of Damietta , New Damietta, Damietta Governorate 34511, Egypt
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
5
|
Kurian R, Bruce MRM, Bruce AE, Amar FG. The influence of zinc(ii) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(ii) accelerates exchange in higher dielectric environments. Metallomics 2015; 7:1265-73. [DOI: 10.1039/c5mt00070j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM calculations on thiolate disulfide exchange reveal that a polar, 4-centered, cyclic transition state is formed when Zn(ii) is present, helping to explain faster exchange rates in higher dielectric solvents for metal-assisted exchange.
Collapse
Affiliation(s)
- Roby Kurian
- Department of Chemistry
- University of Maine
- Orono, USA
| | | | | | | |
Collapse
|
6
|
Remko M, Broer R, Remková A, Van Duijnen PT. Acidity and metal (Mg 2+ , Ca 2+ , Zn 2+ ) affinity of l -γ-carboxyglutamic acid and its peptide analog. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Cui X, He R, Yang Q, Shen W, Li M. Theoretical study on the chemical mechanism of enoyl-CoA hydratase and the form of inhibitor binding. J Mol Model 2014; 20:2411. [PMID: 25174944 DOI: 10.1007/s00894-014-2411-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Enoyl-CoA hydratase (ECH) catalyzes the second step in the vital β-oxidation pathway of fatty acid metabolism. This enzyme catalyzes the syn-addition of a water molecule across the double bond of 4-(N,N-dimethylamino) cinnamoyl-CoA (DAC-CoA). In this work, the reaction mechanisms of ECH were investigated using the density functional theory (DFT) methods. The different protonation states in which the important residues Glu164 and Glu144 are either neutral or ionized were considered. Four models of the active site were designed based on the X-ray crystal structure of the enzyme. The calculations gave strong support to the proposed mechanism and confirmed that both Glu164 and Glu144 are in a deprotonated state in the reaction mechanism of ECH. In addition, we constructed a model of the active site with the inhibitor acetoacetyl-CoA based on the crystal structure. Caomparison of the calculated energy barriers showed that binding of the keto-enol form of the inhibitor is more reasonable than that of the di-keto form in the inhibition process. Moreover, acetoacetyl-CoA was found to exhibit a keto-enol tautomerism when it acts as an inhibitor in the reaction. The present theoretical results indicated that both residues Glu164 and Glu144 are unprotonated in ECH with the substrate bound, while only Glu164 is unprotonated when the inhibitor binds ECH.
Collapse
Affiliation(s)
- Xiaobin Cui
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 40071, China
| | | | | | | | | |
Collapse
|
8
|
Brás NF, Fernandes PA, Ramos MJ. QM/MM Study and MD Simulations on the Hypertension Regulator Angiotensin-Converting Enzyme. ACS Catal 2014. [DOI: 10.1021/cs500093h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Natércia F. Brás
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Sousa SF, Pinto GRP, Ribeiro AJM, Coimbra JTS, Fernandes PA, Ramos MJ. Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for copper complexes. J Comput Chem 2013; 34:2079-90. [PMID: 23798313 DOI: 10.1002/jcc.23349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 12/26/2022]
Abstract
In this study, a set of 50 transition-metal complexes of Cu(I) and Cu(II), were used in the evaluation of 18 density functionals in geometry determination. In addition, 14 different basis sets were considered, including four commonly used Pople's all-electron basis sets; four basis sets including popular types of effective-core potentials: Los Alamos, Steven-Basch-Krauss, and Stuttgart-Dresden; and six triple-ζ basis sets. The results illustrate the performance of different methodological alternatives for the treatment of geometrical properties in relevant copper complexes, pointing out Double-Hybrid (DH) and Long-range Correction (LC) Generalized Gradient Approximation (GGA) methods as better descriptors of the geometry of the evaluated systems. These however, are associated with a computational cost several times higher than some of the other methods employed, such as the M06 functional, which has also demonstrated a comparable performance. Regarding the basis sets, 6-31+G(d) and 6-31+G(d,p) were the best performing approaches. In addition, the results show that the use of effective-core potentials has a limited impact, in terms of the accuracy in the determination of metal-ligand bond-lengths and angles in our dataset of copper complexes. Hence, these could become a good alternative for the geometrical description of these systems, particularly CEP-121G and SDD basis sets, if one is considering larger copper complexes where the computational cost could be an issue.
Collapse
Affiliation(s)
- Sérgio F Sousa
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
10
|
Ortega-Castro J, Frau J, Casasnovas R, Fernández D, Donoso J, Muñoz F. High- and low-spin Fe(III) complexes of various AGE inhibitors. J Phys Chem A 2012; 116:2961-71. [PMID: 22369344 DOI: 10.1021/jp210188w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Density functional theory calculations [CPCM/UM06/6-31+G(d,p)] were used to elucidate the structures and relative stability of Fe(III) complexes with various ligands that inhibit the formation of advanced glycation end products (AGEs) or iron overloaded disease (viz. aminoguanidine, pyridoxamine, LR-74, Amadori compounds, and ascorbic acid). EDTA was used as the free energy reference ligand. The distorted neutral octahedral complex containing one iron atom and three molecules of pyridoxamine [Fe(PM)(3)] was found to be the most stable. The stability of the complexes decreases in the following chelate sequence: pyridoxamine, Amadori complex, aminoguanidine, LR inhibitor, and ascorbic acid.
Collapse
Affiliation(s)
- J Ortega-Castro
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Abdel-Azeim S, Li X, Chung LW, Morokuma K. Zinc-Homocysteine binding in cobalamin-dependent methionine synthase and its role in the substrate activation: DFT, ONIOM, and QM/MM molecular dynamics studies. J Comput Chem 2011; 32:3154-67. [DOI: 10.1002/jcc.21895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 12/20/2022]
|
12
|
Quantum chemical studies on the role of water microsolvation in interactions between group 12 metal species (Hg2+, Cd2+, and Zn2+) and neutral and deprotonated cysteines. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0975-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Neves AR, Fernandes PA, Ramos MJ. The Accuracy of Density Functional Theory in the Description of Cation-π and π-Hydrogen Bond Interactions. J Chem Theory Comput 2011; 7:2059-67. [PMID: 26606477 DOI: 10.1021/ct2001667] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cation-π and π-hydrogen bond interactions are ubiquitous in protein folding, molecular recognition, and ligand-receptor associations. As such systems are routinely studied at the DFT level, it becomes essential to understand the underlying accuracy of the plethora of density functionals currently available for the description of these interactions. For that purpose, we carried out theoretical calculations on two small model systems (benzene-Na(+) and benzene-H2O) that represent a paradigm for those intermolecular interactions and systematically tested 46 density functionals against the results of high-level post-HF methods, ranging from MP2 to extrapolated CCSD(T)/CBS. A total of 13 basis sets were also tested to examine the convergence of the interaction energy with basis set size. The convergence was surprisingly fast, with deviations below 0.2 kcal/mol for double-ζ polarized basis sets with diffuse functions. Concerning functional benchmarking, the Truhlar group functionals were particularly well suited for the description of the π-hydrogen bond interactions. In the case of cation-π interactions, there was not a clear correlation between accuracy and functional sophistication. Despite the large number of functionals predicting interaction energies within chemical accuracy (five for π-hydrogen bond and 20 for cation-π interactions), not a single functional has shown chemical accuracy in both cases. Moreover, if we calculate the average error for these two interactions, only two density functionals resulted in an average error below 1.0 kcal/mol (M06 and HCTH, with average errors of 0.6 and 0.8 kcal/mol). The obtained results serve as a guide for future computer simulations on this kind of system.
Collapse
Affiliation(s)
- Ana Rute Neves
- REQUIMTE, Faculdade de Ciências do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | | | - Maria João Ramos
- REQUIMTE, Faculdade de Ciências do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| |
Collapse
|
14
|
Effect of metal Ions (Ni²⁺, Cu²⁺ and Zn²⁺) and water coordination on the structure of L-phenylalanine, L-tyrosine, L-tryptophan and their zwitterionic forms. J Mol Model 2011; 17:3117-28. [PMID: 21360187 PMCID: PMC3224218 DOI: 10.1007/s00894-011-1000-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/28/2011] [Indexed: 11/05/2022]
Abstract
Methods of quantum chemistry have been applied to double-charged complexes involving the transition metals Ni2+, Cu2+ and Zn2+ with the aromatic amino acids (AAA) phenylalanine, tyrosine and tryptophan. The effect of hydration on the relative stability and geometry of the individual species studied has been evaluated within the supermolecule approach. The interaction enthalpies, entropies and Gibbs energies of nine complexes Phe•M, Tyr•M, Trp•M, (M = Ni2+, Cu2+ and Zn2+) were determined at the Becke3LYP density functional level of theory. Of the transition metals studied the bivalent copper cation forms the strongest complexes with AAAs. For Ni2+and Cu2+ the most stable species are the NO coordinated cations in the AAA metal complexes, Zn2+cation prefers a binding to the aromatic part of the AAA (complex II). Some complexes energetically unfavored in the gas-phase are stabilized upon microsolvation.
Collapse
|
15
|
Liao RZ, Yu JG, Himo F. Phosphate mono- and diesterase activities of the trinuclear zinc enzyme nuclease P1--insights from quantum chemical calculations. Inorg Chem 2010; 49:6883-8. [PMID: 20604512 DOI: 10.1021/ic100266n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclease P1 is a trinuclear zinc enzyme that catalyzes the hydrolysis of single-stranded DNA and RNA. Density functional calculations are used to elucidate the reaction mechanism of this enzyme with a model of the active site designed on the basis of the X-ray crystal structure. 2-Tetrahydrofuranyl phosphate and methyl 2-tetrahydrofuranyl phosphate substrates are used to explore the phosphomonoesterase and phosphodiesterase activities of this enzyme, respectively. The calculations reveal that for both activities, a bridging hydroxide performs an in-line attack on the phosphorus center, resulting in inversion of the configuration. Simultaneously, the P-O bond is cleaved, and Zn2 stabilizes the negative charge of the leaving alkoxide anion and assists its departure. All three zinc ions, together with Arg48, provide electrostatic stabilization to the penta-coordinated transition state, thereby lowering the reaction barrier.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
16
|
Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of L-histidine and zwitterionic L-histidine. Amino Acids 2010; 39:1309-19. [PMID: 20364281 DOI: 10.1007/s00726-010-0573-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-histidine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water on structures of His·M(H2O)m, m=0.1 complexes have been determined theoretically employing density functional theories using extended basis sets. Of the five stable complexes investigated the relative stability of the gas-phase complexes computed with DFT methods (with one exception of K+ systems) suggest metallic complexes of the neutral L-histidine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of L-histidine in the presence of the metal cations Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to L-histidine is exhibited by the Cu2+ cation. The computed Gibbs energies ΔG are negative, span a rather broad energy interval (from -130 to -1,300 kJ/mol), and upon hydration are appreciably lowered.
Collapse
|
17
|
Brás NF, Ramos MJ, Fernandes PA. DFT studies on the β-glycosidase catalytic mechanism: The deglycosylation step. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.08.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Sousa SF, Carvalho ES, Ferreira DM, Tavares IS, Fernandes PA, Ramos MJ, Gomes JANF. Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes. J Comput Chem 2010; 30:2752-63. [PMID: 19399915 DOI: 10.1002/jcc.21304] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A set of 44 Zinc-ligand bond-lengths and of 60 ligand-metal-ligand bond angles from 10 diverse transition-metal complexes, representative of the coordination spheres of typical biological Zn systems, were used to evaluate the performance of a total of 18 commonly available density functionals in geometry determination. Five different basis sets were considered for each density functional, namely two all-electron basis sets (a double-zeta and triple-zeta formulation) and three basis sets including popular types of effective-core potentials: Los Alamos, Steven-Basch-Krauss, and Stuttgart-Dresden. The results show that there are presently several better alternatives to the popular B3LYP density functional for the determination of Zn-ligand bond-lengths and angles. BB1K, MPWB1K, MPW1K, B97-2 and TPSS are suggested as the strongest alternatives for this effect presently available in most computational chemistry software packages. In addition, the results show that the use of effective-core potentials (in particular Stuttgart-Dresden) has a very limited impact, in terms of accuracy, in the determination of metal-ligand bond-lengths and angles in Zinc-complexes, and is a good and safe alternative to the use of an all-electron basis set such as 6-31G(d) or 6-311G(d,p).
Collapse
Affiliation(s)
- Sérgio F Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciõncias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
19
|
Molecular Dynamics Simulations: Difficulties, Solutions and Strategies for Treating Metalloenzymes. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-90-481-3034-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
|
21
|
Sousa SF, Lopes AB, Fernandes PA, Ramos MJ. The Zinc proteome: a tale of stability and functionality. Dalton Trans 2009:7946-56. [DOI: 10.1039/b904404c] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Ortega-Castro J, Adrover M, Frau J, Donoso J, Muñoz F. Chelating power of LR-74, a new AGE-inhibitor. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
|
24
|
Picot D, Ohanessian G, Frison G. The Alkylation Mechanism of Zinc-Bound Thiolates Depends upon the Zinc Ligands. Inorg Chem 2008; 47:8167-78. [DOI: 10.1021/ic800697s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Delphine Picot
- Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | - Gilles Ohanessian
- Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | - Gilles Frison
- Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| |
Collapse
|
25
|
Remko M, Fitz D, Rode BM. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure and properties of L-arginine and zwitterionic L-arginine. J Phys Chem A 2008; 112:7652-61. [PMID: 18652440 DOI: 10.1021/jp801418h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.
Collapse
Affiliation(s)
- Milan Remko
- Department of Pharmaceutical Chemistry, Comenius University, Odbojarov 10, SK-832 32 Bratislava, Slovakia.
| | | | | |
Collapse
|
26
|
Abstract
Computational methodologies are playing increasingly important roles in elucidating and presenting the complete and detailed mechanisms of enzymatic reactions because of their capacity to determine and characterize intermediates and transition states from both structural and energetics points of view, independent of their reduced lifetimes and without interfering with the natural reactional flux. These features are turning the field into an active and interesting area of research, involving a diverse range of studies, mostly directed at understanding the ways in which enzymes function under certain circumstances and predicting how they will behave under others. The accuracy of the computational data obtained for a given mechanistic hypothesis depends essentially on three mutually exclusive factors: the accuracy of the Hamiltonian of the reaction mechanism, consideration of the modulating aspect of the enzyme's structure in the energetics of the active center, and consideration of the enzyme's conformational fluctuations and dynamics. Although, unfortunately, it is impossible at present to optimize these crucial factors simultaneously, the success of any enzymatic mechanistic study depends on the level of equilibrium achieved among them. Different authors adopt different solutions, and this Account summarizes the most favored, with emphasis placed on our own preferences. Another crucial aspect in computational enzymatic catalysis is the model used in the calculations. Our aim is to build the simplest model that captures the essence of the catalytic power of an enzyme, allowing us to apply the highest possible theoretical level and minimize accidental errors. The choice is, however, far from obvious, ranging from simple models containing tens of atoms up to models of full enzymes plus solvent. Many factors underlie the choice of an appropriate model; here, examples are presented of very different modeling strategies that have been employed to obtain meaningful results. One particular case study, that of enzyme ribonucleotide reductase (RNR), a radical enzyme that catalyzes the reduction of ribonucleotides into deoxyribonucleotides, is one of the examples illustrating how the successive increase of the system's size does not dramatically change the thermodynamics and kinetics of the reaction. The values obtained and presented speak for themselves in that the only ones that are distinctly different are those calculated using an exceedingly small model, which omitted the amino acids that establish hydrogen bonds with the reactive unit of the substrate. This Account also describes our computational analysis of the mechanism of farnesyltransferase, a heterodimeric zinc metalloenzyme that is currently one of the most fascinating targets in cancer research. We focus on the present methodologies that we have been using, our models and understanding of the problem, and the accuracy of results and associated problems within this area of research.
Collapse
Affiliation(s)
- Maria J. Ramos
- Requimte, Faculdade de Ciências do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- Requimte, Faculdade de Ciências do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Chen SL, Fang WH, Himo F. Technical aspects of quantum chemical modeling of enzymatic reactions: the case of phosphotriesterase. Theor Chem Acc 2008. [DOI: 10.1007/s00214-008-0430-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Jiménez A, Clapés P, Crehuet R. A dynamic view of enzyme catalysis. J Mol Model 2008; 14:735-46. [DOI: 10.1007/s00894-008-0283-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
|
29
|
Picot D, Ohanessian G, Frison G. Thermodynamic Stability Versus Kinetic Lability of ZnS4Core. Chem Asian J 2008; 5:1445-54. [DOI: 10.1002/asia.200900624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|