1
|
Munsayac A, Leite WC, Hopkins JB, Hall I, O'Neill HM, Keane SC. Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. Structure 2025; 33:728-739.e4. [PMID: 39933513 DOI: 10.1016/j.str.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof of principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.
Collapse
Affiliation(s)
- Aldrex Munsayac
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Mukherjee S, Moafinejad SN, Badepally NG, Merdas K, Bujnicki JM. Advances in the field of RNA 3D structure prediction and modeling, with purely theoretical approaches, and with the use of experimental data. Structure 2024; 32:1860-1876. [PMID: 39321802 DOI: 10.1016/j.str.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Recent advancements in RNA three-dimensional (3D) structure prediction have provided significant insights into RNA biology, highlighting the essential role of RNA in cellular functions and its therapeutic potential. This review summarizes the latest developments in computational methods, particularly the incorporation of artificial intelligence and machine learning, which have improved the efficiency and accuracy of RNA structure predictions. We also discuss the integration of new experimental data types, including cryoelectron microscopy (cryo-EM) techniques and high-throughput sequencing, which have transformed RNA structure modeling. The combination of experimental advances with computational methods represents a significant leap in RNA structure determination. We review the outcomes of RNA-Puzzles and critical assessment of structure prediction (CASP) challenges, which assess the state of the field and limitations of existing methods. Future perspectives are discussed, focusing on the impact of RNA 3D structure prediction on understanding RNA mechanisms and its implications for drug discovery and RNA-targeted therapies, opening new avenues in molecular biology.
Collapse
Affiliation(s)
- Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
| |
Collapse
|
3
|
Munsayac A, Leite WC, Hopkins JB, Hall I, O’Neill HM, Keane SC. Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612093. [PMID: 39314299 PMCID: PMC11419110 DOI: 10.1101/2024.09.09.612093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally-determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs in their free state and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof-of-principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.
Collapse
Affiliation(s)
- Aldrex Munsayac
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Sarah C. Keane
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Langeberg CJ, Kieft JS. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res 2023; 51:e100. [PMID: 37791881 PMCID: PMC10639074 DOI: 10.1093/nar/gkad784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules (≤50 kDa) remain challenging targets due to their intrinsic low signal to noise ratio. Methods to help resolve small proteins have been applied but development of similar approaches to aid in structural determination of small, structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5-5.0 Å. While lacking the detail of true high-resolution maps, these maps are suitable for model building and preliminary structure determination. We demonstrate this method helped faithfully recover the structure of several RNA elements of known structure, and that it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a robust system to aid in RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- New York Structural Biology Center, New York, NY 10027, USA
| |
Collapse
|
5
|
Chojnowski G, Zaborowski R, Magnus M, Mukherjee S, Bujnicki JM. RNA 3D structure modeling by fragment assembly with small-angle X-ray scattering restraints. Bioinformatics 2023; 39:btad527. [PMID: 37647627 PMCID: PMC10474949 DOI: 10.1093/bioinformatics/btad527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
SUMMARY Structure determination is a key step in the functional characterization of many non-coding RNA molecules. High-resolution RNA 3D structure determination efforts, however, are not keeping up with the pace of discovery of new non-coding RNA sequences. This increases the importance of computational approaches and low-resolution experimental data, such as from the small-angle X-ray scattering experiments. We present RNA Masonry, a computer program and a web service for a fully automated modeling of RNA 3D structures. It assemblies RNA fragments into geometrically plausible models that meet user-provided secondary structure constraints, restraints on tertiary contacts, and small-angle X-ray scattering data. We illustrate the method description with detailed benchmarks and its application to structural studies of viral RNAs with SAXS restraints. AVAILABILITY AND IMPLEMENTATION The program web server is available at http://iimcb.genesilico.pl/rnamasonry. The source code is available at https://gitlab.com/gchojnowski/rnamasonry.
Collapse
Affiliation(s)
- Grzegorz Chojnowski
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Rafał Zaborowski
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Marcin Magnus
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Sunandan Mukherjee
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| |
Collapse
|
6
|
Langeberg CJ, Kieft JS. A Generalizable Scaffold-Based Approach for Structure Determination of RNAs by Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547879. [PMID: 37461535 PMCID: PMC10350027 DOI: 10.1101/2023.07.06.547879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules remain challenging targets due to their intrinsic low signal to noise ratio. Methods to resolve small proteins have been applied but development of similar approaches for small structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5 - 5.0 Å. While lacking the detail of true high-resolution maps, these are suitable for model building and preliminary structure determination. We demonstrate this method faithfully recovers the structure of several RNA elements of known structure, and it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a system for RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
|
7
|
Sabei A, Caldas Baia TG, Saffar R, Martin J, Frezza E. Internal Normal Mode Analysis Applied to RNA Flexibility and Conformational Changes. J Chem Inf Model 2023; 63:2554-2572. [PMID: 36972178 DOI: 10.1021/acs.jcim.2c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We investigated the capability of internal normal modes to reproduce RNA flexibility and predict observed RNA conformational changes and, notably, those induced by the formation of RNA-protein and RNA-ligand complexes. Here, we extended our iNMA approach developed for proteins to study RNA molecules using a simplified representation of the RNA structure and its potential energy. Three data sets were also created to investigate different aspects. Despite all the approximations, our study shows that iNMA is a suitable method to take into account RNA flexibility and describe its conformational changes opening the route to its applicability in any integrative approach where these properties are crucial.
Collapse
|
8
|
Luo S, Wohl S, Zheng W, Yang S. Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery. Biomolecules 2023; 13:biom13030530. [PMID: 36979465 PMCID: PMC10046839 DOI: 10.3390/biom13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Protein intrinsic disorder is increasingly recognized for its biological and disease-driven functions. However, it represents significant challenges for biophysical studies due to its high conformational flexibility. In addressing these challenges, we highlight the complementary and distinct capabilities of a range of experimental and computational methods and further describe integrative strategies available for combining these techniques. Integrative biophysics methods provide valuable insights into the sequence–structure–function relationship of disordered proteins, setting the stage for protein intrinsic disorder to become a promising target for drug discovery. Finally, we briefly summarize recent advances in the development of new small molecule inhibitors targeting the disordered N-terminal domains of three vital transcription factors.
Collapse
Affiliation(s)
- Shuqi Luo
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Samuel Wohl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
- Correspondence: (W.Z.); (S.Y.)
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: (W.Z.); (S.Y.)
| |
Collapse
|
9
|
Exploring the Energy Landscape of Riboswitches Using Collective Variables Based on Tertiary Contacts. J Mol Biol 2022; 434:167788. [PMID: 35963460 PMCID: PMC10042644 DOI: 10.1016/j.jmb.2022.167788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022]
Abstract
Messenger RNA regulatory elements, such as riboswitches, can display a high degree of flexibility. By characterizing their energy landscapes, and corresponding distributions of 3D configurations, structure-function relationships can be elucidated. Molecular dynamics simulation with enhanced sampling is an important strategy used to computationally access free energy landscapes characterizing the accessible 3D conformations of RNAs. While tertiary contacts are thought to play important roles in RNA dynamics, it is difficult, in explicit solvent, to sample the formation and breakage of tertiary contacts, such as helix-helix interactions, pseudoknot interactions, and junction interactions, while maintaining intact secondary structure elements. To this end, we extend previously developed collective variables and metadynamics efforts, to establish a simple metadynamics protocol, which utilizes only one collective variable, based on multiple tertiary contacts, to characterize the underlying free energy landscape of any RNA molecule. We develop a modified collective variable, the tertiary contacts distance (QTC), which can probe the formation and breakage of all or selectively chosen tertiary contacts of the RNA. The SAM-I riboswitch in the presence of three ionic and substrate conditions was investigated and validated against the structure ensemble previously generated using SAXS experiments. This efficient and easy to implement all-atom MD simulation based approach incorporating metadynamics to study RNA conformational dynamics can also be transferred to any other type of biomolecule.
Collapse
|
10
|
Structural Characteristics of the 5′-Terminal Region of Mouse p53 mRNA and Identification of Proteins That Bind to This mRNA Region. Int J Mol Sci 2022; 23:ijms23179709. [PMID: 36077109 PMCID: PMC9456389 DOI: 10.3390/ijms23179709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
A mouse model has often been used in studies of p53 gene expression. Detailed interpretation of functional studies is, however, hampered by insufficient knowledge of the impact of mouse p53 mRNA’s structure and its interactions with proteins in the translation process. In particular, the 5′-terminal region of mouse p53 mRNA is an important region which takes part in the regulation of the synthesis of p53 protein and its N-truncated isoform Δ41p53. In this work, the spatial folding of the 5′-terminal region of mouse p53 mRNA and its selected sub-fragments was proposed based on the results of the SAXS method and the RNAComposer program. Subsequently, RNA-assisted affinity chromatography was used to identify proteins present in mouse fibroblast cell lysates that are able to bind the RNA oligomer, which corresponds to the 5′-terminal region of mouse p53 mRNA. Possible sites to which the selected, identified proteins can bind were proposed. Interestingly, most of these binding sites coincide with the sites determined as accessible to hybridization of complementary oligonucleotides. Finally, the high binding affinity of hnRNP K and PCBP2 to the 5′-terminal region of mouse p53 mRNA was confirmed and their possible binding sites were proposed.
Collapse
|
11
|
Pahari S, Liu S, Lee CH, Akbulut M, Kwon JSI. SAXS-guided unbiased coarse-grained Monte Carlo simulation for identification of self-assembly nanostructures and dimensions. SOFT MATTER 2022; 18:5282-5292. [PMID: 35789362 DOI: 10.1039/d2sm00601d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that solvated amphiphiles can form nanostructured self-assemblies called dynamic binary complexes (DBCs) in the presence of ions. Since the nanostructures of DBCs are directly related to their viscoelastic properties, it is important to understand how the nanostructures change under different solution conditions. However, it is challenging to obtain a three-dimensional molecular description of these nanostructures by utilizing conventional experimental characterization techniques or thermodynamic models. To this end, we combined the structural data from small angle X-ray scattering (SAXS) experiments and thermodynamic knowledge from coarse-grained Monte Carlo (CGMC) simulations to identify the detailed three-dimensional nanostructure of DBCs. Specifically, unbiased CGMC simulations are performed with SAXS-guided initial conditions, which aids us to sample accurate nanostructures in a computationally efficient fashion. As a result, an elliptical bilayer nanostructure is obtained as the most probable nanostructure of DBCs whose dimensions are validated by scanning electron microscope (SEM) images. Then, utilizing the obtained molecular model of DBCs, we could also explain the pH tunability of the system. Overall, our results from SAXS-guided unbiased CGMC simulations highlight that using potential energy combined with SAXS data, we can distinguish otherwise degenerate nanostructures resulting from the inherent ambiguity of SAXS patterns.
Collapse
Affiliation(s)
- Silabrata Pahari
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, Texas A&M Energy Institute, 1617 Research Pkwy, College Station, TX 77843, USA
| | - Shuhao Liu
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Chi Ho Lee
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, Texas A&M Energy Institute, 1617 Research Pkwy, College Station, TX 77843, USA
| | - Mustafa Akbulut
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, Texas A&M Energy Institute, 1617 Research Pkwy, College Station, TX 77843, USA
| | - Joseph Sang-Il Kwon
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, Texas A&M Energy Institute, 1617 Research Pkwy, College Station, TX 77843, USA
| |
Collapse
|
12
|
Chen YL, He W, Kirmizialtin S, Pollack L. Insights into the structural stability of major groove RNA triplexes by WAXS-guided MD simulations. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100971. [PMID: 35936555 PMCID: PMC9351628 DOI: 10.1016/j.xcrp.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA triple helices are commonly observed tertiary motifs that are associated with critical biological functions, including signal transduction. Because the recognition of their biological importance is relatively recent, their full range of structural properties has not yet been elucidated. The integration of solution wide-angle X-ray scattering (WAXS) with molecular dynamics (MD) simulations, described here, provides a new way to capture the structures of major-groove RNA triplexes that evade crystallographic characterization. This method yields excellent agreement between measured and computed WAXS profiles and allows for an atomically detailed visualization of these motifs. Using correlation maps, the relationship between well-defined features in the scattering profiles and real space characteristics of RNA molecules is defined, including the subtle conformational variations in the double-stranded RNA upon the incorporation of a third strand by base triples. This readily applicable approach has the potential to provide insight into interactions that stabilize RNA tertiary structure that enables function.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Weiwei He
- Department of Chemistry, New York University, New York, NY 10003, USA
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- These authors contributed equally
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Lead contact
| |
Collapse
|
13
|
Predicting RNA Scaffolds with a Hybrid Method of Vfold3D and VfoldLA. Methods Mol Biol 2021. [PMID: 34086269 DOI: 10.1007/978-1-0716-1499-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The ever-increasing discoveries of noncoding RNA functions draw a strong demand for RNA structure determination from the sequence. In recently years, computational studies for RNA structures, at both the two-dimensional and the three-dimensional levels, led to several highly promising new developments. In this chapter, we describe a hybrid method, which combines the motif template-based Vfold3D model and the loop template-based VfoldLA model, to predict RNA 3D structures. The main emphasis is placed on the definition of motifs and loops, the treatment of no-template motifs, and the 3D structure assembly from templates of motifs and loops. For illustration, we use the ZIKV xrRNA1 as an example to show the template-based prediction of RNA 3D structures from the 2D structure. The web server for the hybrid model is freely accessible at http://rna.physics.missouri.edu/vfold3D2 .
Collapse
|
14
|
Martin EW, Hopkins JB, Mittag T. Small-angle X-ray scattering experiments of monodisperse intrinsically disordered protein samples close to the solubility limit. Methods Enzymol 2020; 646:185-222. [PMID: 33453925 PMCID: PMC8370720 DOI: 10.1016/bs.mie.2020.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The condensation of biomolecules into biomolecular condensates via liquid-liquid phase separation (LLPS) is a ubiquitous mechanism that drives cellular organization. To enable these functions, biomolecules have evolved to drive LLPS and facilitate partitioning into biomolecular condensates. Determining the molecular features of proteins that encode LLPS will provide critical insights into a plethora of biological processes. Problematically, probing biomolecular dense phases directly is often technologically difficult or impossible. By capitalizing on the symmetry between the conformational behavior of biomolecules in dilute solution and dense phases, it is possible to infer details critical to phase separation by precise measurements of the dilute phase thus circumventing complicated characterization of dense phases. The symmetry between dilute and dense phases is found in the size and shape of the conformational ensemble of a biomolecule-parameters that small-angle X-ray scattering (SAXS) is ideally suited to probe. Recent technological advances have made it possible to accurately characterize samples of intrinsically disordered protein regions at low enough concentration to avoid interference from intermolecular attraction, oligomerization or aggregation, all of which were previously roadblocks to characterizing self-assembling proteins. Herein, we describe the pitfalls inherent to measuring such samples, the experimental details required for circumventing these issues and analysis methods that place the results of SAXS measurements into the theoretical framework of LLPS.
Collapse
Affiliation(s)
- Erik W Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
15
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
16
|
Théobald-Dietrich A, de Wijn R, Rollet K, Bluhm A, Rudinger-Thirion J, Paulus C, Lorber B, Thureau A, Frugier M, Sauter C. Structural Analysis of RNA by Small-Angle X-ray Scattering. Methods Mol Biol 2020; 2113:189-215. [PMID: 32006316 DOI: 10.1007/978-1-0716-0278-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past two decades small-angle X-ray scattering (SAXS) has become a popular method to characterize solutions of biomolecules including ribonucleic acid (RNA). In an integrative structural approach, SAXS is complementary to crystallography, NMR, and electron microscopy and provides information about RNA architecture and dynamics. This chapter highlights the practical advantages of combining size-exclusion chromatography and SAXS at synchrotron facilities. It is illustrated by practical case studies of samples ranging from single hairpins and tRNA to a large IRES. The emphasis is also put on sample preparation which is a critical step of SAXS analysis and on optimized protocols for in vitro RNA synthesis ensuring the production of mg amount of pure and homogeneous molecules.
Collapse
Affiliation(s)
- Anne Théobald-Dietrich
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Raphaël de Wijn
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Kévin Rollet
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Alexandra Bluhm
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Joëlle Rudinger-Thirion
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Caroline Paulus
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Bernard Lorber
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | | | - Magali Frugier
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Claude Sauter
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Computational modeling of RNA 3D structure based on experimental data. Biosci Rep 2019; 39:BSR20180430. [PMID: 30670629 PMCID: PMC6367127 DOI: 10.1042/bsr20180430] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
RNA molecules are master regulators of cells. They are involved in a variety of molecular processes: they transmit genetic information, sense cellular signals and communicate responses, and even catalyze chemical reactions. As in the case of proteins, RNA function is dictated by its structure and by its ability to adopt different conformations, which in turn is encoded in the sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore the majority of known RNAs remain structurally uncharacterized. To address this problem, predictive computational methods were developed based on the accumulated knowledge of RNA structures determined so far, the physical basis of the RNA folding, and taking into account evolutionary considerations, such as conservation of functionally important motifs. However, all theoretical methods suffer from various limitations, and they are generally unable to accurately predict structures for RNA sequences longer than 100-nt residues unless aided by additional experimental data. In this article, we review experimental methods that can generate data usable by computational methods, as well as computational approaches for RNA structure prediction that can utilize data from experimental analyses. We outline methods and data types that can be potentially useful for RNA 3D structure modeling but are not commonly used by the existing software, suggesting directions for future development.
Collapse
Affiliation(s)
- Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Astha
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, Poznan PL-61-614, Poland
| |
Collapse
|
18
|
Eubanks CS, Hargrove AE. RNA Structural Differentiation: Opportunities with Pattern Recognition. Biochemistry 2018; 58:199-213. [PMID: 30513196 DOI: 10.1021/acs.biochem.8b01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our awareness and appreciation of the many regulatory roles of RNA have dramatically increased in the past decade. This understanding, in addition to the impact of RNA in many disease states, has renewed interest in developing selective RNA-targeted small molecule probes. However, the fundamental guiding principles in RNA molecular recognition that could accelerate these efforts remain elusive. While high-resolution structural characterization can provide invaluable insight, examples of well-characterized RNA structures, not to mention small molecule:RNA complexes, remain limited. This Perspective provides an overview of the current techniques used to understand RNA molecular recognition when high-resolution structural information is unavailable. We will place particular emphasis on a new method, pattern recognition of RNA with small molecules (PRRSM), that provides rapid insight into critical components of RNA recognition and differentiation by small molecules as well as into RNA structural features.
Collapse
Affiliation(s)
- Christopher S Eubanks
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| | - Amanda E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| |
Collapse
|
19
|
Hurst T, Xu X, Zhao P, Chen SJ. Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis. J Phys Chem B 2018; 122:4771-4783. [PMID: 29659274 DOI: 10.1021/acs.jpcb.8b00575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.
Collapse
Affiliation(s)
- Travis Hurst
- Department of Physics, Department of Biochemistry , and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Xiaojun Xu
- Department of Physics, Department of Biochemistry , and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Peinan Zhao
- Department of Physics, Department of Biochemistry , and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry , and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
20
|
Bhandari YR, Fan L, Fang X, Zaki GF, Stahlberg EA, Jiang W, Schwieters CD, Stagno JR, Wang YX. Topological Structure Determination of RNA Using Small-Angle X-Ray Scattering. J Mol Biol 2017; 429:3635-3649. [PMID: 28918093 DOI: 10.1016/j.jmb.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
Knowledge of RNA three-dimensional topological structures provides important insight into the relationship between RNA structural components and function. It is often likely that near-complete sets of biochemical and biophysical data containing structural restraints are not available, but one still wants to obtain knowledge about approximate topological folding of RNA. In this regard, general methods for determining such topological structures with minimum readily available restraints are lacking. Naked RNAs are difficult to crystallize and NMR spectroscopy is generally limited to small RNA fragments. By nature, sequence determines structure and all interactions that drive folding are self-contained within sequence. Nevertheless, there is little apparent correlation between primary sequences and three-dimensional folding unless supplemented with experimental or phylogenetic data. Thus, there is an acute need for a robust high-throughput method that can rapidly determine topological structures of RNAs guided by some experimental data. We present here a novel method (RS3D) that can assimilate the RNA secondary structure information, small-angle X-ray scattering data, and any readily available tertiary contact information to determine the topological fold of RNA. Conformations are firstly sampled at glob level where each glob represents a nucleotide. Best-ranked glob models can be further refined against solvent accessibility data, if available, and then converted to explicit all-atom coordinates for refinement against SAXS data using the Xplor-NIH program. RS3D is widely applicable to a variety of RNA folding architectures currently present in the structure database. Furthermore, we demonstrate applicability and feasibility of the program to derive low-resolution topological structures of relatively large multi-domain RNAs.
Collapse
Affiliation(s)
- Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.
| | - Lixin Fan
- Leidos Biomedical Research Inc., Frederick, MD 21702, United States
| | - Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - George F Zaki
- Data Science and Information Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Eric A Stahlberg
- Data Science and Information Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Wei Jiang
- Argonne National Laboratory, Argonne, IL 60439, United States
| | - Charles D Schwieters
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States; NCI Small Angle X-ray Scattering Core Facility, Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.
| |
Collapse
|
21
|
Abstract
In addition to continuous rapid progress in RNA structure determination, probing, and biophysical studies, the past decade has seen remarkable advances in the development of a new generation of RNA folding theories and models. In this article, we review RNA structure prediction models and models for ion-RNA and ligand-RNA interactions. These new models are becoming increasingly important for a mechanistic understanding of RNA function and quantitative design of RNA nanotechnology. We focus on new methods for physics-based, knowledge-based, and experimental data-directed modeling for RNA structures and explore the new theories for the predictions of metal ion and ligand binding sites and metal ion-dependent RNA stabilities. The integration of these new methods with theories about the cellular environment effects in RNA folding, such as molecular crowding and cotranscriptional kinetic effects, may ultimately lead to an all-encompassing RNA folding model.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| | - Dong Zhang
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
22
|
Zhu G, Saw WG, Nalaparaju A, Grüber G, Lu L. Coarse-Grained Molecular Modeling of the Solution Structure Ensemble of Dengue Virus Nonstructural Protein 5 with Small-Angle X-ray Scattering Intensity. J Phys Chem B 2017; 121:2252-2264. [DOI: 10.1021/acs.jpcb.7b00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guanhua Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Wuan Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anjaiah Nalaparaju
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
23
|
Cantara WA, Olson ED, Musier-Forsyth K. Analysis of RNA structure using small-angle X-ray scattering. Methods 2017; 113:46-55. [PMID: 27777026 PMCID: PMC5253320 DOI: 10.1016/j.ymeth.2016.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 11/22/2022] Open
Abstract
In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building.
Collapse
Affiliation(s)
- William A Cantara
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
24
|
Hsieh A, Lu L, Chance MR, Yang S. A Practical Guide to iSPOT Modeling: An Integrative Structural Biology Platform. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:229-238. [PMID: 29218563 DOI: 10.1007/978-981-10-6038-0_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative structure modeling is an emerging method for structural determination of protein-protein complexes that are challenging for conventional structural techniques. Here, we provide a practical protocol for implementing our integrated iSPOT platform by integrating three different biophysical techniques: small-angle X-ray scattering (SAXS), hydroxyl radical footprinting, and computational docking simulations. Specifically, individual techniques are described from experimental and/or computational perspectives, and complementary structural information from these different techniques are integrated for accurate characterization of the structures of large protein-protein complexes.
Collapse
Affiliation(s)
- An Hsieh
- Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-4988, USA
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Mark R Chance
- Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-4988, USA
| | - Sichun Yang
- Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-4988, USA.
| |
Collapse
|
25
|
Le MT, Brown RE, Simon AE, Dayie TK. In vivo, large-scale preparation of uniformly (15)N- and site-specifically (13)C-labeled homogeneous, recombinant RNA for NMR studies. Methods Enzymol 2016; 565:495-535. [PMID: 26577743 DOI: 10.1016/bs.mie.2015.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Knowledge of how ribonucleic acid (RNA) structures fold to form intricate, three-dimensional structures has provided fundamental insights into understanding the biological functions of RNA. Nuclear magnetic resonance (NMR) spectroscopy is a particularly useful high-resolution technique to investigate the dynamic structure of RNA. Effective study of RNA by NMR requires enrichment with isotopes of (13)C or (15)N or both. Here, we present a method to produce milligram quantities of uniformly (15)N- and site-specifically (13)C-labeled RNAs using wild-type K12 and mutant tktA Escherichia coli in combination with a tRNA-scaffold approach. The method includes a double selection protocol to obtain an E. coli clone with consistently high expression of the recombinant tRNA-scaffold. We also present protocols for the purification of the tRNA-scaffold from a total cellular RNA extract and the excision of the RNA of interest from the tRNA-scaffold using DNAzymes. Finally, we showcase NMR applications to demonstrate the benefit of using in vivo site-specifically (13)C-labeled RNA.
Collapse
Affiliation(s)
- My T Le
- Department of Chemistry and Biochemistry,Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Rachel E Brown
- Department of Chemistry and Biochemistry, Department of Cellular Biology and Molecular Genetics, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Anne E Simon
- Department of Chemistry and Biochemistry, Department of Cellular Biology and Molecular Genetics, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry,Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
26
|
Huang W, Ravikumar KM, Parisien M, Yang S. Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking. J Struct Biol 2016; 196:340-349. [PMID: 27496803 DOI: 10.1016/j.jsb.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022]
Abstract
Structural determination of protein-protein complexes such as multidomain nuclear receptors has been challenging for high-resolution structural techniques. Here, we present a combined use of multiple biophysical methods, termed iSPOT, an integration of shape information from small-angle X-ray scattering (SAXS), protection factors probed by hydroxyl radical footprinting, and a large series of computationally docked conformations from rigid-body or molecular dynamics (MD) simulations. Specifically tested on two model systems, the power of iSPOT is demonstrated to accurately predict the structures of a large protein-protein complex (TGFβ-FKBP12) and a multidomain nuclear receptor homodimer (HNF-4α), based on the structures of individual components of the complexes. Although neither SAXS nor footprinting alone can yield an unambiguous picture for each complex, the combination of both, seamlessly integrated in iSPOT, narrows down the best-fit structures that are about 3.2Å and 4.2Å in RMSD from their corresponding crystal structures, respectively. Furthermore, this proof-of-principle study based on the data synthetically derived from available crystal structures shows that the iSPOT-using either rigid-body or MD-based flexible docking-is capable of overcoming the shortcomings of standalone computational methods, especially for HNF-4α. By taking advantage of the integration of SAXS-based shape information and footprinting-based protection/accessibility as well as computational docking, this iSPOT platform is set to be a powerful approach towards accurate integrated modeling of many challenging multiprotein complexes.
Collapse
Affiliation(s)
- Wei Huang
- Center for Proteomics and Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Krishnakumar M Ravikumar
- Center for Proteomics and Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
27
|
Bhandari YR, Jiang W, Stahlberg EA, Stagno JR, Wang YX. Modeling RNA topological structures using small angle X-ray scattering. Methods 2016; 103:18-24. [DOI: 10.1016/j.ymeth.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 02/01/2023] Open
|
28
|
Chen Y, Pollack L. SAXS studies of RNA: structures, dynamics, and interactions with partners. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:512-26. [PMID: 27071649 DOI: 10.1002/wrna.1349] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/29/2022]
Abstract
Small-angle X-ray scattering, SAXS, is a powerful and easily employed experimental technique that provides solution structures of macromolecules. The size and shape parameters derived from SAXS provide global structural information about these molecules in solution and essentially complement data acquired by other biophysical methods. As applied to protein systems, SAXS is a relatively mature technology: sophisticated tools exist to acquire and analyze data, and to create structural models that include dynamically flexible ensembles. Given the expanding appreciation of RNA's biological roles, there is a need to develop comparable tools to characterize solution structures of RNA, including its interactions with important biological partners. We review the progress toward achieving this goal, focusing on experimental and computational innovations. The use of multiphase modeling, absolute calibration and contrast variation methods, among others, provides new and often unique ways of visualizing this important biological molecule and its essential partners: ions, other RNAs, or proteins. WIREs RNA 2016, 7:512-526. doi: 10.1002/wrna.1349 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yujie Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
29
|
Meisburger SP, Pabit SA, Pollack L. Determining the Locations of Ions and Water around DNA from X-Ray Scattering Measurements. Biophys J 2016; 108:2886-95. [PMID: 26083928 DOI: 10.1016/j.bpj.2015.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022] Open
Abstract
Nucleic acids carry a negative charge, attracting salt ions and water. Interactions with these components of the solvent drive DNA to condense, RNA to fold, and proteins to bind. To understand these biological processes, knowledge of solvent structure around the nucleic acids is critical. Yet, because they are often disordered, ions and water evade detection by x-ray crystallography and other high-resolution methods. Small-angle x-ray scattering (SAXS) is uniquely sensitive to the spatial correlations between solutes and the surrounding solvent. Thus, SAXS provides an experimental constraint to guide or test emerging solvation theories. However, the interpretation of SAXS profiles is nontrivial because of the difficulty in separating the scattering signals of each component: the macromolecule, ions, and hydration water. Here, we demonstrate methods for robustly deconvoluting these signals, facilitating a more straightforward comparison with theory. Using SAXS data collected on an absolute intensity scale for short DNA duplexes in solution with Na(+), K(+), Rb(+), or Cs(+) counterions, we mathematically decompose the scattering profiles into components (DNA, water, and ions) and validate the decomposition using anomalous scattering measurements. In addition, we generate a library of physically motivated ion atmosphere models and rank them by agreement with the scattering data. The best-fit models have relatively compact ion atmospheres when compared to predictions from the mean-field Poisson-Boltzmann theory of electrostatics. Thus, the x-ray scattering methods presented here provide a valuable measurement of the global structure of the ion atmosphere that can be used to test electrostatics theories that go beyond the mean-field approximation.
Collapse
Affiliation(s)
- Steve P Meisburger
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York.
| |
Collapse
|
30
|
Hua L, Song Y, Kim N, Laing C, Wang JTL, Schlick T. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking. PLoS One 2016; 11:e0147097. [PMID: 26789998 PMCID: PMC4720362 DOI: 10.1371/journal.pone.0147097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023] Open
Abstract
RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS) motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/.
Collapse
Affiliation(s)
- Lei Hua
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Yang Song
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Namhee Kim
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Christian Laing
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Jason T. L. Wang
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail: (JW); (TS)
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York, United States of America
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- * E-mail: (JW); (TS)
| |
Collapse
|
31
|
Pham GH, Rana ASJB, Korkmaz EN, Trang VH, Cui Q, Strieter ER. Comparison of native and non-native ubiquitin oligomers reveals analogous structures and reactivities. Protein Sci 2016; 25:456-71. [PMID: 26506216 DOI: 10.1002/pro.2834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Ubiquitin (Ub) chains regulate a wide range of biological processes, and Ub chain connectivity is a critical determinant of the many regulatory roles that this post-translational modification plays in cells. To understand how distinct Ub chains orchestrate different biochemical events, we and other investigators have developed enzymatic and non-enzymatic methods to synthesize Ub chains of well-defined length and connectivity. A number of chemical approaches have been used to generate Ub oligomers connected by non-native linkages; however, few studies have examined the extent to which non-native linkages recapitulate the structural and functional properties associated with native isopeptide bonds. Here, we compare the structure and function of Ub dimers bearing native and non-native linkages. Using small-angle X-ray scattering (SAXS) analysis, we show that scattering profiles for the two types of dimers are similar. Moreover, using an experimental structural library and atomistic simulations to fit the experimental SAXS profiles, we find that the two types of Ub dimers can be matched to analogous structures. An important application of non-native Ub oligomers is to probe the activity and selectivity of deubiquitinases. Through steady-state kinetic analyses, we demonstrate that different families of deubiquitinases hydrolyze native and non-native isopeptide linkages with comparable efficiency and selectivity. Considering the significant challenges associated with building topologically diverse native Ub chains, our results illustrate that chains harboring non-native linkages can serve as surrogate substrates for explorations of Ub function.
Collapse
Affiliation(s)
- Grace H Pham
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Ambar S J B Rana
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - E Nihal Korkmaz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Vivian H Trang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Eric R Strieter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
32
|
Cragnolini T, Derreumaux P, Pasquali S. Ab initio RNA folding. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:233102. [PMID: 25993396 DOI: 10.1088/0953-8984/27/23/233102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.
Collapse
Affiliation(s)
- Tristan Cragnolini
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot, Sorbonne, Paris Cité, IBPC 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
33
|
Chaudhuri BN. Emerging applications of small angle solution scattering in structural biology. Protein Sci 2015; 24:267-76. [PMID: 25516491 PMCID: PMC4353354 DOI: 10.1002/pro.2624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- Faculty of Life Sciences and Biotechnology, South Asian UniversityAkbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
34
|
Yang S. Methods for SAXS-based structure determination of biomolecular complexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7902-10. [PMID: 24888261 PMCID: PMC4285438 DOI: 10.1002/adma.201304475] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/10/2014] [Indexed: 05/20/2023]
Abstract
Measurements from small-angle X-ray scattering (SAXS) are highly informative to determine the structures of bimolecular complexes in solution. Here, current and recent SAXS-driven developments are described, with an emphasis on computational modeling. In particular, accurate methods to computing one theoretical scattering profile from a given structure model are discussed, with a key focus on structure factor coarse-graining and hydration contribution. Methods for reconstructing topological structures from an experimental SAXS profile are currently under active development. We report on several modeling tools designed for conformation generation that make use of either atomic-level or coarse-grained representations. Furthermore, since large, flexible biomolecules can adopt multiple well-defined conformations, a traditional single-conformation SAXS analysis is inappropriate, so we also discuss recent methods that utilize the concept of ensemble optimization, weighing in on the SAXS contributions of a heterogeneous mixture of conformations. These tools will ultimately posit the usefulness of SAXS data beyond a simple space-filling approach by providing a reliable structure characterization of biomolecular complexes under physiological conditions.
Collapse
Affiliation(s)
- Sichun Yang
- Center for Proteomics and Department of Pharmacology, Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4988, USA
| |
Collapse
|
35
|
Kubo G, Sakamoto S, Fujii S, Sanada Y, Yasunaga T, Takahara A, Sakurai K. Transformation from Multi- to Single-lamellar Vesicle by Addition of a Cationic Lipid to 1,2-Dilauroyl- sn-glycero-3-phosphocholine Explored with SAXS and TEM. CHEM LETT 2014. [DOI: 10.1246/cl.140668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Genki Kubo
- Department of Chemistry and Biochemistry, The University of Kitakyushu
| | - Shunsuke Sakamoto
- Department of Chemistry and Biochemistry, The University of Kitakyushu
- Structural Materials Science Laboratory, RIKEN SPring-8 Center
| | - Shota Fujii
- Structural Materials Science Laboratory, RIKEN SPring-8 Center
- Graduate School of Engineering and Institute of Materials Chemistry and Engineering, Kyushu University
| | - Yusuke Sanada
- Department of Chemistry and Biochemistry, The University of Kitakyushu
- Structural Materials Science Laboratory, RIKEN SPring-8 Center
| | - Takuo Yasunaga
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology
- SENTAN, JST
| | - Atsushi Takahara
- Structural Materials Science Laboratory, RIKEN SPring-8 Center
- Graduate School of Engineering and Institute of Materials Chemistry and Engineering, Kyushu University
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu
- Structural Materials Science Laboratory, RIKEN SPring-8 Center
| |
Collapse
|
36
|
Structural studies of a double-stranded RNA from trypanosome RNA editing by small-angle X-ray scattering. Methods Mol Biol 2014; 1240:165-89. [PMID: 25352145 DOI: 10.1007/978-1-4939-1896-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
We used small-angle X-ray scattering (SAXS) to evaluate the solution structure of a double-stranded RNA with 32 base pairs. We wanted to compare the solution structure to the crystal structure to assess the impact of the crystal lattice on the overall conformation of the RNA. The RNA was designed to self-anneal and form a head-to-head fusion of two identical mRNA/oligo(U) tail domains (the U-helix) from a trypanosome RNA editing substrate formed by the annealing of a guide RNA to a pre-edited mRNA. This substrate is from the U insertion/deletion RNA editing system of trypanosomes. Each strand in the fusion RNA had 16 purines from the pre-mRNA followed by 16 uracils (Us) from the U-tail at the 3' end of the guide RNA. The strands were designed to form a double helix with blunt ends, but each strand had the potential to form hairpins and single-stranded RNA helices. Hairpins could form by the 3' oligouridylate tract folding back to hybridize with the 5' oligopurine tract and forming an intervening loop. Single-stranded helices could form by the stacking of bases in the polypurine tract. Some of the 16 Us 3' to the polypurine tract may have been unstacked and in random coils. Our SAXS studies showed that the RNA formed a mix of single-stranded structures in the absence of MgCl2. In the presence of MgCl2 at concentrations similar to those in the crystal, the solution structure was consistent with the double-stranded, blunt-ended structure, in agreement with the crystal structure. Here we describe the preparation of RNA samples, data collection with an in-house SAXS instrument designed for biological samples, and the processing and modeling of the scattering data.
Collapse
|
37
|
Magnus M, Matelska D, Łach G, Chojnowski G, Boniecki MJ, Purta E, Dawson W, Dunin-Horkawicz S, Bujnicki JM. Computational modeling of RNA 3D structures, with the aid of experimental restraints. RNA Biol 2014; 11:522-36. [PMID: 24785264 PMCID: PMC4152360 DOI: 10.4161/rna.28826] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
In addition to mRNAs whose primary function is transmission of genetic information from DNA to proteins, numerous other classes of RNA molecules exist, which are involved in a variety of functions, such as catalyzing biochemical reactions or performing regulatory roles. In analogy to proteins, the function of RNAs depends on their structure and dynamics, which are largely determined by the ribonucleotide sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that simulate either the physical process of RNA structure formation ("Greek science" approach) or utilize information derived from known structures of other RNA molecules ("Babylonian science" approach). All computational methods suffer from various limitations that make them generally unreliable for structure prediction of long RNA sequences. However, in many cases, the limitations of computational and experimental methods can be overcome by combining these two complementary approaches with each other. In this work, we review computational approaches for RNA structure prediction, with emphasis on implementations (particular programs) that can utilize restraints derived from experimental analyses. We also list experimental approaches, whose results can be relatively easily used by computational methods. Finally, we describe case studies where computational and experimental analyses were successfully combined to determine RNA structures that would remain out of reach for each of these approaches applied separately.
Collapse
Affiliation(s)
- Marcin Magnus
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
| | - Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
| | - Grzegorz Łach
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
| | - Grzegorz Chojnowski
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
| | - Michal J Boniecki
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
| | - Elzbieta Purta
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
| | - Wayne Dawson
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw, Poland
- Laboratory of Structural Bioinformatics; Institute of Molecular Biology and Biotechnology; Faculty of Biology; Adam Mickiewicz University; Poznan, Poland
| |
Collapse
|
38
|
Methods for Using New Conceptual Tools and Parameters to Assess RNA Structure by Small-Angle X-Ray Scattering. Methods Enzymol 2014; 549:235-63. [DOI: 10.1016/b978-0-12-801122-5.00011-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Gajda MJ, Martinez Zapien D, Uchikawa E, Dock-Bregeon AC. Modeling the structure of RNA molecules with small-angle X-ray scattering data. PLoS One 2013; 8:e78007. [PMID: 24223750 PMCID: PMC3817170 DOI: 10.1371/journal.pone.0078007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/08/2013] [Indexed: 11/19/2022] Open
Abstract
We propose a novel fragment assembly method for low-resolution modeling of RNA and show how it may be used along with small-angle X-ray solution scattering (SAXS) data to model low-resolution structures of particles having as many as 12 independent secondary structure elements. We assessed this model-building procedure by using both artificial data on a previously proposed benchmark and publicly available data. With the artificial data, SAXS-guided models show better similarity to native structures than ROSETTA decoys. The publicly available data showed that SAXS-guided models can be used to reinterpret RNA structures previously deposited in the Protein Data Bank. Our approach allows for fast and efficient building of de novo models of RNA using approximate secondary structures that can be readily obtained from existing bioinformatic approaches. We also offer a rigorous assessment of the resolving power of SAXS in the case of small RNA structures, along with a small multimetric benchmark of the proposed method.
Collapse
Affiliation(s)
- Michal Jan Gajda
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Niedersachsen, Germany
- Hamburg Outstation, European Molecular Biology Laboratories, Hamburg, Germany
| | - Denise Martinez Zapien
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, Bas-Rhin, France
| | - Emiko Uchikawa
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, Bas-Rhin, France
| | - Anne-Catherine Dock-Bregeon
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, Bas-Rhin, France
- Génomique Fonctionnelle, Institut de Biologie de l’École Normale Supérieure, Paris, Île-de-France, France
| |
Collapse
|
40
|
Minh DDL, Makowski L. Wide-angle X-ray solution scattering for protein-ligand binding: multivariate curve resolution with Bayesian confidence intervals. Biophys J 2013; 104:873-83. [PMID: 23442966 DOI: 10.1016/j.bpj.2012.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022] Open
Abstract
A new way to use wide-angle x-ray solution scattering to study protein-ligand binding is presented. First, scattering patterns are measured at different protein and ligand concentrations. Multivariate curve resolution based on singular value decomposition and global analysis is applied to estimate the binding affinities and reference patterns (i.e., the scattering patterns of individual components). As validated by simulation, Bayesian confidence intervals provide accurate uncertainty estimates for the binding free energies and reference patterns. Experimental results from several protein-ligand systems demonstrate the feasibility of the approach, which promises to expand the role of wide-angle x-ray scattering as a quantitative biophysical tool.
Collapse
Affiliation(s)
- David D L Minh
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | | |
Collapse
|
41
|
Ravikumar KM, Huang W, Yang S. Fast-SAXS-pro: a unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes. J Chem Phys 2013; 138:024112. [PMID: 23320673 DOI: 10.1063/1.4774148] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A generalized method, termed Fast-SAXS-pro, for computing small angle x-ray scattering (SAXS) profiles of proteins, nucleic acids, and their complexes is presented. First, effective coarse-grained structure factors of DNA nucleotides are derived using a simplified two-particle-per-nucleotide representation. Second, SAXS data of a 18-bp double-stranded DNA are measured and used for the calibration of the scattering contribution from excess electron density in the DNA solvation layer. Additional test on a 25-bp DNA duplex validates this SAXS computational method and suggests that DNA has a different contribution from its hydration surface to the total scattering compared to RNA and protein. To account for such a difference, a sigmoidal function is implemented for the treatment of non-uniform electron density across the surface of a protein/nucleic-acid complex. This treatment allows differential scattering from the solvation layer surrounding protein/nucleic-acid complexes. Finally, the applications of this Fast-SAXS-pro method are demonstrated for protein/DNA and protein/RNA complexes.
Collapse
Affiliation(s)
- Krishnakumar M Ravikumar
- Center for Proteomics and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4988, USA
| | | | | |
Collapse
|
42
|
Burke JE, Butcher SE. Nucleic acid structure characterization by small angle X-ray scattering (SAXS). ACTA ACUST UNITED AC 2013; Chapter 7:Unit7.18. [PMID: 23255205 DOI: 10.1002/0471142700.nc0718s51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small angle X-ray scattering (SAXS) is a powerful method for investigating macromolecular structure in solution. SAXS data provide information about the size and shape of a molecule with a resolution of ∼2 to 3 nm. SAXS is particularly useful for the investigation of nucleic acids, which scatter X-rays strongly due to the electron-rich phosphate backbone. Therefore, SAXS has become an increasingly popular method for modeling nucleic acid structures, an endeavor made tractable by the highly regular helical nature of nucleic acid secondary structures. Recently, SAXS was used in combination with NMR to filter and refine all-atom models of a U2/U6 small nuclear RNA complex. In this unit, general protocols for sample preparation, data acquisition, and data analysis and processing are given. Additionally, examples of correctly and incorrectly processed SAXS data and expected results are provided.
Collapse
Affiliation(s)
- Jordan E Burke
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
43
|
Abstract
One of the key issues in the theoretical prediction of RNA folding is the prediction of loop structure from the sequence. RNA loop free energies are dependent on the loop sequence content. However, most current models account only for the loop length-dependence. The previously developed “Vfold” model (a coarse-grained RNA folding model) provides an effective method to generate the complete ensemble of coarse-grained RNA loop and junction conformations. However, due to the lack of sequence-dependent scoring parameters, the method is unable to identify the native and near-native structures from the sequence. In this study, using a previously developed iterative method for extracting the knowledge-based potential parameters from the known structures, we derive a set of dinucleotide-based statistical potentials for RNA loops and junctions. A unique advantage of the approach is its ability to go beyond the the (known) native structures by accounting for the full free energy landscape, including all the nonnative folds. The benchmark tests indicate that for given loop/junction sequences, the statistical potentials enable successful predictions for the coarse-grained 3D structures from the complete conformational ensemble generated by the Vfold model. The predicted coarse-grained structures can provide useful initial folds for further detailed structural refinement.
Collapse
Affiliation(s)
- Liang Liu
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Shi-Jie Chen
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
44
|
Pérez J, Nishino Y. Advances in X-ray scattering: from solution SAXS to achievements with coherent beams. Curr Opin Struct Biol 2012; 22:670-8. [DOI: 10.1016/j.sbi.2012.07.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 11/15/2022]
|
45
|
Sim AYL, Minary P, Levitt M. Modeling nucleic acids. Curr Opin Struct Biol 2012; 22:273-8. [PMID: 22538125 DOI: 10.1016/j.sbi.2012.03.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/25/2012] [Indexed: 01/24/2023]
Abstract
Nucleic acids are an important class of biological macromolecules that carry out a variety of cellular roles. For many functions, naturally occurring DNA and RNA molecules need to fold into precise three-dimensional structures. Due to their self-assembling characteristics, nucleic acids have also been widely studied in the field of nanotechnology, and a diverse range of intricate three-dimensional nanostructures have been designed and synthesized. Different physical terms such as base-pairing and stacking interactions, tertiary contacts, electrostatic interactions and entropy all affect nucleic acid folding and structure. Here we review general computational approaches developed to model nucleic acid systems. We focus on four key areas of nucleic acid modeling: molecular representation, potential energy function, degrees of freedom and sampling algorithm. Appropriate choices in each of these key areas in nucleic acid modeling can effectively combine to aid interpretation of experimental data and facilitate prediction of nucleic acid structure.
Collapse
Affiliation(s)
- Adelene Y L Sim
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
46
|
Ding F, Lavender CA, Weeks KM, Dokholyan NV. Three-dimensional RNA structure refinement by hydroxyl radical probing. Nat Methods 2012; 9:603-8. [PMID: 22504587 PMCID: PMC3422565 DOI: 10.1038/nmeth.1976] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/20/2012] [Indexed: 01/08/2023]
Abstract
Molecular modeling guided by experimentally-derived structural information is an attractive approach for three-dimensional structure determination of complex RNAs that are not amenable to study by high-resolution methods. Hydroxyl radical probing (HRP), performed routinely in many laboratories, provides a measure of solvent accessibility at individual nucleotides. HRP measurements have, to date, only been used to evaluate RNA models qualitatively. Here, we report development of a quantitative structure refinement approach using HRP measurements to drive discrete molecular dynamics simulations for RNAs ranging in size from 80 to 230 nucleotides. HRP reactivities were first used to identify RNAs that form extensive helical packing interactions. For these RNAs, we achieved highly significant structure predictions, given inputs of RNA sequence and base pairing. This HRP-directed tertiary structure refinement approach generates robust structural hypotheses useful for guiding explorations of structure-function interrelationships in RNA.
Collapse
Affiliation(s)
- Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina, USA
| | | | | | | |
Collapse
|
47
|
Parisien M, Major F. Determining RNA three-dimensional structures using low-resolution data. J Struct Biol 2012; 179:252-60. [PMID: 22387042 DOI: 10.1016/j.jsb.2011.12.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 11/25/2022]
Abstract
Knowing the 3-D structure of an RNA is fundamental to understand its biological function. Nowadays X-ray crystallography and NMR spectroscopy are systematically applied to newly discovered RNAs. However, the application of these high-resolution techniques is not always possible, and thus scientists must turn to lower resolution alternatives. Here, we introduce a pipeline to systematically generate atomic resolution 3-D structures that are consistent with low-resolution data sets. We compare and evaluate the discriminative power of a number of low-resolution experimental techniques to reproduce the structure of the Escherichia coli tRNA(VAL) and P4-P6 domain of the Tetrahymena thermophila group I intron. We test single and combinations of the most accessible low-resolution techniques, i.e. hydroxyl radical footprinting (OH), methidiumpropyl-EDTA (MPE), multiplexed hydroxyl radical cleavage (MOHCA), and small-angle X-ray scattering (SAXS). We show that OH-derived constraints are accurate to discriminate structures at the atomic level, whereas EDTA-based constraints apply to global shape determination. We provide a guide for choosing which experimental techniques or combination of thereof is best in which context. The pipeline represents an important step towards high-throughput low-resolution RNA structure determination.
Collapse
Affiliation(s)
- Marc Parisien
- Biochemistry Department, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
48
|
Rivas E, Lang R, Eddy SR. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more. RNA (NEW YORK, N.Y.) 2012; 18:193-212. [PMID: 22194308 PMCID: PMC3264907 DOI: 10.1261/rna.030049.111] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/01/2011] [Indexed: 05/07/2023]
Abstract
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.
Collapse
Affiliation(s)
- Elena Rivas
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.
| | | | | |
Collapse
|
49
|
Computational methods for prediction of protein-RNA interactions. J Struct Biol 2011; 179:261-8. [PMID: 22019768 DOI: 10.1016/j.jsb.2011.10.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022]
Abstract
Understanding the molecular mechanism of protein-RNA recognition and complex formation is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) is tedious and difficult. Alternatively, protein-RNA interactions can be predicted by computational methods. Although less accurate than experimental observations, computational predictions can be sufficiently accurate to prompt functional hypotheses and guide experiments, e.g. to identify individual amino acid or nucleotide residues. In this article we review 10 methods for predicting protein-RNA interactions, seven of which predict RNA-binding sites from protein sequences and three from structures. We also developed a meta-predictor that uses the output of top three sequence-based primary predictors to calculate a consensus prediction, which outperforms all the primary predictors. In order to fully cover the software for predicting protein-RNA interactions, we also describe five methods for protein-RNA docking. The article highlights the strengths and shortcomings of existing methods for the prediction of protein-RNA interactions and provides suggestions for their further development.
Collapse
|
50
|
Lerman YV, Kennedy SD, Shankar N, Parisien M, Major F, Turner DH. NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. RNA (NEW YORK, N.Y.) 2011; 17:1664-77. [PMID: 21778280 PMCID: PMC3162332 DOI: 10.1261/rna.2641911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/08/2011] [Indexed: 05/31/2023]
Abstract
The NMR solution structure is reported of a duplex, 5'GUGAAGCCCGU/3'UCACAGGAGGC, containing a 4 × 4 nucleotide internal loop from an R2 retrotransposon RNA. The loop contains three sheared purine-purine pairs and reveals a structural element found in other RNAs, which we refer to as the 3RRs motif. Optical melting measurements of the thermodynamics of the duplex indicate that the internal loop is 1.6 kcal/mol more stable at 37°C than predicted. The results identify the 3RRs motif as a common structural element that can facilitate prediction of 3D structure. Known examples include internal loops having the pairings: 5'GAA/3'AGG, 5'GAG/3'AGG, 5'GAA/3'AAG, and 5'AAG/3'AGG. The structural information is compared with predictions made with the MC-Sym program.
Collapse
Affiliation(s)
- Yelena V. Lerman
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Neelaabh Shankar
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Marc Parisien
- Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C CJ7, Canada
| | - Francois Major
- Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C CJ7, Canada
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|