1
|
Jana AK, Greenwood AB, Hansmann UHE. Small Peptides for Inhibiting Serum Amyloid A Aggregation. ACS Med Chem Lett 2021; 12:1613-1621. [PMID: 34676044 DOI: 10.1021/acsmedchemlett.1c00456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
Deposition of human serum amyloid A (SAA) amyloids in blood vessels, causing inflammation, thrombosis, and eventually organ damage, is commonly seen as a consequence of certain cancers and inflammatory diseases and may also be a risk after SARS-COV-2 infections. Several attempts have been made to develop peptide-based drugs that inhibit or at least slow down SAA amyloidosis. We use extensive all-atom molecular dynamic simulations to compare three of these drug candidates for their ability to destabilize SAA fibrils and to propose for the best candidate, the N-terminal sequence SAA1-5, a mechanism for inhibition. As the lifetime of peptide drugs can be increased by replacing l-amino acids with their mirror d-amino acids, we have also studied corresponding d-peptides. We find that DRI-SAA1-5, formed of d-amino acids with the sequence of the peptide reversed, has similar inhibitory properties compared to the original l-peptide and therefore may be a promising candidate for drugs targeting SAA amyloidosis.
Collapse
Affiliation(s)
- Asis K. Jana
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Augustus B. Greenwood
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H. E. Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
2
|
Mahmoudinobar F, Nilsson BL, Dias CL. Effects of Ions and Small Compounds on the Structure of Aβ 42 Monomers. J Phys Chem B 2021; 125:1085-1097. [PMID: 33481611 DOI: 10.1021/acs.jpcb.0c09617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid-β (Aβ) proteins in the brain is a hallmark of Alzheimer's disease. This phenomenon can be promoted or inhibited by adding small molecules to the solution where Aβ is embedded. These molecules affect the ensemble of conformations sampled by Aβ monomers even before aggregation starts. Here, we perform extensive all-atom replica exchange molecular dynamics (REMD) simulations to provide a comparative study of the ensemble of conformations sampled by Aβ42 monomers in solutions that promote (i.e., aqueous solution containing NaCl) and inhibit (i.e., aqueous solutions containing scyllo-inositol or 4-aminophenol) aggregation. Simulations performed in pure water are used as our reference. We find that secondary-structure content is only affected in an antagonistic manner by promoters and inhibitors at the C-terminus and the central hydrophilic core. Moreover, the end of the C-terminus binds more favorably to the central hydrophobic core region of Aβ42 in NaCl adopting a type of strand-loop-strand structure that is disfavored by inhibitors. Nonpolar residues that form the dry core of larger aggregates of Aβ42 (e.g., PDB ID 2BEG) are found at close proximity in these strand-loop-strand structures, suggesting that their formation could play an important role in initiating nucleation. In the presence of inhibitors, the C-terminus binds the central hydrophilic core with a higher probability than in our reference simulation. This sensitivity of the C-terminus, which is affected in an antagonistic manner by inhibitors and promoters, provides evidence for its critical role in accounting for aggregation.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
3
|
Jahan I, Nayeem SM. Destabilization of Alzheimer's Aβ 42 protofibrils with acyclovir, carmustine, curcumin, and tetracycline: insights from molecular dynamics simulations. NEW J CHEM 2021. [DOI: 10.1039/d1nj04453b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Among the neurodegenerative diseases, one of the most common dementia is Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shahid M. Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| |
Collapse
|
4
|
Jokar S, Erfani M, Bavi O, Khazaei S, Sharifzadeh M, Hajiramezanali M, Beiki D, Shamloo A. Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorg Chem 2020; 102:104050. [PMID: 32663672 DOI: 10.1016/j.bioorg.2020.104050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (d-GABA-FPLIAIMA) was chosen and synthesized in great yield (%96) via the Fmoc solid-phase peptide synthesis. The synthesis and purity of the resulting peptide were estimated and evaluated by Mass spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) methods, respectively. Stability studies in plasma and Thioflavin T (ThT) assay were performed in order to measure the binding affinity and in vitro aggregation inhibition of Aβ peptide. The d-GABA-FPLIAIMA peptide showed good binding energy and affinity to Aβ fibrils, high stability (more than 90%) in human serum, and a reduction of 20% in inhibition of the Aβ aggregation growth. Finally, the favorable characteristics of our newly designed peptide make it a promising candidate β-sheet breaker agent for further in vivo studies.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Hajiramezanali
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
5
|
Tran L, Kaffy J, Ongeri S, Ha-Duong T. Binding Modes of a Glycopeptidomimetic Molecule on Aβ Protofibrils: Implication for Its Inhibition Mechanism. ACS Chem Neurosci 2018; 9:2859-2869. [PMID: 30025208 DOI: 10.1021/acschemneuro.8b00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We recently reported that a glycopeptidomimetic molecule significantly delays the fibrillization process of Aβ42 peptide involved in Alzheimer's disease. However, the binding mode of this compound, named 3β, was not determined at the atomic scale, hindering our understanding of its mechanism of action and impeding structure-based design of new inhibitors. In the present study, we performed molecular docking calculations and molecular dynamics simulations to investigate the most probable structures of 3β complexed with Aβ protofibrils. Our results show that 3β preferentially binds to an area of the protofibril surface that coincides with the protofibril dimerization interface observed in the solid-state NMR structure 5KK3 from the PDB. Based on these observations, we propose a model of the inhibition mechanism of Aβ fibrillization by compound 3β.
Collapse
Affiliation(s)
- Linh Tran
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julia Kaffy
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Sandrine Ongeri
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
6
|
Macroscopic Chiral Recognition by Calix[4]arene‐Based Host–Guest Interactions. Chemistry 2018; 24:15502-15506. [DOI: 10.1002/chem.201803564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/30/2018] [Indexed: 01/12/2023]
|
7
|
Zhou H, Liu S, Shao Q, Ma D, Yang Z, Zhou R. Mechanism by which DHA inhibits the aggregation of KLVFFA peptides: A molecular dynamics study. J Chem Phys 2018; 148:115102. [PMID: 29566504 DOI: 10.1063/1.5012032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA) is one of the omega-3 polyunsaturated fatty acids, which has shown promising applications in lowering Aβ peptide neurotoxicity in vitro by preventing aggregation of Aβ peptides and relieving accumulation of Aβ fibrils. Unfortunately, the underlying molecular mechanisms of how DHA interferes with the aggregation of Aβ peptides remain largely enigmatic. Herein, aggregation behaviors of amyloid-β(Aβ)16-21 peptides (KLVFFA) with or without the presence of a DHA molecule were comparatively studied using extensive all-atom molecular dynamics simulations. We found that DHA could effectively suppress the aggregation of KLVFFA peptides by redirecting peptides to unstructured oligomers. The highly hydrophobic and flexible nature of DHA made it randomly but tightly entangled with Leu-17, Phe-19, and Phe-20 residues to form unstructured but stable complexes. These lower-ordered unstructured oligomers could eventually pass through energy barriers to form ordered β-sheet structures through large conformational fluctuations. This study depicts a microscopic picture for understanding the role and mechanism of DHA in inhibition of aggregation of Aβ peptides, which is generally believed as one of the important pathogenic mechanisms of Alzheimer's disease.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Shengtang Liu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Qiwen Shao
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Dongfang Ma
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| |
Collapse
|
8
|
Meng QY, Wang S, Huff GS, König B. Ligand-Controlled Regioselective Hydrocarboxylation of Styrenes with CO2 by Combining Visible Light and Nickel Catalysis. J Am Chem Soc 2018; 140:3198-3201. [DOI: 10.1021/jacs.7b13448] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qing-Yuan Meng
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Shun Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Gregory S. Huff
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
9
|
Giuffrida MC, Pignatello R, Castelli F, Sarpietro MG. Amphiphilic naproxen prodrugs: differential scanning calorimetry study on their interaction with phospholipid bilayers†. J Pharm Pharmacol 2017. [DOI: 10.1111/jphp.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract
Objectives
Naproxen, a nonsteroid anti-inflammatory drug studied for Alzheimer's disease, was conjugated with lipoamino acids (LAA) directly or through a diethylamine (EDA) spacer to improve the drug lipophilicity and the interaction with phospholipid bilayers.
Methods
The interaction of naproxen and its prodrugs with biomembrane models consisting of dimyristoylphosphatidylcholine multilamellar vesicles was studied by differential scanning calorimetry. The transfer of prodrugs from a lipophilic carrier to a biomembrane model was also studied.
Key findings
Naproxen conjugation to lipoamino acids improves its interaction with biomembrane models and affects the transfer from a lipophilic carrier to biomembrane model. LAA portion may localize between the phospholipid chains; the entity of the interaction depends not only on the presence of the spacer but also on the LAA chain length.
Conclusions
Variation of LAA portion can modulate the naproxen prodrugs affinity towards the biological membrane as well as towards the lipophilic carrier.
Collapse
Affiliation(s)
| | - Rosario Pignatello
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Catania, Italy
| | - Francesco Castelli
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Catania, Italy
| | | |
Collapse
|
10
|
Fan HM, Xu Q, Wei DQ. Recent Studies on Mechanisms of New Drug Candidates for Alzheimer’s Disease Interacting with Amyloid-β Protofibrils Using Molecular Dynamics Simulations. TRANSLATIONAL BIOINFORMATICS AND ITS APPLICATION 2017. [DOI: 10.1007/978-94-024-1045-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124:1121-1141. [DOI: 10.1016/j.ejmech.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
|
12
|
Fan HM, Gu RX, Wang YJ, Pi YL, Zhang YH, Xu Q, Wei DQ. Destabilization of Alzheimer’s Aβ42 Protofibrils with a Novel Drug Candidate wgx-50 by Molecular Dynamics Simulations. J Phys Chem B 2015; 119:11196-202. [DOI: 10.1021/acs.jpcb.5b03116] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Huai-Meng Fan
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruo-Xu Gu
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan-Jing Wang
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yun-Long Pi
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Hong Zhang
- Medicine
Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qin Xu
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dong-Qing Wei
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
13
|
Barrera Guisasola EE, Andujar SA, Hubin E, Broersen K, Kraan IM, Méndez L, Delpiccolo CM, Masman MF, Rodríguez AM, Enriz RD. New mimetic peptides inhibitors of Αβ aggregation. Molecular guidance for rational drug design. Eur J Med Chem 2015; 95:136-52. [DOI: 10.1016/j.ejmech.2015.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
|
14
|
Lemkul JA, Bevan DR. The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer's disease. ACS Chem Neurosci 2012; 3:845-56. [PMID: 23173066 DOI: 10.1021/cn300091a] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/27/2012] [Indexed: 12/26/2022] Open
Abstract
The pathogenic aggregation of the amyloid β-peptide (Aβ) is considered a hallmark of the progression of Alzheimer's disease, the leading cause of senile dementia in the elderly and one of the principal causes of death in the United States. In the absence of effective therapeutics, the incidence and economic burden associated with the disease are expected to rise dramatically in the coming decades. Targeting Aβ aggregation is an attractive therapeutic approach, though structural insights into the nature of Aβ aggregates from traditional experiments are elusive, making drug design difficult. Theoretical methods have been used for several years to augment experimental work and drive progress forward in Alzheimer's drug design. In this Review, we will describe how two common techniques, molecular docking and molecular dynamics simulations, are being applied in developing small molecules as effective therapeutics against monomeric, oligomeric, and fibrillated forms of Aβ. Recent successes and important limitations will be discussed, and we conclude by providing a perspective on the future of this field by citing recent examples of sophisticated approaches used to better characterize interactions of small molecules with Aβ and other amyloidogenic proteins.
Collapse
Affiliation(s)
- Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Lockhart C, Kim S, Klimov DK. Explicit Solvent Molecular Dynamics Simulations of Aβ Peptide Interacting with Ibuprofen Ligands. J Phys Chem B 2012; 116:12922-32. [DOI: 10.1021/jp306208n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Seongwon Kim
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K. Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
16
|
Ngo ST, Li MS. Curcumin binds to Aβ1-40 peptides and fibrils stronger than ibuprofen and naproxen. J Phys Chem B 2012; 116:10165-75. [PMID: 22877239 DOI: 10.1021/jp302506a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Binding of curcumin, naproxen, and ibuprofen to Aβ1-40 peptide and its fibrils is studied by docking method and all-atom molecular dynamics simulations. The Gromos96 43a1 force field and simple point charge model of water have been used for molecular dynamics simulations. It is shown that if the receptor is a monomer then naproxen and ibuprofen are bound to the same place that is different from the binding position of curcumin. However all of three ligands have the same binding pocket in fibrillar structures. The binding mechanism is studied in detail showing that the van der Waals interaction between ligand and receptor dominates over the electrostatic interaction. The binding free energies obtained by the molecular mechanic-Poisson-Boltzmann surface area method indicate that curcumin displays higher binding affinity than nonsteroidal anti-inflammatory drugs. Our results are in good agreement with the experiments.
Collapse
Affiliation(s)
- Son Tung Ngo
- Institute for Computational Science and Technology , 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, and
| | | |
Collapse
|
17
|
Römer F, Kraska T. A force field for naproxen. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.608847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Ofengeim D, Shi P, Miao B, Fan J, Xia X, Fan Y, Lipinski MM, Hashimoto T, Polydoro M, Yuan J, Wong STC, Degterev A. Identification of small molecule inhibitors of neurite loss induced by Aβ peptide using high content screening. J Biol Chem 2012; 287:8714-23. [PMID: 22277654 DOI: 10.1074/jbc.m111.290957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple lines of evidence indicate a strong relationship between Αβ peptide-induced neurite degeneration and the progressive loss of cognitive functions in Alzheimer disease (AD) patients and in AD animal models. This prompted us to develop a high content screening assay (HCS) and Neurite Image Quantitator (NeuriteIQ) software to quantify the loss of neuronal projections induced by Aβ peptide neurons and enable us to identify new classes of neurite-protective small molecules, which may represent new leads for AD drug discovery. We identified thirty-six inhibitors of Aβ-induced neurite loss in the 1,040-compound National Institute of Neurological Disorders and Stroke (NINDS) custom collection of known bioactives and FDA approved drugs. Activity clustering showed that non-steroidal anti-inflammatory drugs (NSAIDs) were significantly enriched among the hits. Notably, NSAIDs have previously attracted significant attention as potential drugs for AD; however their mechanism of action remains controversial. Our data revealed that cyclooxygenase-2 (COX-2) expression was increased following Aβ treatment. Furthermore, multiple distinct classes of COX inhibitors efficiently blocked neurite loss in primary neurons, suggesting that increased COX activity contributes to Aβ peptide-induced neurite loss. Finally, we discovered that the detrimental effect of COX activity on neurite integrity may be mediated through the inhibition of peroxisome proliferator-activated receptor γ (PPARγ) activity. Overall, our work establishes the feasibility of identifying small molecule inhibitors of Aβ-induced neurite loss using the NeuriteIQ pipeline and provides novel insights into the mechanisms of neuroprotection by NSAIDs.
Collapse
Affiliation(s)
- Dimitry Ofengeim
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Convertino M, Vitalis A, Caflisch A. Disordered binding of small molecules to Aβ(12-28). J Biol Chem 2011; 286:41578-41588. [PMID: 21969380 PMCID: PMC3308868 DOI: 10.1074/jbc.m111.285957] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/23/2011] [Indexed: 11/06/2022] Open
Abstract
In recent years, an increasing number of small molecules and short peptides have been identified that interfere with aggregation and/or oligomerization of the Alzheimer β-amyloid peptide (Aβ). Many of them possess aromatic moieties, suggesting a dominant role for those in interacting with Aβ along various stages of the aggregation process. In this study, we attempt to elucidate whether interactions of such aromatic inhibitors with monomeric Aβ(12-28) point to a common mechanism of action by performing atomistic molecular dynamics simulations at equilibrium. Our results suggest that, independently of the presence of inhibitors, monomeric Aβ(12-28) populates a partially collapsed ensemble that is largely devoid of canonical secondary structure at 300 K and neutral pH. The small molecules have different affinities for Aβ(12-28) that can be partially rationalized by the balance of aromatic and charged moieties constituting the molecules. There are no predominant binding modes, although aggregation inhibitors preferentially interact with the N-terminal portion of the fragment (residues 13-20). Analysis of the free energy landscape of Aβ(12-28) reveals differences highlighted by altered populations of a looplike conformer in the presence of inhibitors. We conclude that intrinsic disorder of Aβ persists at the level of binding small molecules and that inhibitors can significantly alter properties of monomeric Aβ via multiple routes of differing specificity.
Collapse
Affiliation(s)
- Marino Convertino
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
20
|
Tuffery P, Derreumaux P. Flexibility and binding affinity in protein-ligand, protein-protein and multi-component protein interactions: limitations of current computational approaches. J R Soc Interface 2011; 9:20-33. [PMID: 21993006 DOI: 10.1098/rsif.2011.0584] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recognition process between a protein and a partner represents a significant theoretical challenge. In silico structure-based drug design carried out with nothing more than the three-dimensional structure of the protein has led to the introduction of many compounds into clinical trials and numerous drug approvals. Central to guiding the discovery process is to recognize active among non-active compounds. While large-scale computer simulations of compounds taken from a library (virtual screening) or designed de novo are highly desirable in the post-genomic area, many technical problems remain to be adequately addressed. This article presents an overview and discusses the limits of current computational methods for predicting the correct binding pose and accurate binding affinity. It also presents the performances of the most popular algorithms for exploring binary and multi-body protein interactions.
Collapse
Affiliation(s)
- Pierre Tuffery
- INSERM UMR-S 973, Université Paris Diderot, 35 rue Hélène Brion, 75251 Paris cedex, France
| | | |
Collapse
|
21
|
Kim S, Chang WE, Kumar R, Klimov DK. Naproxen interferes with the assembly of Aβ oligomers implicated in Alzheimer's disease. Biophys J 2011; 100:2024-32. [PMID: 21504739 DOI: 10.1016/j.bpj.2011.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/15/2011] [Accepted: 02/24/2011] [Indexed: 12/23/2022] Open
Abstract
Experimental and epidemiological studies have shown that the nonsteroidal antiinflammatory drug naproxen may be useful in the treatment of Alzheimer's disease. To investigate the interactions of naproxen with Aβ dimers, which are the smallest cytotoxic aggregated Aβ peptide species, we use united atom implicit solvent model and exhaustive replica exchange molecular dynamics. We show that naproxen ligands bind to Aβ dimer and penetrate its volume interfering with the interpeptide interactions. As a result naproxen induces a destabilizing effect on Aβ dimer. By comparing the free-energy landscapes of naproxen interactions with Aβ dimers and fibrils, we conclude that this ligand has stronger antiaggregation potential against Aβ fibrils rather than against dimers. The analysis of naproxen binding energetics shows that the location of ligand binding sites in Aβ dimer is dictated by the Aβ amino acid sequence. Comparison of the in silico findings with experimental observations reveals potential limitations of naproxen as an effective therapeutic agent in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Seongwon Kim
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | | | | | | |
Collapse
|