1
|
Li S, Liu Q, Wang E, Wang J. Quantifying nonequilibrium dynamics and thermodynamics of cell fate decision making in yeast under pheromone induction. BIOPHYSICS REVIEWS 2023; 4:031401. [PMID: 38510708 PMCID: PMC10903495 DOI: 10.1063/5.0157759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 03/22/2024]
Abstract
Cellular responses to pheromone in yeast can range from gene expression to morphological and physiological changes. While signaling pathways are well studied, the cell fate decision-making during cellular polar growth is still unclear. Quantifying these cellular behaviors and revealing the underlying physical mechanism remain a significant challenge. Here, we employed a hidden Markov chain model to quantify the dynamics of cellular morphological systems based on our experimentally observed time series. The resulting statistics generated a stability landscape for state attractors. By quantifying rotational fluxes as the non-equilibrium driving force that tends to disrupt the current attractor state, the dynamical origin of non-equilibrium phase transition from four cell morphological fates to a single dominant fate was identified. We revealed that higher chemical voltage differences induced by a high dose of pheromone resulted in higher chemical currents, which will trigger a greater net input and, thus, more degrees of the detailed balance breaking. By quantifying the thermodynamic cost of maintaining morphological state stability, we demonstrated that the flux-related entropy production rate provides a thermodynamic origin for the phase transition in non-equilibrium morphologies. Furthermore, we confirmed that the time irreversibility in time series provides a practical way to predict the non-equilibrium phase transition.
Collapse
Affiliation(s)
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | - Jin Wang
- Department of Chemistry and of Physics and astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
2
|
Chu X, Wang J. Insights into the cell fate decision-making processes from chromosome structural reorganizations. BIOPHYSICS REVIEWS 2022; 3:041402. [PMID: 38505520 PMCID: PMC10914134 DOI: 10.1063/5.0107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
The cell fate decision-making process, which provides the capability of a cell transition to a new cell type, involves the reorganizations of 3D genome structures. Currently, the high temporal resolution picture of how the chromosome structural rearrangements occur and further influence the gene activities during the cell-state transition is still challenging to acquire. Here, we study the chromosome structural reorganizations during the cell-state transitions among the pluripotent embryonic stem cell, the terminally differentiated normal cell, and the cancer cell using a nonequilibrium landscape-switching model implemented in the molecular dynamics simulation. We quantify the chromosome (de)compaction pathways during the cell-state transitions and find that the two pathways having the same destinations can merge prior to reaching the final states. The chromosomes at the merging states have similar structural geometries but can differ in long-range compartment segregation and spatial distribution of the chromosomal loci and genes, leading to cell-type-specific transition mechanisms. We identify the irreversible pathways of chromosome structural rearrangements during the forward and reverse transitions connecting the same pair of cell states, underscoring the critical roles of nonequilibrium dynamics in the cell-state transitions. Our results contribute to the understanding of the cell fate decision-making processes from the chromosome structural perspective.
Collapse
Affiliation(s)
- Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
3
|
Zhang K, Ramos AF, Wang E, Wang J. The rate of thermodynamic cost against adiabatic and nonadiabatic fluctuations of a single gene circuit in Drosophila embryos. J Chem Phys 2022; 156:225101. [DOI: 10.1063/5.0091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the stochastic dynamics of the externally regulating gene circuit as an example of eve-skipped gene stripe in the development of Drosophila. Three gene regulation regimes are considered: adiabatic phase when the switching rate of the gene from the OFF to the ON state is faster than the rate of mRNA degradation; nonadiabatic phase when the switching rate from the OFF to the ON state is slower than that of the mRNA degradation; the bursting phase when the gene switching is fast and transcription is very fast, while the ON state probability is very low. We found that the rate of thermodynamic cost quantified by the entropy production rate can suppress the fluctuations of the gene circuit. Higher(lower) rate of thermodynamic cost leads to reduced (increased) fluctuations on the number of gene products in the adiabatic (nonadiabatic) regime. We also found that higher thermodynamic cost is often required to sustain the emergence of more gene states and therefore more heterogeneity coming from genetic mutations or epigenetics. We also study the stability of the gene state using the mean first passage time from one state to another. We found the monotonic decrease in time, i.e. on the stability of the state, in the transition from the nonadiabatic to the adiabatic regimes. Therefore, as the higher rate of thermodynamic cost suppresses the fluctuations, higher stability requires higher thermodynamics cost to maintain.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, China
| | | | - Erkang Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, China
| | - Jin Wang
- Chemistry, Physics and Astronomy, Stony Brook University, United States of America
| |
Collapse
|
4
|
Yu C, Liu Q, Wang J. A physical mechanism of heterogeneity and micro-metastasis in stem cell, cancer and cancer stem cell. J Chem Phys 2022; 156:075103. [DOI: 10.1063/5.0078196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chong Yu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, China
| | - Qiong Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
| | - Jin Wang
- Chemistry, Physics and Astronomy, Stony Brook University, United States of America
| |
Collapse
|
5
|
Bhattacharyya B, Wang J, Sasai M. Stochastic epigenetic dynamics of gene switching. Phys Rev E 2021; 102:042408. [PMID: 33212709 DOI: 10.1103/physreve.102.042408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Epigenetic modifications of histones crucially affect eukaryotic gene activity, while the epigenetic histone state is largely determined by the binding of specific factors such as the transcription factors (TFs) to DNA. Here, the way in which the TFs and the histone state are dynamically correlated is not obvious when the TF synthesis is regulated by the histone state. This type of feedback regulatory relation is ubiquitous in gene networks to determine cell fate in differentiation and other cell transformations. To gain insights into such dynamical feedback regulations, we theoretically analyze a model of epigenetic gene switching by extending the Doi-Peliti operator formalism of reaction kinetics to the problem of coupled molecular processes. Spin-1 and spin-1/2 coherent-state representations are introduced to describe stochastic reactions of histones and binding or unbinding of TFs in a unified way, which provides a concise view of the effects of timescale difference among these molecular processes; even in the case that binding or unbinding of TFs to or from DNA is adiabatically fast, the slow nonadiabatic histone dynamics gives rise to a distinct circular flow of the probability flux around basins in the landscape of the gene state distribution, which leads to hysteresis in gene switching. In contrast to the general belief that the change in the amount of TF precedes the histone state change, flux drives histones to be modified prior to the change in the amount of TF in self-regulating circuits. Flux-landscape analyses shed light on the nonlinear nonadiabatic mechanism of epigenetic cell fate decision making.
Collapse
Affiliation(s)
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
6
|
Fluctuating-rate model with multiple gene states. J Math Biol 2020; 81:1099-1141. [PMID: 33000313 DOI: 10.1007/s00285-020-01538-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Multiple phenotypic states of single cells often co-exist in the presence of positive feedbacks. Stochastic gene-state switchings and low copy numbers of proteins in single cells cause considerable fluctuations. The chemical master equation (CME) is a powerful tool that describes the dynamics of single cells, but it may be overly complicated. Among many simplified models, a fluctuating-rate (FR) model has been proposed recently to approximate the full CME model in the realistic intermediate region of gene-state switchings. However, only the scenario with two gene states has been carefully analysed. In this paper, we generalise the FR model to the case with multiple gene states, in which the mathematical derivation becomes more complicated. The leading order of fluctuations around each phenotypic state, as well as the transition rates between phenotypic states, in the intermediate gene-state switching region is characterized by the rate function of the stationary distribution of the FR model in the Freidlin-Wentzell-type large deviation principle (LDP). Under certain reasonable assumptions, we show that the derivative of the rate function is equal to the unique nontrivial solution of a dominant generalised eigenvalue problem, leading to a new numerical algorithm for obtaining the LDP rate function directly. Furthermore, we prove the Lyapunov property of the rate function for the corresponding deterministic mean-field dynamics. Finally, through a tristable example, we show that the local fluctuations (the asymptotic variance of the stationary distribution at each phenotypic state) in the intermediate and rapid regions of gene-state switchings are different. Finally, a tri-stable example is constructed to illustrate the validity of our theory.
Collapse
|
7
|
Chu X, Wang J. Microscopic Chromosomal Structural and Dynamical Origin of Cell Differentiation and Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001572. [PMID: 33101859 PMCID: PMC7578896 DOI: 10.1002/advs.202001572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
As an essential and fundamental process of life, cell development involves large-scale reorganization of the 3D genome architecture, which forms the basis of gene regulation. Here, a landscape-switching model is developed to explore the microscopic chromosomal structural origin of embryonic stem cell (ESC) differentiation and somatic cell reprogramming. It is shown that chromosome structure exhibits significant compartment-switching in the unit of topologically associating domain. It is found that the chromosome during differentiation undergoes monotonic compaction with spatial repositioning of active and inactive chromosomal loci toward the chromosome surface and interior, respectively. In contrast, an overexpanded chromosome, which exhibits universal localization of loci at the chromosomal surface with erasing the structural characteristics formed in the somatic cells, is observed during reprogramming. An early distinct differentiation pathway from the ESC to the terminally differentiated cell, giving rise to early bifurcation on the Waddington landscape for the ESC differentiation is suggested. The theoretical model herein including the non-equilibrium effects, draws a picture of the highly irreversible cell differentiation and reprogramming processes, in line with the experiments. The predictions provide a physical understanding of cell differentiation and reprogramming from the chromosomal structural and dynamical perspective and can be tested by future experiments.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of ChemistryState University of New York at Stony BrookStony BrookNY11794USA
| | - Jin Wang
- Department of ChemistryState University of New York at Stony BrookStony BrookNY11794USA
- Department of Physics and AstronomyState University of New York at Stony BrookStony BrookNY11794USA
| |
Collapse
|
8
|
Thermodynamic Analysis of Bistability in Rayleigh-Bénard Convection. ENTROPY 2020; 22:e22080800. [PMID: 33286571 PMCID: PMC7517371 DOI: 10.3390/e22080800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
Abstract
Bistability is often encountered in association with dissipative systems far from equilibrium, such as biological, physical, and chemical phenomena. There have been various attempts to theoretically analyze the bistabilities of dissipative systems. However, there is no universal theoretical approach to determine the development of a bistable system far from equilibrium. This study shows that thermodynamic analysis based on entropy production can be used to predict the transition point in the bistable region during Rayleigh–Bénard convection using the experimental relationship between the thermodynamic flux and driving force. The bistable region is characterized by two distinct features: the flux of the second state is higher than that of the first state, and the entropy production of the second state is lower than that of the first state. This thermodynamic interpretation provides new insights that can be used to predict bistable behaviors in various dissipative systems.
Collapse
|
9
|
Fang X, Wang J. Nonequilibrium Thermodynamics in Cell Biology: Extending Equilibrium Formalism to Cover Living Systems. Annu Rev Biophys 2020; 49:227-246. [DOI: 10.1146/annurev-biophys-121219-081656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We discuss new developments in the nonequilibrium dynamics and thermodynamics of living systems, giving a few examples to demonstrate the importance of nonequilibrium thermodynamics for understanding biological dynamics and functions. We study single-molecule enzyme dynamics, in which the nonequilibrium thermodynamic and dynamic driving forces of chemical potential and flux are crucial for the emergence of non-Michaelis-Menten kinetics. We explore single-gene expression dynamics, in which nonequilibrium dissipation can suppress fluctuations. We investigate the cell cycle and identify the nutrition supply as the energy input that sustains the stability, speed, and coherence of cell cycle oscillation, from which the different vital phases of the cell cycle emerge. We examine neural decision-making processes and find the trade-offs among speed, accuracy, and thermodynamic costs that are important for neural function. Lastly, we consider the thermodynamic cost for specificity in cellular signaling and adaptation.
Collapse
Affiliation(s)
- Xiaona Fang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jin Wang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
10
|
Jia C, Wang LY, Yin GG, Zhang MQ. Single-cell stochastic gene expression kinetics with coupled positive-plus-negative feedback. Phys Rev E 2019; 100:052406. [PMID: 31869986 DOI: 10.1103/physreve.100.052406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 06/10/2023]
Abstract
Here we investigate single-cell stochastic gene expression kinetics in a minimal coupled gene circuit with positive-plus-negative feedback. A triphasic stochastic bifurcation is observed upon increasing the ratio of the positive and negative feedback strengths, which reveals a strong synergistic interaction between positive and negative feedback loops. We discover that coupled positive-plus-negative feedback amplifies gene expression mean but reduces gene expression noise over a wide range of feedback strengths when promoter switching is relatively slow, stabilizing gene expression around a relatively high level. In addition, we study two types of macroscopic limits of the discrete chemical master equation model: the Kurtz limit applies to proteins with large burst frequencies and the Lévy limit applies to proteins with large burst sizes. We derive the analytic steady-state distributions of the protein abundance in a coupled gene circuit for both the discrete model and its two macroscopic limits, generalizing the results obtained by Liu et al. [Chaos 26, 043108 (2016)CHAOEH1054-150010.1063/1.4947202]. We also obtain the analytic time-dependent protein distribution for the classical Friedman-Cai-Xie random bursting model [Friedman, Cai, and Xie, Phys. Rev. Lett. 97, 168302 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.168302]. Our analytic results are further applied to study the structure of gene expression noise in a coupled gene circuit, and a complete decomposition of noise in terms of five different biophysical origins is provided.
Collapse
Affiliation(s)
- Chen Jia
- Division of Applied and Computational Mathematics, Beijing Computational Science Research Center, Beijing 100193, China
- Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA
| | - Le Yi Wang
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202, USA
| | - George G Yin
- Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Jiang Z, Tian L, Fang X, Zhang K, Liu Q, Dong Q, Wang E, Wang J. The emergence of the two cell fates and their associated switching for a negative auto-regulating gene. BMC Biol 2019; 17:49. [PMID: 31202264 PMCID: PMC6570905 DOI: 10.1186/s12915-019-0666-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/20/2019] [Indexed: 01/24/2023] Open
Abstract
Background Decisions in the cell that lead to its ultimate fate are important for fundamental cellular functions such as proliferation, growth, differentiation, development, and death. These cell fate decisions can be influenced by both the gene regulatory network and also environmental factors and can be modeled using simple gene feedback circuits. Negative auto-regulation is a common feedback motif in the gene circuits. It can act to reduce gene expression noise or induce oscillatory expression and is thought to lead to only one cell fate. Here, we present experimental and modeling data to suggest that a self-repressor circuit can lead to two cell fates under specific conditions. Results We show that the introduction of inducers capable of binding and unbinding to a self-repressing gene product (protein), thus regulating the associated gene, can lead to the emergence of two cell states. We suggest that the inducers can alter the effective regulatory binding and unbinding speed of the self-repressor regulatory protein to its destination DNA without changing the gene itself. The corresponding simulation results are consistent with the experimental findings. We propose physical and quantitative explanations for the origin of the two phenotypic cell fates. Conclusions Our results suggest a mechanism for the emergence of multiple cell fates. This may explain the heterogeneity often observed among cell states, while illustrating that altering gene regulation strength can influence cell fates and their decision-making processes without genetic changes. Electronic supplementary material The online version of this article (10.1186/s12915-019-0666-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,College of Physics, Jilin University, Changchun, Jilin, 130012, China
| | - Li Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaona Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qingzhe Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York, 11794-3400, USA.
| |
Collapse
|
12
|
Probabilistic control of HIV latency and transactivation by the Tat gene circuit. Proc Natl Acad Sci U S A 2018; 115:12453-12458. [PMID: 30455316 DOI: 10.1073/pnas.1811195115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The "shock-and-kill" strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in controlling latency and its transactivation in HIV-infected cells, the detailed control mechanisms are not well understood. Here we study the mechanism of probabilistic control of the latent and the transactivated cell phenotypes of HIV-infected cells. We reconstructed the probability landscape, which is the probability distribution of the Tat gene circuit states, by directly computing the exact solution of the underlying chemical master equation. Results show that the Tat circuit exhibits a clear bimodal probability landscape (i.e., there are two distinct probability peaks, one associated with the latent cell phenotype and the other with the transactivated cell phenotype). We explore potential modifications to reactions in the Tat gene circuit for more effective transactivation of latent cells (i.e., the shock-and-kill strategy). Our results suggest that enhancing Tat acetylation can dramatically increase Tat and viral production, while increasing the Tat-transactivation response binding affinity can transactivate latent cells more rapidly than other manipulations. Our results further explored the "block and lock" strategy toward a functional cure for HIV. Overall, our study demonstrates a general approach toward discovery of effective therapeutic strategies and druggable targets by examining control mechanisms of cell phenotype switching via exactly computed probability landscapes of reaction networks.
Collapse
|
13
|
Li C, Balazsi G. A landscape view on the interplay between EMT and cancer metastasis. NPJ Syst Biol Appl 2018; 4:34. [PMID: 30155271 PMCID: PMC6107626 DOI: 10.1038/s41540-018-0068-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a basic developmental process that converts epithelial cells to mesenchymal cells. Although EMT might promote cancer metastasis, the molecular mechanisms for it remain to be fully clarified. To address this issue, we constructed an EMT-metastasis gene regulatory network model and quantified the potential landscape of cancer metastasis-promoting system computationally. We identified four steady-state attractors on the landscape, which separately characterize anti-metastatic (A), metastatic (M), and two other intermediate (I1 and I2) cell states. The tetrastable landscape and the existence of intermediate states are consistent with recent single-cell measurements. We identified one of the two intermediate states I1 as the EMT state. From a MAP approach, we found that for metastatic progression cells need to first undergo EMT (enter the I1 state), and then become metastatic (switch from the I1 state to the M state). Specifically, for metastatic progression, EMT genes (such as ZEB) should be activated before metastasis genes (such as BACH1). This suggests that temporal order is important for the activation of cellular programs in biological systems, and provides a possible mechanism of EMT-promoting cancer metastasis. To identify possible therapeutic targets from this landscape view, we performed sensitivity analysis for individual molecular factors, and identified optimal interventions for landscape control. We found that minimizing transition actions more effectively identifies optimal combinations of targets that induce transitions between attractors than single-factor sensitivity analysis. Overall, the landscape view not only suggests that intermediate states increase plasticity during cell fate decisions, providing a possible source for tumor heterogeneity that is critically important in metastatic progress, but also provides a way to identify therapeutic targets for preventing cancer progression.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Gabor Balazsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
14
|
Fang X, Liu Q, Bohrer C, Hensel Z, Han W, Wang J, Xiao J. Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch. Nat Commun 2018; 9:2787. [PMID: 30018349 PMCID: PMC6050291 DOI: 10.1038/s41467-018-05071-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Bistable switches are common gene regulatory motifs directing two mutually exclusive cell fates. Theoretical studies suggest that bistable switches are sufficient to encode more than two cell fates without rewiring the circuitry due to the non-equilibrium, heterogeneous cellular environment. However, such a scenario has not been experimentally observed. Here by developing a new, dual single-molecule gene-expression reporting system, we find that for the two mutually repressing transcription factors CI and Cro in the classic bistable bacteriophage λ switch, there exist two new production states, in which neither CI nor Cro is produced, or both CI and Cro are produced. We construct the corresponding potential landscape and map the transition kinetics among the four production states. These findings uncover cell fate potentials beyond the classical picture of bistable switches, and open a new window to explore the genetic and environmental origins of the cell fate decision-making process in gene regulatory networks.
Collapse
Affiliation(s)
- Xiaona Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, 130022, China
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- College of Physics, Jilin University, Changchun, 130012, China
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, 130022, China
| | - Christopher Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Wei Han
- College of Physics, Jilin University, Changchun, 130012, China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, 130022, China.
- College of Physics, Jilin University, Changchun, 130012, China.
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Earnest TM, Cole JA, Luthey-Schulten Z. Simulating biological processes: stochastic physics from whole cells to colonies. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:052601. [PMID: 29424367 DOI: 10.1088/1361-6633/aaae2c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a 'minimal cell'. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.
Collapse
Affiliation(s)
- Tyler M Earnest
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, United States of America. National Center for Supercomputing Applications, University of Illinois, Urbana, IL, 61801, United States of America
| | | | | |
Collapse
|
16
|
Ge H, Wu P, Qian H, Xie XS. Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state. PLoS Comput Biol 2018. [PMID: 29529037 PMCID: PMC5864076 DOI: 10.1371/journal.pcbi.1006051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional “variations” among genetically identical cells, for the emergence of bistability and transition between phenotypic states. Identifying the mechanism underlying the coexistence of multiple stable phenotypic states has been a challenging scientific problem for more than half a century, and an appropriate mathematical model at the single-cell level is also in high demand. Single-cell measurements conducted in the past ten years have shown that gene-state switching is slow relative to the typical rates of active transcription and translation; hence the recently proposed fluctuating-rate model is a good candidate for describing the single-cell dynamics. We use the classic gene regulation module of the lac operon as an archetype and build a specific fluctuating-rate model based on the recently identified operon-state switching mechanism. This model is analyzed to dissect the interplay between positive feedback and the stochastic switching of gene states in the emergence of bistability/multistablity and the transition between phenotypic states. We show that relatively slow operon-state switching stabilizes the uninduced state and that the positive feedback stabilizes the induced state. Thus, the parameter range for bistability is significantly broadened. In addition, recently proposed landscape theory and rate formula predict opposite phenotype-transition rate dependence on operon-state switching rates for the two types of bistability.
Collapse
Affiliation(s)
- Hao Ge
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, P.R.China
- Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing, P.R.China
- * E-mail: (HG); (XSX)
| | - Pingping Wu
- School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai, P.R.China
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Xiaoliang Sunney Xie
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, P.R.China
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (HG); (XSX)
| |
Collapse
|
17
|
Li C. Identifying the optimal anticancer targets from the landscape of a cancer-immunity interaction network. Phys Chem Chem Phys 2018; 19:7642-7651. [PMID: 28256642 DOI: 10.1039/c6cp07767f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer immunotherapy, an approach of targeting immune cells to attack tumor cells, has been suggested to be a promising way for cancer treatment recently. However, the successful application of this approach warrants a deeper understanding of the intricate interplay between cancer cells and the immune system. Especially, the mechanisms of immunotherapy remain elusive. In this work, we constructed a cancer-immunity interplay network by incorporating interactions among cancer cells and some representative immune cells, and uncovered the potential landscape of the cancer-immunity network. Three attractors emerge on the landscape, representing the cancer state, the immune state, and the hybrid state, which can correspond to escape, elimination, and equilibrium phases in the immunoediting theory, respectively. We quantified the transition processes between the cancer state and the immune state by calculating transition actions and identifying the corresponding minimum action paths (MAPs) between these two attractors. The transition actions, directly calculated from the high dimensional system, are correlated with the barrier heights from the landscape, but provide a more precise description of the dynamics of a system. By optimizing the transition actions from the cancer state to the immune state, we identified some optimal combinations of anticancer targets. Our combined approach of the landscape and optimization of transition actions offers a framework to study the stochastic dynamics and identify the optimal combination of targets for the cancer-immunity interplay, and can be applied to other cell communication networks or gene regulatory networks.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China. and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Lin YT, Hufton PG, Lee EJ, Potoyan DA. A stochastic and dynamical view of pluripotency in mouse embryonic stem cells. PLoS Comput Biol 2018; 14:e1006000. [PMID: 29451874 PMCID: PMC5833290 DOI: 10.1371/journal.pcbi.1006000] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/01/2018] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals.
Collapse
Affiliation(s)
- Yen Ting Lin
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Peter G. Hufton
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Esther J. Lee
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
19
|
Wu F, Su RQ, Lai YC, Wang X. Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination. eLife 2017; 6. [PMID: 28397688 PMCID: PMC5388541 DOI: 10.7554/elife.23702] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
The process of cell fate determination has been depicted intuitively as cells travelling and resting on a rugged landscape, which has been probed by various theoretical studies. However, few studies have experimentally demonstrated how underlying gene regulatory networks shape the landscape and hence orchestrate cellular decision-making in the presence of both signal and noise. Here we tested different topologies and verified a synthetic gene circuit with mutual inhibition and auto-activations to be quadrastable, which enables direct study of quadruple cell fate determination on an engineered landscape. We show that cells indeed gravitate towards local minima and signal inductions dictate cell fates through modulating the shape of the multistable landscape. Experiments, guided by model predictions, reveal that sequential inductions generate distinct cell fates by changing landscape in sequence and hence navigating cells to different final states. This work provides a synthetic biology framework to approach cell fate determination and suggests a landscape-based explanation of fixed induction sequences for targeted differentiation. DOI:http://dx.doi.org/10.7554/eLife.23702.001 Cells in animals use a process called differentiation to specialize into specific cell types such as skin cells and liver cells. Proteins called transcription factors drive particular steps in differentiation by controlling the activity of specific genes. Many transcription factors interact with each other to form complex networks that regulate gene activity to determine the fate of a cell and control the whole differentiation process. Some individual gene networks can program cells to become any one of several different cell fates, a feature known as multistability. In the 1950s, a scientist called Conrad Waddington proposed the concept of an “epigenetic landscape” to describe how the fate of a cell is decided as an animal develops. The cell, depicted as a ball, rolls down a rugged landscape and has the option of taking several different routes. Each route will eventually lead to a distinct cell fate. As the ball moves down the hill, the choice of routes and final destinations becomes more limited. Theoretical approaches have been used to understand how gene regulatory networks shape the epigenetic landscape of an animal. However, few studies have experimentally tested the findings of the theoretical approaches and it is not clear how environmental inputs help to determine which path a cell will take. Although bacteria cells do not generally specialize into particular cell types, bacteria cells can use multistability in transcription factor networks to switch between different behaviors or “states” in response to cues from the environment. Wu et al. used a bacterium called E. coli as a model to investigate how a gene network called MINPA from mammals, which is involved in differentiation and is believed to show multistability, can guide cells to adopt different states. The work combined experimental and mathematical approaches to design, construct and test an artificial version of the MINPA gene network in E. coli. The experiments showed that MINPA could direct the cells to adopt four different stable states in which the cells produced fluorescent proteins of different colors. With the help of mathematical modeling, Wu et al. charted how the landscape of cell states changed when external chemical cues were applied. Exposing the cells to several cues in particular orders guided the cells to different final states. The findings of Wu et al. shed new light on how the fate of a cell is determined and provide a theoretical framework for understanding the complex networks that control cell differentiation. This could help develop new ways of directing cell fate that could ultimately be used to generate cells to treat human diseases. DOI:http://dx.doi.org/10.7554/eLife.23702.002
Collapse
Affiliation(s)
- Fuqing Wu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States
| | - Ri-Qi Su
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States.,School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, United States
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, United States.,Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen, United Kingdom.,Department of Physics, Arizona State University, Tempe, United States
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States
| |
Collapse
|
20
|
A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.10.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Chen C, Zhang K, Feng H, Sasai M, Wang J. Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes. Phys Chem Chem Phys 2016; 17:29036-44. [PMID: 26455835 DOI: 10.1039/c5cp04780c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.
Collapse
Affiliation(s)
- Cong Chen
- Physics Department, Stony Brook University, NY 11794, USA.
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Haidong Feng
- Chemistry Department, Stony Brook University, NY 11794, USA
| | - Masaki Sasai
- Department of Computational Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Jin Wang
- Physics Department, Stony Brook University, NY 11794, USA. and Chemistry Department, Stony Brook University, NY 11794, USA
| |
Collapse
|
22
|
Abstract
Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.
Collapse
Affiliation(s)
- Davit A Potoyan
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
23
|
Chen C, Wang J. A physical mechanism of cancer heterogeneity. Sci Rep 2016; 6:20679. [PMID: 26854017 PMCID: PMC4745067 DOI: 10.1038/srep20679] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/31/2015] [Indexed: 12/21/2022] Open
Abstract
We studied a core cancer gene regulatory network motif to uncover possible source of cancer heterogeneity from epigenetic sources. When the time scale of the protein regulation to the gene is faster compared to the protein synthesis and degradation (adiabatic regime), normal state, cancer state and an intermediate premalignant state emerge. Due to the epigenetics such as DNA methylation and histone remodification, the time scale of the protein regulation to the gene can be slower or comparable to the protein synthesis and degradation (non-adiabatic regime). In this case, many more states emerge as possible phenotype alternations. This gives the origin of the heterogeneity. The cancer heterogeneity is reflected from the emergence of more phenotypic states, larger protein concentration fluctuations, wider kinetic distributions and multiplicity of kinetic paths from normal to cancer state, higher energy cost per gene switching, and weaker stability.
Collapse
Affiliation(s)
- Cong Chen
- Physics Department, Stony Brook University, NY 11794
| | - Jin Wang
- Physics Department, Stony Brook University, NY 11794.,Chemistry Department, Stony Brook University, NY 11794.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022
| |
Collapse
|
24
|
Ashwin SS, Sasai M. Effects of Collective Histone State Dynamics on Epigenetic Landscape and Kinetics of Cell Reprogramming. Sci Rep 2015; 5:16746. [PMID: 26581803 PMCID: PMC4652167 DOI: 10.1038/srep16746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Cell reprogramming is a process of transitions from differentiated to pluripotent cell states via transient intermediate states. Within the epigenetic landscape framework, such a process is regarded as a sequence of transitions among basins on the landscape; therefore, theoretical construction of a model landscape which exhibits experimentally consistent dynamics can provide clues to understanding epigenetic mechanism of reprogramming. We propose a minimal gene-network model of the landscape, in which each gene is regulated by an integrated mechanism of transcription-factor binding/unbinding and the collective chemical modification of histones. We show that the slow collective variation of many histones around each gene locus alters topology of the landscape and significantly affects transition dynamics between basins. Differentiation and reprogramming follow different transition pathways on the calculated landscape, which should be verified experimentally via single-cell pursuit of the reprogramming process. Effects of modulation in collective histone state kinetics on transition dynamics and pathway are examined in search for an efficient protocol of reprogramming.
Collapse
Affiliation(s)
- S S Ashwin
- Department of Computational Science and Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Masaki Sasai
- Department of Computational Science and Engineering, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
25
|
Chen Y, Lv C, Li F, Li T. Distinguishing the rates of gene activation from phenotypic variations. BMC SYSTEMS BIOLOGY 2015; 9:29. [PMID: 26084378 PMCID: PMC4479085 DOI: 10.1186/s12918-015-0172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/29/2015] [Indexed: 11/19/2022]
Abstract
Background Stochastic genetic switching driven by intrinsic noise is an important process in gene expression. When the rates of gene activation/inactivation are relatively slow, fast, or medium compared with the synthesis/degradation rates of mRNAs and proteins, the variability of protein and mRNA levels may exhibit very different dynamical patterns. It is desirable to provide a systematic approach to identify their key dynamical features in different regimes, aiming at distinguishing which regime a considered gene regulatory network is in from their phenotypic variations. Results We studied a gene expression model with positive feedbacks when genetic switching rates vary over a wide range. With the goal of providing a method to distinguish the regime of the switching rates, we first focus on understanding the essential dynamics of gene expression system in different cases. In the regime of slow switching rates, we found that the effective dynamics can be reduced to independent evolutions on two separate layers corresponding to gene activation and inactivation states, and the transitions between two layers are rare events, after which the system goes mainly along deterministic ODE trajectories on a particular layer to reach new steady states. The energy landscape in this regime can be well approximated by using Gaussian mixture model. In the regime of intermediate switching rates, we analyzed the mean switching time to investigate the stability of the system in different parameter ranges. We also discussed the case of fast switching rates from the viewpoint of transition state theory. Based on the obtained results, we made a proposal to distinguish these three regimes in a simulation experiment. We identified the intermediate regime from the fact that the strength of cellular memory is lower than the other two cases, and the fast and slow regimes can be distinguished by their different perturbation-response behavior with respect to the switching rates perturbations. Conclusions We proposed a simulation experiment to distinguish the slow, intermediate and fast regimes, which is the main point of our paper. In order to achieve this goal, we systematically studied the essential dynamics of gene expression system when the switching rates are in different regimes. Our theoretical understanding provides new insights on the gene expression experiments. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0172-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Chen
- LMAM and School of Mathematical Sciences, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Cheng Lv
- School of Physics, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Fangting Li
- School of Physics, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Tiejun Li
- LMAM and School of Mathematical Sciences, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
26
|
Ge H, Qian H, Xie XS. Stochastic phenotype transition of a single cell in an intermediate region of gene state switching. PHYSICAL REVIEW LETTERS 2015; 114:078101. [PMID: 25763973 DOI: 10.1103/physrevlett.114.078101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 06/04/2023]
Abstract
Multiple phenotypic states often arise in a single cell with different gene-expression states that undergo transcription regulation with positive feedback. Recent experiments show that, at least in E.coli, the gene state switching can be neither extremely slow nor exceedingly rapid as many previous theoretical treatments assumed. Rather, it is in the intermediate region which is difficult to handle mathematically. Under this condition, from a full chemical-master-equation description we derive a model in which the protein copy number, for a given gene state, follows a deterministic mean-field description while the protein-synthesis rates fluctuate due to stochastic gene state switching. The simplified kinetics yields a nonequilibrium landscape function, which, similar to the energy function for equilibrium fluctuation, provides the leading orders of fluctuations around each phenotypic state, as well as the transition rates between the two phenotypic states. This rate formula is analogous to Kramers' theory for chemical reactions. The resulting behaviors are significantly different from the two limiting cases studied previously.
Collapse
Affiliation(s)
- Hao Ge
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, People's Republic of China
- Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing 100871, People's Republic of China
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA
| | - X Sunney Xie
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, People's Republic of China
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
27
|
Kumar N, Platini T, Kulkarni RV. Exact distributions for stochastic gene expression models with bursting and feedback. PHYSICAL REVIEW LETTERS 2014; 113:268105. [PMID: 25615392 DOI: 10.1103/physrevlett.113.268105] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 06/04/2023]
Abstract
Stochasticity in gene expression can give rise to fluctuations in protein levels and lead to phenotypic variation across a population of genetically identical cells. Recent experiments indicate that bursting and feedback mechanisms play important roles in controlling noise in gene expression and phenotypic variation. A quantitative understanding of the impact of these factors requires analysis of the corresponding stochastic models. However, for stochastic models of gene expression with feedback and bursting, exact analytical results for protein distributions have not been obtained so far. Here, we analyze a model of gene expression with bursting and feedback regulation and obtain exact results for the corresponding protein steady-state distribution. The results obtained provide new insights into the role of bursting and feedback in noise regulation and optimization. Furthermore, for a specific choice of parameters, the system studied maps on to a two-state biochemical switch driven by a bursty input noise source. The analytical results derived provide quantitative insights into diverse cellular processes involving noise in gene expression and biochemical switching.
Collapse
Affiliation(s)
- Niraj Kumar
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Thierry Platini
- Applied Mathematics Research Center, Coventry University, Coventry CV1 5FB, England
| | - Rahul V Kulkarni
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
28
|
Xu L, Zhang K, Wang J. Exploring the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation. PLoS One 2014; 9:e105216. [PMID: 25133589 PMCID: PMC4136825 DOI: 10.1371/journal.pone.0105216] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/17/2014] [Indexed: 12/18/2022] Open
Abstract
We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good agreements with the experiments. It provides a general framework to explore the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| |
Collapse
|
29
|
Sasai M, Kawabata Y, Makishi K, Itoh K, Terada TP. Time scales in epigenetic dynamics and phenotypic heterogeneity of embryonic stem cells. PLoS Comput Biol 2013; 9:e1003380. [PMID: 24348228 PMCID: PMC3861442 DOI: 10.1371/journal.pcbi.1003380] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022] Open
Abstract
A remarkable feature of the self-renewing population of embryonic stem cells (ESCs) is their phenotypic heterogeneity: Nanog and other marker proteins of ESCs show large cell-to-cell variation in their expression level, which should significantly influence the differentiation process of individual cells. The molecular mechanism and biological implication of this heterogeneity, however, still remain elusive. We address this problem by constructing a model of the core gene-network of mouse ESCs. The model takes account of processes of binding/unbinding of transcription factors, formation/dissolution of transcription apparatus, and modification of histone code at each locus of genes in the network. These processes are hierarchically interrelated to each other forming the dynamical feedback loops. By simulating stochastic dynamics of this model, we show that the phenotypic heterogeneity of ESCs can be explained when the chromatin at the Nanog locus undergoes the large scale reorganization in formation/dissolution of transcription apparatus, which should have the timescale similar to the cell cycle period. With this slow transcriptional switching of Nanog, the simulated ESCs fluctuate among multiple transient states, which can trigger the differentiation into the lineage-specific cell states. From the simulated transitions among cell states, the epigenetic landscape underlying transitions is calculated. The slow Nanog switching gives rise to the wide basin of ESC states in the landscape. The bimodal Nanog distribution arising from the kinetic flow running through this ESC basin prevents transdifferentiation and promotes the definite decision of the cell fate. These results show that the distribution of timescales of the regulatory processes is decisively important to characterize the fluctuation of cells and their differentiation process. The analyses through the epigenetic landscape and the kinetic flow on the landscape should provide a guideline to engineer cell differentiation. Embryonic stem cells (ESCs) can proliferate indefinitely by keeping pluripotency, i.e., the ability to differentiate into any cell-lineage. ESCs, therefore, have been the focus of intense biological and medical interests. A remarkable feature of ESCs is their phenotypic heterogeneity: ESCs show large cell-to-cell fluctuation in the expression level of Nanog, which is a key factor to maintain pluripotency. Since Nanog regulates many genes in ESCs, this fluctuation should seriously affect individual cells when they start differentiation. In this paper we analyze this phenotypic fluctuation by simulating the stochastic dynamics of gene network in ESCs. The model takes account of the mutually interrelated processes of gene regulation such as binding/unbinding of transcription factors, formation/dissolution of transcription apparatus, and histone-code modification. We show the distribution of timescales of these processes is decisively important to characterize the dynamical behavior of the gene network, and that the slow formation/dissolution of transcription apparatus at the Nanog locus explains the observed large fluctuation of ESCs. The epigenetic landscapes are calculated based on the stochastic simulation, and the role of the phenotypic fluctuation in the differentiation process is analyzed through the landscape picture.
Collapse
Affiliation(s)
- Masaki Sasai
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan ; Department of Applied Physics, Nagoya University, Nagoya, Japan ; School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea ; Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Yudai Kawabata
- Department of Applied Physics, Nagoya University, Nagoya, Japan
| | - Koh Makishi
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Kazuhito Itoh
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Tomoki P Terada
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan ; Department of Applied Physics, Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
Li C, Wang J. Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation. J R Soc Interface 2013; 10:20130787. [PMID: 24132204 DOI: 10.1098/rsif.2013.0787] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular differentiation, reprogramming and transdifferentiation are determined by underlying gene regulatory networks. Non-adiabatic regulation via slow binding/unbinding to the gene can be important in these cell fate decision-making processes. Based on a stem cell core gene network, we uncovered the stem cell developmental landscape. As the binding/unbinding speed decreases, the landscape topography changes from bistable attractors of stem and differentiated states to more attractors of stem and other different cell states as well as substates. Non-adiabaticity leads to more differentiated cell types and provides a natural explanation for the heterogeneity observed in the experiments. We quantified Waddington landscapes with two possible cell fate decision mechanisms by changing the regulation strength or regulation timescale (non-adiabaticity). Transition rates correlate with landscape topography through barrier heights between different states and quantitatively determine global stability. We found the optimal speeds of these cell fate decision-making processes. We quantified biological paths and predict that differentiation and reprogramming go through an intermediate state (IM1), whereas transdifferentiation goes through another intermediate state (IM2). Some predictions are confirmed by recent experimental studies.
Collapse
Affiliation(s)
- Chunhe Li
- Department of Chemistry and Physics, State University of New York at Stony Brook, , Stony Brook, NY, USA
| | | |
Collapse
|
31
|
Eddy current and coupled landscapes for nonadiabatic and nonequilibrium complex system dynamics. Proc Natl Acad Sci U S A 2013; 110:14930-5. [PMID: 23980160 DOI: 10.1073/pnas.1305604110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Physical and biological systems are often involved with coupled processes of different time scales. In the system with electronic and atomic motions, for example, the interplay between the atomic motion along the same energy landscape and the electronic hopping between different landscapes is critical: the system behavior largely depends on whether the intralandscape motion is slower (adiabatic) or faster (nonadiabatic) than the interlandscape hopping. For general nonequilibrium dynamics where Hamiltonian or energy function is unknown a priori, the challenge is how to extend the concepts of the intra- and interlandscape dynamics. In this paper we establish a theoretical framework for describing global nonequilibrium and nonadiabatic complex system dynamics by transforming the coupled landscapes into a single landscape but with additional dimensions. On this single landscape, dynamics is driven by gradient of the potential landscape, which is closely related to the steady-state probability distribution of the enlarged dimensions, and the probability flux, which has a curl nature. Through an example of a self-regulating gene circuit, we show that the curl flux has dramatic effects on gene regulatory dynamics. The curl flux and landscape framework developed here are easy to visualize and can be used to guide further investigation of physical and biological nonequilibrium systems.
Collapse
|
32
|
Zhang J, Nie Q, He M, Zhou T. An effective method for computing the noise in biochemical networks. J Chem Phys 2013; 138:084106. [PMID: 23464139 DOI: 10.1063/1.4792444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a simple yet effective method, which is based on power series expansion, for computing exact binomial moments that can be in turn used to compute steady-state probability distributions as well as the noise in linear or nonlinear biochemical reaction networks. When the method is applied to representative reaction networks such as the ON-OFF models of gene expression, gene models of promoter progression, gene auto-regulatory models, and common signaling motifs, the exact formulae for computing the intensities of noise in the species of interest or steady-state distributions are analytically given. Interestingly, we find that positive (negative) feedback does not enlarge (reduce) noise as claimed in previous works but has a counter-intuitive effect and that the multi-OFF (or ON) mechanism always attenuates the noise in contrast to the common ON-OFF mechanism and can modulate the noise to the lowest level independently of the mRNA mean. Except for its power in deriving analytical expressions for distributions and noise, our method is programmable and has apparent advantages in reducing computational cost.
Collapse
Affiliation(s)
- Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Grima R, Schmidt DR, Newman TJ. Steady-state fluctuations of a genetic feedback loop: an exact solution. J Chem Phys 2012; 137:035104. [PMID: 22830733 DOI: 10.1063/1.4736721] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence, exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution [J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic, and P. G. Wolynes, Phys. Rev. E 72, 051907 (2005), and subsequent studies]. We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.
Collapse
Affiliation(s)
- R Grima
- SynthSys Edinburgh, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.
| | | | | |
Collapse
|
34
|
Ohkubo J. Counting statistics for genetic switches based on effective interaction approximation. J Chem Phys 2012; 137:125102. [DOI: 10.1063/1.4754537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Zuk PJ, Kochańczyk M, Jaruszewicz J, Bednorz W, Lipniacki T. Dynamics of a stochastic spatially extended system predicted by comparing deterministic and stochastic attractors of the corresponding birth–death process. Phys Biol 2012; 9:055002. [DOI: 10.1088/1478-3975/9/5/055002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Feng H, Wang J. A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes. Sci Rep 2012; 2:550. [PMID: 22870379 PMCID: PMC3412324 DOI: 10.1038/srep00550] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/26/2012] [Indexed: 12/03/2022] Open
Abstract
Understanding differentiation, a biological process from a multipotent stem or progenitor state to a mature cell is critically important. We developed a theoretical framework to quantify the underlying potential landscape and pathways for cell development and differentiation. We proposed a new mechanism of differentiation and found the differentiated states can emerge from the slow binding/unbinding of regulatory proteins to gene promoters. With slow promoter binding/unbinding, we found multiple meta-stable differentiated states, which can explain the origin of multiple states observed in recent experiments. The kinetic time for the differentiation and reprogramming strongly depends on the time scale of the promoter binding/unbinding processes. We discovered an optimal speed for differentiation for certain promoter binding/unbinding rates. Future experiments might be able to tell if cells differentiate at that optimal speed. We also quantified irreversible kinetic pathways for the differentiation and reprogramming, which captures the non-equilibrium dynamics in multipotent stem or progenitor cells.
Collapse
Affiliation(s)
- Haidong Feng
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|
37
|
Zhuravlev PI, Lan Y, Minakova MS, Papoian GA. Theory of active transport in filopodia and stereocilia. Proc Natl Acad Sci U S A 2012; 109:10849-54. [PMID: 22711803 PMCID: PMC3390872 DOI: 10.1073/pnas.1200160109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological processes in elongated organelles of living cells are often regulated by molecular motor transport. We determined spatial distributions of motors in such organelles, corresponding to a basic scenario when motors only walk along the substrate, bind, unbind, and diffuse. We developed a mean-field model, which quantitatively reproduces elaborate stochastic simulation results as well as provides a physical interpretation of experimentally observed distributions of Myosin IIIa in stereocilia and filopodia. The mean-field model showed that the jamming of the walking motors is conspicuous, and therefore damps the active motor flux. However, when the motor distributions are coupled to the delivery of actin monomers toward the tip, even the concentration bump of G actin that they create before they jam is enough to speed up the diffusion to allow for severalfold longer filopodia. We found that the concentration profile of G actin along the filopodium is rather nontrivial, containing a narrow minimum near the base followed by a broad maximum. For efficient enough actin transport, this nonmonotonous shape is expected to occur under a broad set of conditions. We also find that the stationary motor distribution is universal for the given set of model parameters regardless of the organelle length, which follows from the form of the kinetic equations and the boundary conditions.
Collapse
Affiliation(s)
- Pavel I. Zhuravlev
- Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| | - Yueheng Lan
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Maria S. Minakova
- Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| | - Garegin A. Papoian
- Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| |
Collapse
|
38
|
Hensel Z, Feng H, Han B, Hatem C, Wang J, Xiao J. Stochastic expression dynamics of a transcription factor revealed by single-molecule noise analysis. Nat Struct Mol Biol 2012; 19:797-802. [PMID: 22751020 DOI: 10.1038/nsmb.2336] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/28/2012] [Indexed: 11/09/2022]
Abstract
Gene expression is inherently stochastic; precise gene regulation by transcription factors is important for cell-fate determination. Many transcription factors regulate their own expression, suggesting that autoregulation counters intrinsic stochasticity in gene expression. Using a new strategy, cotranslational activation by cleavage (CoTrAC), we probed the stochastic expression dynamics of cI, which encodes the bacteriophage λ repressor CI, a fate-determining transcription factor. CI concentration fluctuations influence both lysogenic stability and induction of bacteriophage λ. We found that the intrinsic stochasticity in cI expression was largely determined by CI expression level irrespective of autoregulation. Furthermore, extrinsic, cell-to-cell variation was primarily responsible for CI concentration fluctuations, and negative autoregulation minimized CI concentration heterogeneity by counteracting extrinsic noise and introducing memory. This quantitative study of transcription factor expression dynamics sheds light on the mechanisms cells use to control noise in gene regulatory networks.
Collapse
Affiliation(s)
- Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
39
|
Zhuravlev PI, Papoian GA. Protein fluxes along the filopodium as a framework for understanding the growth-retraction dynamics: the interplay between diffusion and active transport. Cell Adh Migr 2012; 5:448-56. [PMID: 21975554 DOI: 10.4161/cam.5.5.17868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We present a picture of filopodial growth and retraction from physics perspective, where we emphasize the significance of the role played by protein fluxes due to spatially extended nature of the filopodium. We review a series of works, which used stochastic simulations and mean field analytical modeling to find the concentration profile of G-actin inside a filopodium, which, in turn, determines the stationary filopodial length. In addition to extensively reviewing the prior works, we also report some new results on the role of active transport in regulating the length of filopodia. We model a filopodium where delivery of actin monomers towards the tip can occur both through passive diffusion and active transport by myosin motors. We found that the concentration profile of G-actin along the filopodium is rather non-trivial, containing a narrow minimum near the base followed by a broad maximum. For efficient enough actin transport, this non-monotonous shape is expected to occur under a broad set of conditions. We also raise the issue of slow approach to the stationary length and the possibility of multiple steady state solutions.
Collapse
Affiliation(s)
- Pavel I Zhuravlev
- Department of Chemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD USA
| | | |
Collapse
|
40
|
Shi PZ, Qian H. A perturbation analysis of rate theory of self-regulating genes and signaling networks. J Chem Phys 2011; 134:065104. [PMID: 21322737 DOI: 10.1063/1.3535561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A thorough kinetic analysis of the rate theory for stochastic self-regulating gene networks is presented. The chemical master equation kinetic model in terms of a coupled birth-death process is deconstructed into several simpler kinetic modules. We formulate and improve upon the rate theory of self-regulating genes in terms of perturbation theory. We propose a simple five-state scheme as a faithful caricature that elucidates the full kinetics including the "resonance phenomenon" discovered by Walczak et al. [Proc. Natl. Acad. Sci. U.S.A. 102, 18926 (2005)]. The same analysis can be readily applied to other biochemical networks such as phosphorylation signaling with fluctuating kinase activity. Generalization of the present approach can be included in multiple time-scale numerical computations for large biochemical networks.
Collapse
Affiliation(s)
- Pei-Zhe Shi
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
41
|
Ohkubo J. Approximation scheme based on effective interactions for stochastic gene regulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041915. [PMID: 21599208 DOI: 10.1103/physreve.83.041915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/16/2011] [Indexed: 05/30/2023]
Abstract
Since gene regulatory systems sometimes contain only a small number of molecules, these systems are not described well by macroscopic rate equations; a master equation approach is needed for such cases. We develop an approximation scheme for dealing with the stochasticity of the gene regulatory systems. Using an effective interaction concept, original master equations can be reduced to simpler master equations, which can be solved analytically. We apply the approximation scheme to self-regulating systems with monomer or dimer interactions, and a two-gene system with an exclusive switch. The approximation scheme can recover the bistability of the exclusive switch adequately.
Collapse
Affiliation(s)
- Jun Ohkubo
- Graduate School of Informatics, Kyoto University, 36-1, Yoshida Hon-machi, Kyoto-shi, Kyoto 606-8501, Japan.
| |
Collapse
|