1
|
Anisimov AA, Ananyev IV. Electron density-based protocol to recover the interacting quantum atoms components of intermolecular binding energy. J Chem Phys 2023; 159:124113. [PMID: 38127385 DOI: 10.1063/5.0167874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
A new approach for obtaining interacting quantum atoms-defined components of binding energy of intermolecular interactions, which bypasses the use of standard six-dimensional integrals and two-particle reduced density matrix (2-RDM) reconstruction, is proposed. To examine this approach, three datasets calculated within the density functional theory framework using the def2-TZVP basis have been explored. The first two, containing 53 weakly bound bimolecular associates and 13 molecular clusters taken from the crystal, were used in protocol refinement, and the third one containing other 20 bimolecular and three cluster systems served as a validation reference. In addition, to verify the performance of the proposed approach on an exact 2-RDM, calculations within the coupled cluster formalism were performed for part of the first set systems using the cc-pVTZ basis set. The process of optimization of the proposed parametric model is considered, and the role of various energy contributions in the formation of non-covalent interactions is discussed with regard to the obtained trends.
Collapse
Affiliation(s)
- Aleksei A Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, GSP-1, Moscow 119334, Russian Federation
- National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Ivan V Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect 31, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Jara-Cortés J, Matta CF, Hernández-Trujillo J. A fast approximate extension of the interacting quantum atoms energy decomposition to excited states. J Comput Chem 2022; 43:1068-1078. [PMID: 35470908 DOI: 10.1002/jcc.26863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
An approach is developed for the fast calculation of the interacting quantum atoms energy decomposition (IQA) from the information contained in the first order reduced density matrix only. The proposed methodology utilizes an approximate exchange-correlation density from Density Matrix Functional Theory without the need to evaluate the correlation-exchange contribution directly. Instead, weight factors are estimated to decompose the exact Vxc into atomic and pairwise contributions. In this way, the sum of the IQA contributions recovers the energy obtained from the electronic structure calculation. This method can, hence, be applied to obtain atomic contributions in excited states on the same footing as in their ground states using any method that delivers the reduced first-order density matrix. In this way, one can locate chromophores from first principles quantum chemical calculations. Test calculations on the ground and excited states of a set of small molecules indicate that the scaled atomic contributions reproduce vertical electronic transition energies calculated exactly. This approach may be useful to extend the applicability of the IQA approach in the study of large photochemical systems especially when the calculations of the second order reduced density matrices is prohibitive or not possible.
Collapse
Affiliation(s)
- Jesús Jara-Cortés
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic, Mexico
| | - Chérif F Matta
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM. Circuito Escolar, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
3
|
Sowlati-Hashjin S, Šadek V, Sadjadi S, Karttunen M, Martín-Pendás A, Foroutan-Nejad C. Collective interactions among organometallics are exotic bonds hidden on lab shelves. Nat Commun 2022; 13:2069. [PMID: 35440588 PMCID: PMC9018958 DOI: 10.1038/s41467-022-29504-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
Recent discovery of an unusual bond between Na and B in NaBH3- motivated us to look for potentially similar bonds, which remained unnoticed among systems isoelectronic with NaBH3-. Here, we report a novel family of collective interactions and a measure called exchange-correlation interaction collectivity index (ICIXC; [Formula: see text]) to characterize the extent of collective versus pairwise bonding. Unlike conventional bonds in which ICIXC remains close to one, in collective interactions ICIXC may approach zero. We show that collective interactions are commonplace among widely used organometallics, as well as among boron and aluminum complexes with the general formula [Ma+AR3]b- (A: C, B or Al). In these species, the metal atom interacts more efficiently with the substituents (R) on the central atoms than the central atoms (A) upon forming efficient collective interactions. Furthermore, collective interactions were also found among fluorine atoms of XFn systems (X: B or C). Some of organolithium and organomagnesium species have the lowest ICIXC among the more than 100 studied systems revealing the fact that collective interactions are rather a rule than an exception among organometallic species.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Vojtěch Šadek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - SeyedAbdolreza Sadjadi
- Department of Physics, Faculty of Science, Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6K 3K7, Canada
| | - Angel Martín-Pendás
- Departamento de Química Física y Analítica, University of Oviedo, 33006, Oviedo, Spain.
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
4
|
Leyva-Parra L, Diego L, Inostroza D, Yañez O, Pumachagua-Huertas R, Barroso J, Vásquez-Espinal A, Merino G, Tiznado W. Planar Hypercoordinate Carbons in Alkali Metal Decorated CE 3 2- and CE 2 2- Dianions. Chemistry 2021; 27:16701-16706. [PMID: 34617347 DOI: 10.1002/chem.202102864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/08/2022]
Abstract
After exploring the potential energy surfaces of Mm CE2 p (E=S-Te, M=Li-Cs, m=2, 3 and p=m-2) and Mn CE3 q (E=S-Te, M=Li-Cs, n=1, 2, q=n-2) combinations, we introduce 38 new global minima containing a planar hypercoordinate carbon atom (24 with a planar tetracoordinate carbon and 14 with a planar pentacoordinate carbon). These exotic clusters result from the decoration of V-shaped CE2 2- and Y-shaped CE3 2- dianions, respectively, with alkali counterions. All these 38 systems fulfill the geometrical and electronic criteria to be considered as true planar hypercoordinate carbon systems. Chemical bonding analyses indicate that carbon is covalently bonded to chalcogens and ionically connected to alkali metals.
Collapse
Affiliation(s)
- Luis Leyva-Parra
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile.,Universidad Andrés Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas, Santiago, Chile
| | - Luz Diego
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile.,Universidad Andrés Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas, Santiago, Chile
| | - Diego Inostroza
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile.,Universidad Andrés Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas, Santiago, Chile
| | - Osvaldo Yañez
- Center of New Drugs for Hypertension (CENDHY), 8380494, Santiago, Chile.,Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, Universidad de Chile, 8380494, Santiago, Chile
| | - Rodolfo Pumachagua-Huertas
- Laboratorio de Investigación en Química Teórica, Escuela Profesional de Química, Facultad de Ciencias Naturales y Matemáticas, Universidad Nacional Federico Villarreal, Jr. Río Chepén 290, El Agustino, Lima, Perú
| | - Jorge Barroso
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida km. 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, Yuc, Mexico
| | - Alejandro Vásquez-Espinal
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida km. 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, Yuc, Mexico
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile
| |
Collapse
|
5
|
Pino‐Rios R, Inostroza D, Tiznado W. Neither too Classic nor too Exotic: One‐Electron Na⋅B Bond in NaBH
3
−
Cluster. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ricardo Pino‐Rios
- Laboratorio de Química teórica Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Av. Libertador Bernardo O'Higgins 3363 Santiago, Estación Central, Región Metropolitana Chile
| | - Diego Inostroza
- Universidad Andres Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas Santiago Chile
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - William Tiznado
- Universidad Andres Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas Santiago Chile
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| |
Collapse
|
6
|
Pino-Rios R, Inostroza D, Tiznado W. Neither too Classic nor too Exotic: One-Electron Na⋅B Bond in NaBH 3 - Cluster. Angew Chem Int Ed Engl 2021; 60:12747-12753. [PMID: 33876517 DOI: 10.1002/anie.202101403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/17/2022]
Abstract
It is here reported that the NaBH3 - cluster exhibits a Na⋅B one-electron bond, a well-established type of electron-deficient bonding in the literature. The topological analysis of the electron localization function, at the correlated level, reveals that Na- , when approaching the bonding distance, fairly distributes its valence electron pair between two lobes. One of these electrons is used to bond with BH3 , which participates through its boron empty p-orbital. Furthermore, the bonding situation of LiBH3 - , KBH3 - , MgBH3 , and CaBH3 global minima structures are similar to that of NaBH3 - , extending the family of these new one-electron bond systems with biradicaloid character.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Laboratorio de Química teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Estación Central, Región Metropolitana, Chile
| | - Diego Inostroza
- Universidad Andres Bello, Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Santiago, Chile.,Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - William Tiznado
- Universidad Andres Bello, Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Santiago, Chile.,Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| |
Collapse
|
7
|
Guevara-Vela JM, Francisco E, Rocha-Rinza T, Martín Pendás Á. Interacting Quantum Atoms-A Review. Molecules 2020; 25:E4028. [PMID: 32899346 PMCID: PMC7504790 DOI: 10.3390/molecules25174028] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this review is threefold. On the one hand, we intend it to serve as a gentle introduction to the Interacting Quantum Atoms (IQA) methodology for those unfamiliar with it. Second, we expect it to act as an up-to-date reference of recent developments related to IQA. Finally, we want it to highlight a non-exhaustive, yet representative set of showcase examples about how to use IQA to shed light in different chemical problems. To accomplish this, we start by providing a brief context to justify the development of IQA as a real space alternative to other existent energy partition schemes of the non-relativistic energy of molecules. We then introduce a self-contained algebraic derivation of the methodological IQA ecosystem as well as an overview of how these formulations vary with the level of theory employed to obtain the molecular wavefunction upon which the IQA procedure relies. Finally, we review the several applications of IQA as examined by different research groups worldwide to investigate a wide variety of chemical problems.
Collapse
Affiliation(s)
- José Manuel Guevara-Vela
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P., Mexico City 04510, Mexico; (J.M.G.-V.); (T.R.-R.)
| | - Evelio Francisco
- Department of Analytical and Physical Chemistry, University of Oviedo, E-33006 Oviedo, Spain;
| | - Tomás Rocha-Rinza
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P., Mexico City 04510, Mexico; (J.M.G.-V.); (T.R.-R.)
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry, University of Oviedo, E-33006 Oviedo, Spain;
| |
Collapse
|
8
|
Yourdkhani S, Chojecki M, Korona T. Substituent effects in the so-called cationπ interaction of benzene and its boron-nitrogen doped analogues: overlooked role of σ-skeleton. Phys Chem Chem Phys 2019; 21:6453-6466. [PMID: 30839951 DOI: 10.1039/c8cp04962a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite massive efforts to pinpoint the substituent effects in the so-called cationπ systems, no consensus has been yet reached on how substituents exercise their effects in the interaction of the aromatic molecule with the metal ion. The π-polarization (the Hunter model) and the direct local effect (the Wheeler-Houk model) are two lines of thought applied to this problem, but the justification of both approaches is based on insufficiently proven assumptions and approximations. In order to shed more light on this issue we propose a new approach which enables us to gauge directly the energetic trends resulting from the interaction of the ring with the cation. In our method we add one more partitioning level to the interacting quantum atoms (IQA) scheme and decompose the IQA interaction energies into contributions resulting from σ and π electron densities of the aromatic ring. The new approach, which is named partitioned-IQA, abbreviated as p-IQA, has been applied to complexes of derivatives of benzene or azaborine interacting with a sodium cation. The p-IQA approach reveals that in these systems both σ and π electronic moieties are polarized. Interestingly, for the majority of cases the σ-polarization outweighs the π one, contrary to the Hunter model. However, the Wheeler-Houk model is not precise, either, since the σ-polarization shows some degree of non-locality. In addition, the substituents are found to have a negligible influence on the ring orbital-overlapping capability, i.e. the covalency. Therefore, the substituent effect in the cationπ interaction is a nonlocal classical effect, indicating that neither Hunter model nor Wheeler-Houk model is able to fully describe all the aspects of the substituent effects. The p-IQA conclusions for the considered systems have been compared with the results from the functional-group SAPT (F-SAPT) method. We believe that the presented partitioning in the IQA framework will provide a deeper insight into the substituent effects in the cationπ interactions, which is beyond the σ-π atomic charge population separation.
Collapse
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic.
| | | | | |
Collapse
|
9
|
Polestshuk PM, Dem'yanov PI. Interacting quantum atoms (IQA) energy partition: The employing exact response CCSD density to benchmark density matrix functional approximations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Tognetti V, Silva AF, Vincent MA, Joubert L, Popelier PLA. Decomposition of Møller–Plesset Energies within the Quantum Theory of Atoms-in-Molecules. J Phys Chem A 2018; 122:7748-7756. [DOI: 10.1021/acs.jpca.8b05357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Vincent Tognetti
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont St Aignan, Cedex, France
| | - Arnaldo F. Silva
- Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester M1 7DN, Great Britain
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, Great Britain
| | - Mark A. Vincent
- Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester M1 7DN, Great Britain
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, Great Britain
| | - Laurent Joubert
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont St Aignan, Cedex, France
| | - Paul L. A. Popelier
- Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester M1 7DN, Great Britain
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, Great Britain
| |
Collapse
|
11
|
Outeiral C, Vincent MA, Martín Pendás Á, Popelier PLA. Revitalizing the concept of bond order through delocalization measures in real space. Chem Sci 2018; 9:5517-5529. [PMID: 30061983 PMCID: PMC6049528 DOI: 10.1039/c8sc01338a] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 11/22/2022] Open
Abstract
Ab initio quantum chemistry is an independent source of information supplying an ever widening group of experimental chemists. However, bridging the gap between these ab initio data and chemical insight remains a challenge. In particular, there is a need for a bond order index that characterizes novel bonding patterns in a reliable manner, while recovering the familiar effects occurring in well-known bonds. In this article, through a large body of calculations, we show how the delocalization index derived from Quantum Chemical Topology (QCT) serves as such a bond order. This index is defined in a parameter-free, intuitive and consistent manner, and with little qualitative dependency on the level of theory used. The delocalization index is also able to detect the subtler bonding effects that underpin most practical organic and inorganic chemistry. We explore and connect the properties of this index and open the door for its extensive usage in the understanding and discovery of novel chemistry.
Collapse
Affiliation(s)
- Carlos Outeiral
- Manchester Institute of Biotechnology (MIB) , 131 Princess Street , Manchester M1 7DN , UK .
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK
- Department of Physical and Analytical Chemistry , University of Oviedo , Julián Clavería 8 , Oviedo , Spain
| | - Mark A Vincent
- Manchester Institute of Biotechnology (MIB) , 131 Princess Street , Manchester M1 7DN , UK .
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| | - Ángel Martín Pendás
- Department of Physical and Analytical Chemistry , University of Oviedo , Julián Clavería 8 , Oviedo , Spain
| | - Paul L A Popelier
- Manchester Institute of Biotechnology (MIB) , 131 Princess Street , Manchester M1 7DN , UK .
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| |
Collapse
|
12
|
Rodríguez-Mayorga M, Via-Nadal M, Solà M, Ugalde JM, Lopez X, Matito E. Electron-Pair Distribution in Chemical Bond Formation. J Phys Chem A 2018; 122:1916-1923. [PMID: 29381071 DOI: 10.1021/acs.jpca.7b12556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical formation process has been studied from relaxation holes, Δh(u), resulting from the difference between the radial intracule density and the nonrelaxed counterpart, which is obtained from atomic radial intracule densities and the pair density constructed from the overlap of the atomic densities. Δh(u) plots show that the internal reorganization of electron pairs prior to bond formation and the covalent bond formation from electrons in separate atoms are completely recognizable processes from the shape of the relaxation hole, Δh(u). The magnitude of Δh(u), the shape of Δh(u) ∀ u < Req, and the distance between the minimum and the maximum in Δh(u) provide further information about the nature of the chemical bond formed. A computational affordable approach to calculate the radial intracule density from approximate pair densities has been also suggested, paving the way to study electron-pair distributions in larger systems.
Collapse
Affiliation(s)
- M Rodríguez-Mayorga
- Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, and Donostia International Physics Center (DIPC). P.K. 1072 , 20080 Donostia, Euskadi, Spain.,Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, University of Girona , C/ Maria Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | - M Via-Nadal
- Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, and Donostia International Physics Center (DIPC). P.K. 1072 , 20080 Donostia, Euskadi, Spain
| | - M Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, University of Girona , C/ Maria Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | - J M Ugalde
- Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, and Donostia International Physics Center (DIPC). P.K. 1072 , 20080 Donostia, Euskadi, Spain
| | - X Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, and Donostia International Physics Center (DIPC). P.K. 1072 , 20080 Donostia, Euskadi, Spain
| | - E Matito
- Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, and Donostia International Physics Center (DIPC). P.K. 1072 , 20080 Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science , 48013 Bilbao, Euskadi, Spain
| |
Collapse
|
13
|
Rodríguez-Mayorga M, Ramos-Cordoba E, Via-Nadal M, Piris M, Matito E. Comprehensive benchmarking of density matrix functional approximations. Phys Chem Chem Phys 2018; 19:24029-24041. [PMID: 28832052 DOI: 10.1039/c7cp03349d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The energy usually serves as a yardstick in assessing the performance of approximate methods in computational chemistry. After all, these methods are mostly used for the calculation of the electronic energy of chemical systems. However, computational methods should be also aimed at reproducing other properties, such strategy leading to more robust approximations with a wider range of applicability. In this study, we suggest a battery of ten tests with the aim to analyze density matrix functional approximations (DMFAs), including several properties that the exact functional should satisfy. The tests are performed on a model system with varying electron correlation, carrying a very small computational effort. Our results not only put forward a complete and exhaustive benchmark test for DMFAs, currently lacking, but also reveal serious deficiencies of existing approximations that lead to important clues in the construction of more robust DMFAs.
Collapse
Affiliation(s)
- Mauricio Rodríguez-Mayorga
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.
| | | | | | | | | |
Collapse
|
14
|
Tognetti V, Joubert L. On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations. Chemphyschem 2017; 18:2675-2687. [DOI: 10.1002/cphc.201700637] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/01/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Vincent Tognetti
- Normandy Univ. COBRA UMR 6014 & FR 3038Université de Rouen, INSA Rouen, CNRS 1 rue Tesniére 76821 Mont St Aignan, Cedex France
| | - Laurent Joubert
- Normandy Univ. COBRA UMR 6014 & FR 3038Université de Rouen, INSA Rouen, CNRS 1 rue Tesniére 76821 Mont St Aignan, Cedex France
| |
Collapse
|
15
|
Varfolomeeva VV, Terentev AV. Weak hydrogen bonds in adsorption of nonrigid molecules on graphitized thermal carbon black. J STRUCT CHEM+ 2017. [DOI: 10.1134/s0022476617030180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Guevara-Vela JM, Rocha-Rinza T, Pendás ÁM. Performance of the RI and RIJCOSX approximations in the topological analysis of the electron density. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2084-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Cukrowski I, Polestshuk PM. Reliability of interacting quantum atoms (IQA) data computed from post-HF densities: impact of the approximation used. Phys Chem Chem Phys 2017; 19:16375-16386. [DOI: 10.1039/c7cp02216f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The BBC1 approximation is recommended for IQA calculations; MP2/BBC1 and CCSD/BBC1 produced highly comparable FAMSEC-based interpretations of intramolecular interactions.
Collapse
Affiliation(s)
- Ignacy Cukrowski
- Department of Chemistry
- Faculty of Natural and Agricultural Sciences
- University of Pretoria
- Pretoria
- South Africa
| | - Pavel M. Polestshuk
- Department of Chemistry
- M. V. Lomonosov Moscow State University
- 119991 Moscow
- Russia
| |
Collapse
|
18
|
Ruiz I, Matito E, Holguín-Gallego FJ, Francisco E, Martín Pendás Á, Rocha-Rinza T. Fermi and Coulomb correlation effects upon the interacting quantum atoms energy partition. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1957-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Holguín-Gallego FJ, Chávez-Calvillo R, García-Revilla M, Francisco E, Pendás ÁM, Rocha-Rinza T. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities. J Comput Chem 2016; 37:1753-65. [DOI: 10.1002/jcc.24372] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Fernando José Holguín-Gallego
- Institute of Chemistry; National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria; Delegación Coyoacán C.P. 04510 Mexico City Mexico
| | - Rodrigo Chávez-Calvillo
- School of Chemistry; National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria; Delegación Coyoacán C.P. 04510 Mexico City Mexico
| | - Marco García-Revilla
- Department of Chemistry; Division of Natural and Exact Sciences; University of Guanajuato; C.P. 36050, Guanajuato Guanajuato Mexico
| | - Evelio Francisco
- Department of Physical and Analytical Chemistry; University of Oviedo; Julián Clavería 8 Oviedo Spain
| | - Ángel Martín Pendás
- Department of Physical and Analytical Chemistry; University of Oviedo; Julián Clavería 8 Oviedo Spain
| | - Tomás Rocha-Rinza
- Institute of Chemistry; National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria; Delegación Coyoacán C.P. 04510 Mexico City Mexico
| |
Collapse
|
20
|
|
21
|
Tognetti V, Loos PF. Natural occupation numbers in two-electron quantum rings. J Chem Phys 2016; 144:054108. [PMID: 26851909 DOI: 10.1063/1.4940919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Collapse
Affiliation(s)
- Vincent Tognetti
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont Saint Aignan, Cedex, France
| | - Pierre-François Loos
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
22
|
Understanding the bifurcated halogen bonding N⋯Hal⋯N in bidentate diazaheterocyclic compounds. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Bartashevich EV, Tsirelson VG. Interplay between non-covalent interactions in complexes and crystals with halogen bonds. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rcr4440] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Ramos-Cordoba E, Salvador P, Piris M, Matito E. Two new constraints for the cumulant matrix. J Chem Phys 2014; 141:234101. [DOI: 10.1063/1.4903449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Eloy Ramos-Cordoba
- Institut de Química Computacional i Catàlisi (IQCC) and Department de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi (IQCC) and Department de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain
| | - Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, and Donostia International Physics Center (DIPC). P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Eduard Matito
- Institut de Química Computacional i Catàlisi (IQCC) and Department de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain
| |
Collapse
|
25
|
Tognetti V, Joubert L. Density functional theory and Bader's atoms-in-molecules theory: towards a vivid dialogue. Phys Chem Chem Phys 2014; 16:14539-50. [DOI: 10.1039/c3cp55526g] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Guevara-Vela JM, Chávez-Calvillo R, García-Revilla M, Hernández-Trujillo J, Christiansen O, Francisco E, Martín Pendás Á, Rocha-Rinza T. Hydrogen-Bond Cooperative Effects in Small Cyclic Water Clusters as Revealed by the Interacting Quantum Atoms Approach. Chemistry 2013; 19:14304-15. [DOI: 10.1002/chem.201300656] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/11/2013] [Indexed: 11/08/2022]
|
27
|
Demyanov PI, Polestshuk PM. Forced bonding and QTAIM deficiencies: a case study of the nature of interactions in He@adamantane and the origin of the high metastability. Chemistry 2013; 19:10945-57. [PMID: 23794241 DOI: 10.1002/chem.201300317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 11/10/2022]
Abstract
Calculations within the framework of the interacting quantum atoms (IQA) approach have shown that the interactions of the helium atom with both tertiary, tC, and secondary, sC, carbon atoms in the metastable He@adamantane (He@adam) endohedral complex are bonding in nature, whereas the earlier study performed within the framework of Bader's quantum theory of atoms in molecules (QTAIM) revealed that only He---tC interactions are bonding. The He---tC and He---sC bonding interactions are shown to be forced by the high pressure that the helium and carbon atoms exert upon each other in He@adam. The occurrence of a bonding interaction between the helium and sC atoms, which are not linked by a bond path, clearly shows that the lack of a bond path between two atoms does not necessarily indicate the lack of a bonding interaction, as is asserted by QTAIM. IQA calculations showed that not only the destabilization of the adamantane cage, but also a huge internal destabilization of the helium atom, contribute to the metastability of He@adam, these contributions being roughly equal. This result disproves previous opinions based on QTAIM analysis that only the destabilization of the adamantane cage accounts for the endothermicity of He@adam. Also, it was found that there is no homeomorphism of the ρ(r) and -v(r) fields of He@adam. Comparison of the IQA and QTAIM results on the interactions in He@adam exposes other deficiencies of the QTAIM approach. The reasons for the deficiencies in the QTAIM approach are analyzed.
Collapse
Affiliation(s)
- Piotr I Demyanov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991, Moscow, Russia.
| | | |
Collapse
|
28
|
Francisco E, Martín Pendás A, García-Revilla M, Álvarez Boto R. A hierarchy of chemical bonding indices in real space from reduced density matrices and cumulants. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2012.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Bartashevich EV, Tsirelson VG. Atomic dipole polarization in charge-transfer complexes with halogen bonding. Phys Chem Chem Phys 2013; 15:2530-8. [DOI: 10.1039/c2cp43416d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Oliveira BGD. Structure, energy, vibrational spectrum, and Bader's analysis of π⋯H hydrogen bonds and H−δ⋯H+δdihydrogen bonds. Phys Chem Chem Phys 2013; 15:37-79. [DOI: 10.1039/c2cp41749a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds. Phys Chem Chem Phys 2011; 13:20690-703. [PMID: 22051972 DOI: 10.1039/c1cp22239b] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.
Collapse
Affiliation(s)
- Ferran Feixas
- Institut de Química Computacional and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia, Spain.
| | | | | | | | | |
Collapse
|