1
|
Matsuzaki T, Kawano Y, Horikiri M, Shimokawa Y, Yamazaki T, Okuma N, Koike H, Kimura M, Kawamura R, Yoneyama Y, Furuichi Y, Hakuno F, Takahashi SI, Nakabayashi S, Okamoto S, Nakauchi H, Taniguchi H, Takebe T, Yoshikawa HY. Preparation of mechanically patterned hydrogels for controlling the self-condensation of cells. STAR Protoc 2023; 4:102471. [PMID: 37515762 PMCID: PMC10400955 DOI: 10.1016/j.xpro.2023.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023] Open
Abstract
Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization. This protocol will facilitate the rational design of culture substrates with mechanical patterns for the engineering of various functional organoids. For complete details on the use and execution of this protocol, please refer to Takebe et al. (2015) and Matsuzaki et al. (2014, 2022).1,2,3.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Future Innovation, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuma Kawano
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Momoka Horikiri
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuko Shimokawa
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Takashi Yamazaki
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nao Okuma
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroyuki Koike
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Masaki Kimura
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Ryuzo Kawamura
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Yosuke Yoneyama
- Institute of Research, Division of Advanced Multidisciplinary Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiichiro Nakabayashi
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan; Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Satoshi Okamoto
- Division of Regenerative Medicine, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hideki Taniguchi
- Division of Regenerative Medicine, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Institute of Research, Division of Advanced Multidisciplinary Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Pavlou M, Shah M, Gikas P, Briggs T, Roberts S, Cheema U. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model. Acta Biomater 2019; 96:247-257. [PMID: 31302294 DOI: 10.1016/j.actbio.2019.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Osteosarcoma management continues to lack the appropriate prognostic tools to assign personalised treatment. This leaves non-responders to standard care vulnerable to recurring disease and pulmonary metastases. Developing 3D in vitro disease models to serve as a test bed for personalised treatment is a promising approach to address this issue. This study describes the generation of 3D osteosarcoma models termed "tumouroids", which are geometrically compartmentalised to reproduce the bone cancer mass and its surrounding. Although the tumour microenvironment impacts osteosarcoma in many ways, this model focussed on interrogating the influence of a biomimetic matrix on tumour cell behaviour. The 3D matrix was supplemented with the bone-marrow proteins laminin, fibronectin and NuOss® bone granules. This led to increased invasion of osteosarcoma cell aggregates from within the bone-like matrix into the surrounding acellular bone marrow-like ECM. The presence of bone granules also yielded an atypical molecular profile of osteosarcoma cells, suggesting malignant metabolic reprogramming. Changes include decreased MMP-9 (p < 0.05) and increased PTEN (p < 0.05), MCP-1 (p < 0.01) and MCT-4 (p < 0.05) gene expression. This complex 3D biomimetic composition also changed cellular responses to doxorubicin, a common chemotherapeutic agent used to treat osteosarcoma, and reproduced key issues of in vivo treatment like drug penetrance and doxorubicin-induced bone toxicity. This work highlights the importance of a biomimetic matrix in 3D osteosarcoma models for both basic and translational research. STATEMENT OF SIGNIFICANCE: This study describes the generation of 3D osteosarcoma models termed "tumouroids", which are geometrically compartmentalised to reproduce the bone cancer mass and its environment. Utilising this novel model, specific parameters of osteosarcoma growth and invasion were investigated. Osteosarcoma cell lines proliferate at a slower rate, exhibit malignant metabolic reprogramming, and respond to drug intervention at lower concentrations of doxorubicin hydrochloride in matrix-complex compared to basic tumouroids. As such, this study provides evidence that the tumour microenvironment impacts osteosarcoma in many ways. The osteosarcoma tumouroid described herein may form the basis of a personalised-medicine strategy, which will allow the testing of drug effectiveness similar to that used for antibiotic selection for pathogenic bacteria.
Collapse
|
3
|
Nie Y, Wang W, Xu X, Zou J, Bhuvanesh T, Schulz B, Ma N, Lendlein A. Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating. Clin Hemorheol Microcirc 2019; 70:531-542. [PMID: 30347612 DOI: 10.3233/ch-189318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs.
Collapse
Affiliation(s)
- Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thanga Bhuvanesh
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Burkhard Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow, Germany
| |
Collapse
|
4
|
Krüger-Genge A, Dietze S, Yan W, Liu Y, Fang L, Kratz K, Lendlein A, Jung F. Endothelial cell migration, adhesion and proliferation on different polymeric substrates. Clin Hemorheol Microcirc 2019; 70:511-529. [DOI: 10.3233/ch-189317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Stefanie Dietze
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Wan Yan
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Yue Liu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Liang Fang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
5
|
Zhao H, Xu K, Zhu P, Wang C, Chi Q. Smart hydrogels with high tunability of stiffness as a biomimetic cell carrier. Cell Biol Int 2019; 43:84-97. [DOI: 10.1002/cbin.11091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Han Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Kang Xu
- Department of Cardiovascular Surgery; Union Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Peng Zhu
- Department of Cardiovascular Surgery; Union Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Chunli Wang
- “111 ” Project Laboratory of Biomechanics and Tissue Repair; Bioengineering College; Chongqing University; Chongqing China
| | - Qingjia Chi
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics; Department of Mechanics and Engineering Structure; Wuhan University of Technology; Wuhan China
| |
Collapse
|
6
|
Krüger-Genge A, Braune S, Walter M, Krengel M, Kratz K, Küpper JH, Lendlein A, Jung F. Influence of different surface treatments of poly(n-butyl acrylate) networks on fibroblasts adhesion, morphology and viability. Clin Hemorheol Microcirc 2018; 69:305-316. [PMID: 29660925 DOI: 10.3233/ch-189130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Physical and chemical characteristics of implant materials determine the fate of long-term cardiovascular devices. However, there is still a lack of fundamental understanding of the molecular mechanisms occurring in the material-tissue interphase. In a previous study, soft covalently crosslinked poly(n-butyl acrylate) networks (cPnBA) were introduced as sterilizable, non-toxic and immuno-compatible biomaterials with mechanical properties adjustable to blood vessels. Here we study the influence of different surface treatments in particular oxygen plasma modification and fibrinogen deposition as well as a combinatorial approach on the adhesion and viability of fibroblasts. MATERIAL AND METHODS Two types of cPnBA networks with Young's moduli of 0.19±0.01 MPa (cPnBA04) and 1.02±0.01 MPa (cPnBA73) were synthesized and post-modified using oxygen plasma treatment (OPT) or fibrinogen coating (FIB) or a combination of both (OPT+FIB). The water contact angles of the differently post-treated cPnBAs were studied to monitor changes in the wettability of the polymer surfaces. Because of the key role of vascular fibroblasts in regeneration processes around implant materials, here we selected L929 fibroblasts as model cell type to explore morphology, viability, metabolic activity, cell membrane integrity as well as characteristics of the focal adhesions and cell cytoskeleton on the cPnBA surfaces. RESULTS Compared to non-treated cPnBAs the advancing water-contact angles were found to be reduced after all surface modifications (p < 0.05, each), while lowest values were observed after the combined surface treatment (OPT+FIB). The latter differed significantly from the single OPT and FIB. The number of adherent fibroblasts and their adherence behavior differed on both pristine cPnBA networks. The fibroblast density on cPnBA04 was 743±434 cells·mm-2, was about 6.5 times higher than on cPnBA73 with 115±73 cells·mm-2. On cPnBA04 about 20% of the cells were visible as very small, round and buckled cells while all other cells were in a migrating status. On cPnBA73, nearly 50% of fibroblasts were visible as very small, round and buckled cells. The surface functionalization either using oxygen plasma treatment or fibrinogen coating led to a significant increase of adherent fibroblasts, particularly the combination of both techniques, for both cPnBA networks. It is noteworthy to mention that the fibrinogen coating overruled the characteristics of the pristine surfaces; here, the fibroblast densities after seeding were identical for both cPnBA networks. Thus, the binding rather depended on the fibrinogen coating than on the substrate characteristics anymore. While the integrity of the fibroblasts membrane was comparable for both polymers, the MTS tests showed a decreased metabolic activity of the fibroblasts on cPnBA. CONCLUSION The applied surface treatments of cPnBA successfully improved the adhesion of viable fibroblasts. Under resting conditions as well as after shearing the highest fibroblast densities were found on surfaces with combined post-treatment.
Collapse
Affiliation(s)
- A Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - S Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - M Walter
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - M Krengel
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - K Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Berlin and Teltow, Germany
| | - J H Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - A Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Berlin and Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Berlin and Teltow, Germany
| |
Collapse
|
7
|
Roch T, Ma N, Kratz K, Lendlein A. Cell-based detection of microbial biomaterial contaminations. Clin Hemorheol Microcirc 2015; 60:51-63. [DOI: 10.3233/ch-151939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Toralf Roch
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
- Department of Biology, Institute of Chemistry and Biochemistry, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
- Department of Biology, Institute of Chemistry and Biochemistry, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
8
|
Steinhauser MO, Schmidt M. Destruction of cancer cells by laser-induced shock waves: recent developments in experimental treatments and multiscale computer simulations. SOFT MATTER 2014; 10:4778-88. [PMID: 24818846 DOI: 10.1039/c4sm00407h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this emerging area article we review recent progress in the mechanical destruction of cancer cells using laser-induced shock waves. The pure mechanical damaging and destruction of cancer cells associated with this technique possibly opens up a new route to tumor treatments and the corresponding therapies. At the same time progress in multiscale simulation techniques makes it possible to simulate mechanical properties of soft biological matter such as membranes, cytoskeletal networks and even whole cells and tissue. In this way an interdisciplinary approach to understanding key mechanisms in shock wave interactions with biological matter has become accessible. Mechanical properties of biological materials are also critical for many physiological processes and cover length scales ranging from the atomistic to the macroscopic scale. We argue that the latest developments and progress in experimentation enable the investigation of the shock wave interaction with cancer cells on multiple time- and length-scales. In this way the integrated use of experiment and simulation can address key challenges in this field. The exploration of the biological effects of laser-generated shock waves on a fundamental level constitutes an emerging multidisciplinary research area combining scientific methods from the areas of physics, biology, medicine and computer science.
Collapse
Affiliation(s)
- Martin Oliver Steinhauser
- Fraunhofer Research Group "Shock Waves in Soft Biological Matter", Ernst-Mach-Institut, EMI, Eckerstrasse 4, Freiburg, Germany.
| | | |
Collapse
|
9
|
Abstract
INTRODUCTION OR BACKGROUND The incidence of chronic lung disease is increasing worldwide due to the spread of risk factors and ageing population. An important advance in treatment would be the development of a bioartificial lung where the blood-gas exchange surface is manufactured from a synthetic or natural scaffold material that is seeded with the appropriate stem or progenitor cells to mimic the functional tissue of the natural lung. SOURCES OF DATA Articles relating to bioartificial lungs were sourced through PubMed and ISI Web of Knowledge. AREAS OF AGREEMENT There is a consensus that advances in bioartificial lung engineering will be beneficial to patients with chronic lung failure. Ultimate success will require the concerted efforts of researchers drawn from a broad range of disciplines, including clinicians, cell biologists, materials scientists and engineers. AREAS OF CONTROVERSY As a source of cells for use in bioartificial lungs it is proposed to use human embryonic stem cells; however, there are ethical and safety concerns regarding the use of these cells. GROWING POINTS There is a need to identify the optimum strategies for differentiating progenitor cells into functional lung cells; a need to better understand cell-biomaterial/ECM interactions and a need to understand how to harness the body's natural capacity to regenerate the lung. AREAS TIMELY FOR DEVELOPING RESEARCH Biomaterial technologies for recreating the natural lung ECM and architecture need further development. Mathematical modelling techniques should be developed for determining optimal scaffold seeding strategies and predicting gas exchange performance.
Collapse
Affiliation(s)
- Greg Lemon
- Department of Clinical Science, Intervention and Technology (CLINTEC), Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden
| | - Mei Ling Lim
- Department of Clinical Science, Intervention and Technology (CLINTEC), Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden Division of Ear, Nose and Throat, Karolinska University Hospital, Stockholm, Sweden
| | - Fatemeh Ajalloueian
- Department of Clinical Science, Intervention and Technology (CLINTEC), Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden
| | - Paolo Macchiarini
- Department of Clinical Science, Intervention and Technology (CLINTEC), Advanced Center for Translational Regenerative Medicine (ACTREM), Karolinska Institutet, Stockholm, Sweden Division of Ear, Nose and Throat, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Charoen KM, Fallica B, Colson YL, Zaman MH, Grinstaff MW. Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug-device combinations. Biomaterials 2013; 35:2264-71. [PMID: 24360576 DOI: 10.1016/j.biomaterials.2013.11.038] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/14/2013] [Indexed: 01/17/2023]
Abstract
Multicellular aggregates of cells, termed spheroids, are of interest for studying tumor behavior and for evaluating the response of pharmacologically active agents. Spheroids more faithfully reproduce the tumor macrostructure found in vivo compared to classical 2D monolayers. We present a method for embedding spheroids within collagen gels followed by quantitative and qualitative whole spheroid and single cell analyses enabling characterization over the length scales from molecular to macroscopic. Spheroid producing and embedding capabilities are demonstrated for U2OS and MDA-MB-231 cell lines, of osteosarcoma and breast adenocarcinoma origin, respectively. Finally, using the MDA-MB-231 tumor model, the chemotherapeutic response between paclitaxel delivery as a bolus dose, as practiced in the clinic, is compared to delivery within an expansile nanoparticle. The expansile nanoparticle delivery route provides a superior outcome and the results mirror those observed in a murine xenograft model. These findings highlight the synergistic beneficial results that may arise from the use of a drug delivery system, and the need to evaluate both drug candidates and delivery systems in the research and preclinical screening phases of a new cancer therapy development program.
Collapse
Affiliation(s)
- Kristie M Charoen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Brian Fallica
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Trescher K, Roch T, Cui J, Kratz K, Lendlein A, Jung F. Test system for evaluating the influence of polymer properties on primary human keratinocytes and fibroblasts in mono- and coculture. J Biotechnol 2013; 166:58-64. [DOI: 10.1016/j.jbiotec.2013.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/17/2013] [Indexed: 12/14/2022]
|
12
|
Yoshikawa HY, Kawano T, Matsuda T, Kidoaki S, Tanaka M. Morphology and Adhesion Strength of Myoblast Cells on Photocurable Gelatin under Native and Non-native Micromechanical Environments. J Phys Chem B 2013; 117:4081-8. [DOI: 10.1021/jp4008224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Y. Yoshikawa
- Physical Chemistry of Biosystems,
Institute of Physical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
- Department of Chemistry, Saitama University, Saitama 338-8570, Japan
| | - Takahito Kawano
- Division of Biomolecular Chemistry,
Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Takehisa Matsuda
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Ishikawa 924-0838,
Japan
| | - Satoru Kidoaki
- Division of Biomolecular Chemistry,
Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Motomu Tanaka
- Physical Chemistry of Biosystems,
Institute of Physical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
- Institute for Integrated
Cell-Material
Sciences (WPI iCeMS), Kyoto University,
606-8501, Kyoto, Japan
| |
Collapse
|