1
|
Rizzuti B. Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140757. [PMID: 35051666 DOI: 10.1016/j.bbapap.2022.140757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulation is the most popular computational technique for investigating the structural and dynamical behaviour of proteins, in search of the molecular basis of their function. Far from being a completely settled field of research, simulations are still evolving to best capture the essential features of the atomic interactions that govern a protein's inner motions. Modern force fields are becoming increasingly accurate in providing a physical description adequate to this purpose, and allow us to model complex biological systems under fairly realistic conditions. Furthermore, the use of accelerated sampling techniques is improving our access to the observation of progressively larger molecular structures, longer time scales, and more hidden functional events. In this review, the basic principles of molecular dynamics simulations and a number of key applications in the area of protein science are summarized, and some of the most important results are discussed. Examples include the study of the structure, dynamics and binding properties of 'difficult' targets, such as intrinsically disordered proteins and membrane receptors, and the investigation of challenging phenomena like hydration-driven processes and protein aggregation. The findings described provide an overall picture of the current state of this research field, and indicate new perspectives on the road ahead to the upcoming future of molecular simulations.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
2
|
Yang J, Agnihotri MV, Huseby CJ, Kuret J, Singer SJ. A theoretical study of polymorphism in VQIVYK fibrils. Biophys J 2021; 120:1396-1416. [PMID: 33571490 DOI: 10.1016/j.bpj.2021.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY "face" sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK "back" sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.
Collapse
Affiliation(s)
- Jaehoon Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Mithila V Agnihotri
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carol J Huseby
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Jeff Kuret
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio.
| | - Sherwin J Singer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
3
|
Zhang X, Li D, Zhu X, Wang Y, Zhu P. Structural characterization and cryo-electron tomography analysis of human islet amyloid polypeptide suggest a synchronous process of the hIAPP 1-37 amyloid fibrillation. Biochem Biophys Res Commun 2020; 533:125-131. [PMID: 32943189 DOI: 10.1016/j.bbrc.2020.08.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Revealing the aggregation and fibrillation process of variant amyloid proteins is critical for understanding the molecular mechanism of related amyloidosis diseases. Here we characterized the fibrillation morphology and kinetics of type 2 diabetes (T2D) related human islet amyloid polypeptide (hIAPP1-37) fibril formation process using negative staining transmission electron microscopy (NS-TEM), cryo-electron microscopy (cryo-EM) analysis, and 3D cryo-electron tomography (cryo-ET) reconstruction, together with circular dichroism (CD) and Thioflavin-T (ThT) assays. Our results showed that various amyloid fibrils can be observed at different time points of hIAPP1-37 fibrillization process, while the winding of protofibrils presents in different growth stages, which suggests a synchronous process of hIAPP1-37 amyloid fibrillization. This work provides insights into the understanding of hIAPP1-37 amyloid aggregation process and the pathogenesis of Type 2 diabetes disease.
Collapse
Affiliation(s)
- Xueli Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongyu Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xushan Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youwang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Kalhor HR, Nazari Khodadadi A. Synthesis and Structure Activity Relationship of Pyridazine-Based Inhibitors for Elucidating the Mechanism of Amyloid Inhibition. Chem Res Toxicol 2018; 31:1092-1104. [DOI: 10.1021/acs.chemrestox.8b00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hamid Reza Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | - Alireza Nazari Khodadadi
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| |
Collapse
|
5
|
Li Y, Wang X, Ren L, Cao X, Ji C, Xia F, Zhang JZH. Electrostatic Polarization Effect on Cooperative Aggregation of Full Length Human Islet Amyloid. J Chem Inf Model 2018; 58:1587-1595. [DOI: 10.1021/acs.jcim.8b00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yang Li
- College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xianwei Wang
- Institute of Laser and Optoelectronic Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Longlong Ren
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xuecheng Cao
- College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Changge Ji
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Fei Xia
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z. H. Zhang
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
6
|
Baram M, Gilead S, Gazit E, Miller Y. Mechanistic perspective and functional activity of insulin in amylin aggregation. Chem Sci 2018; 9:4244-4252. [PMID: 29780554 PMCID: PMC5944211 DOI: 10.1039/c8sc00481a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/14/2018] [Indexed: 11/21/2022] Open
Abstract
This work provides the first-ever complete atomic model of insulin–amylin aggregates, identifying the specific interactions that stabilize the insulin–amylin complex.
Insulin is a key regulatory polypeptide that is secreted from pancreatic β-cells and has several important effects on the synthesis of lipids, regulation of enzymatic activities, blood glucose levels and the prevention of hyperglycemia. Insulin was demonstrated to self-assemble into ordered amyloid fibrils upon repeated injections, although the possible biological significance of the supramolecular structures is enigmatic. Amylin is also an amyloidogenic polypeptide that is secreted from pancreatic β-cells and plays an important role in glycemic regulation preventing post-prandial spikes in blood glucose levels. These two amyloidogenic proteins are secreted together from the pancreas and have the ability to interact and produce insulin–amylin aggregates. So far, the molecular architecture of insulin–amylin complexes at the atomic resolution has been unknown. The current work identifies for the first time the specific π–π interactions between Y16 in insulin and F19 in amylin that contribute to the stability of the insulin–amylin complex, by using experimental and molecular modeling techniques. We performed additional experiments that verify the functional activity of insulin in amylin aggregation. Our findings illustrate for the first time the specific interactions between insulin and amylin aggregates at the atomic resolution and provide a new mechanistic perspective on the effect of insulin on amylin aggregation and may pave the way towards pharmacological intervention in this process.
Collapse
Affiliation(s)
- Michal Baram
- Department of Chemistry , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel . .,The Ilse Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel
| | - Sharon Gilead
- Department of Molecular Microbiology and Biotechnology , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology , Tel Aviv University , Tel Aviv 69978 , Israel . .,Department of Materials Science and Engineering , Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Yifat Miller
- Department of Chemistry , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel . .,The Ilse Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel
| |
Collapse
|
7
|
Wineman-Fisher V, Miller Y. Insight into a New Binding Site of Zinc Ions in Fibrillar Amylin. ACS Chem Neurosci 2017; 8:2078-2087. [PMID: 28692245 DOI: 10.1021/acschemneuro.7b00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amylin peptides are secreted together with insulin and zinc ions from pancreatic β-cells. Under unknown conditions, the amylin peptides aggregate to produce oligomers and fibrils, and in some cases Zn2+ ions can bind to amylin peptides to form Zn2+-aggregate complexes. Consequently, these aggregates lead to the death of the β-cells and a decrease in insulin, which is one of the symptoms of type-2 diabetes (T2D). Therefore, it is crucial to investigate the binding sites of the Zn2+ ions in fibrillary amylin. It was previously found by in vitro and simulation studies that Zn2+ ion binds to two or four His residues in the turn domain of fibrillary amylin. In the current study, we present a new Zn2+ binding site in the N-terminus of fibrillary amylin with three different coordination modes. Our simulations showed that Zn2+ ions bind to polymorphic amylin fibrils with a preference to bind to four Cys residues rather than two Cys residues of two neighboring amylin monomers. The new binding site leads to conformational changes, increases the number of polymorphic states, and demonstrates the existence of competition between various binding sites. Our study provides insight into the molecular mechanisms through which Zn2+ ions that play a critical role in amylin aggregation can bind to amylin and promote amylin aggregation in T2D.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science
and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science
and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
8
|
He J, Dai J, Li J, Peng X, Niemi AJ. Aspects of structural landscape of human islet amyloid polypeptide. J Chem Phys 2015; 142:045102. [PMID: 25638009 DOI: 10.1063/1.4905586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.
Collapse
Affiliation(s)
- Jianfeng He
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jin Dai
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Li
- Institute of Biopharmaceutical Research, Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing 102206, China
| | - Xubiao Peng
- Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden
| | - Antti J Niemi
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
9
|
Wineman-Fisher V, Atsmon-Raz Y, Miller Y. Orientations of residues along the β-arch of self-assembled amylin fibril-like structures lead to polymorphism. Biomacromolecules 2014; 16:156-65. [PMID: 25420121 DOI: 10.1021/bm501326y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amylin is an endocrine hormone peptide that consists of 37 residues and is the main component of extracellular amyloid deposits found in the pancreas of most type 2 diabetes patients. Amylin peptides are self-assembled to form oligomers and fibrils. So far, four different molecular structures of the self-assembled amylin fibrils have been observed experimentally: two ssNMR models and two crystal models. This study reveals, for the first time, that there are four self-assembled amylin forms that differ in the orientations of the side chains along the β-arch and are all derived from the two ssNMR models. The two ssNMR models are composed of these four different self-assembled forms of amylin, and the two crystal models are composed of two different self-assembled forms of amylin. This study illustrates at the atomic level the differences among the four experimental models and proposes eight new models of self-assembled amylin that are also composed of the four different self-assembled forms of amylin. Our results show polymorphism of the self-assembled fibril-like amylin, with a slight preference of some of the newly constructed models over the experimental models. Finally, we propose that two different self-assembled fibril-like forms of amylin can interact to form a new fibril-like amylin. We investigated this argument and found that some fibril-like amylin prefers to interact to form stable fibril-like structures, whereas others disfavor it. Our work provides new insights that may suggest strategies for future pharmacological studies that aim to find ways to ameliorate the interactions between polymorphic oligomers and fibrils of amylin.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
10
|
Zhang M, Hu R, Liang G, Chang Y, Sun Y, Peng Z, Zheng J. Structural and Energetic Insight into the Cross-Seeding Amyloid Assemblies of Human IAPP and Rat IAPP. J Phys Chem B 2014; 118:7026-36. [DOI: 10.1021/jp5022246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mingzhen Zhang
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Rundong Hu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taoyuan 320, Taiwan
| | - Yan Sun
- Department
of Biochemical Engineering and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhenmeng Peng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
11
|
Morriss-Andrews A, Shea JE. Simulations of Protein Aggregation: Insights from Atomistic and Coarse-Grained Models. J Phys Chem Lett 2014; 5:1899-908. [PMID: 26273871 DOI: 10.1021/jz5006847] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This Perspective highlights recent computational approaches to protein aggregation, from coarse-grained models to atomistic simulations, using the islet amyloid polypeptide (IAPP) as a case study. We review salient open questions where simulations can make an impact, discuss the successes and challenges met by simulations, and explore new directions.
Collapse
Affiliation(s)
- Alex Morriss-Andrews
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106-9510, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
12
|
Hu R, Zhang M, Patel K, Wang Q, Chang Y, Gong X, Zhang G, Zheng J. Cross-sequence interactions between human and rat islet amyloid polypeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5193-5201. [PMID: 24754490 DOI: 10.1021/la500632d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) can assemble into toxic oligomers and fibrils, which are associated with cell degeneration and the pathogenesis of type 2 diabetes. Cross-interaction of hIAPP with rat IAPP (rIAPP)--a non-amyloidogenic peptide with high sequence similarity to hIAPP--might influence the aggregation and toxicity of hIAPP. However, the exact role of rIAPP in hIAPP aggregation and toxicity still remains unclear. In this work, we investigated the effect of cross-sequence interactions between full-length hIAPP(1-37) and rIAPP(1-37) on hybrid amyloid structures, aggregation kinetics, and cell toxicity using combined computational and experimental approaches. Experimental results indicate a contrasting role of rIAPP in hIAPP aggregation, in which rIAPP initially inhibits the early aggregation and nuclei formation of hIAPP, but hIAPP seeds can also recruit both hIAPP and rIAPP to form more hybrid fibrils, thus promoting amyloid fibrillation ultimately. The coincubation of hIAPP and rIAPP also decreases cell viability, presumably due to the formation of more toxic hybrid oligomers at the prolonged lag phase. Comparative MD simulations confirm that the cross-sequence interactions between hIAPP and rIAPP stabilize β-sheet structure and thus likely promote their fibrillization. This work provides valuable insights into a critical role of cross-amyloid interactions in protein aggregation.
Collapse
Affiliation(s)
- Rundong Hu
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Berhanu WM, Hansmann UHE. Inter-species cross-seeding: stability and assembly of rat-human amylin aggregates. PLoS One 2014; 9:e97051. [PMID: 24810618 PMCID: PMC4014569 DOI: 10.1371/journal.pone.0097051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
Diseases such as type 2 diabetes, Alzheimer's and Parkinson's share as common feature the accumulation of mis-folded disease-specific protein aggregates into fibrillar structures, or plaques. These fibrils may either be toxic by themselves, or act as reservoirs for smaller cytotoxic oligomers. This suggests to investigate molecules as potential therapeutics that either reduce fibril formation or increase fibril stability. One example is rat amylin, which can inhibit aggregation of human amylin, a hallmark of type 2 diabetes. In the present paper, we use molecular dynamics to compare the stability of various preformed aggregates, built out of either human amylin, rat amylin, or mixtures of both. We considered two types of fibril-like oligomers: a single-layer in-register conformation, and a double-layer conformation in which the first U-shaped layer consists of rat amylin and the second layer of human amylin. Our results explain the weak amyloid-inhibiting properties of rat amylin and suggest that membrane leakage due to pore formation is responsible for the toxicity of rat amylin observed in a recent experiment. Together, our results put in question the use of rat amylin or the similar FDA approved drug pramlintide as an inhibitor of human amylin aggregation. They also point to mixed human-rat amylin fibril-like oligomers as possible model-systems for studies of amyloid formation that involve cross-species transmission.
Collapse
Affiliation(s)
- Workalemahu M. Berhanu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ulrich H. E. Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
14
|
Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: Signature of the amyloid fibers. ACTA ACUST UNITED AC 2014; 62:100-7. [DOI: 10.1016/j.patbio.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022]
|
15
|
Bernhardt NA, Berhanu WM, Hansmann UHE. Mutations and seeding of amylin fibril-like oligomers. J Phys Chem B 2013; 117:16076-85. [PMID: 24294935 DOI: 10.1021/jp409777p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Seeding a protein solution with preformed fibrils can dramatically enhance the growth rate of amyloids. As the seeds do not need to be of the same protein, seeding may account for the observed correlations between amyloid diseases. In an effort to understand better the molecular mechanisms behind cross seeding we have studied in silico the effect of mutations on the seeding of amylin fibrils. Our investigations of the structural stability of decamers of wild type amylin peptides, of Y37L mutants, and of heteroassemblies of wild-type and mutant amylin molecules show that the experimentally observed efficient cross seeding can be explained based on similarity in fibril structure of components. We find that amyloids with similar side chains packing at the β-sheet interface are structurally compatible, acting as a good template for the congruent incorporation of homologues peptides. In the Y37L mutants, lack of tyrosine-specific interactions causes significant higher flexibility of the C terminal than observed in the wild-type fibril. This effects elongation of the mutant fibril leading to the longer lag times during aggregation that are observed in experiments. Our study gives guidelines for the design of ligands that could stabilize amylin fibrils.
Collapse
Affiliation(s)
- Nathan A Bernhardt
- Department of Biology, Southwestern Oklahoma State University , Weatherford, Oklahoma 73096, United States
| | | | | |
Collapse
|
16
|
GhattyVenkataKrishna PK, Uberbacher EC, Cheng X. Effect of the amyloid β hairpin's structure on the handedness of helices formed by its aggregates. FEBS Lett 2013; 587:2649-55. [PMID: 23845280 DOI: 10.1016/j.febslet.2013.06.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 11/16/2022]
Abstract
Various structural models for amyloid β fibrils have been derived from a variety of experimental techniques. However, these models cannot differentiate between the relative position of the two arms of the β hairpin called the stagger. Amyloid fibrils of various hierarchical levels form left-handed helices composed of β sheets. However it is unclear if positive, negative and zero staggers all form the macroscopic left-handed helices. To address this issue we have conducted extensive molecular dynamics simulations of amyloid β sheets of various staggers and shown that only negative staggers lead to the experimentally observed left-handed helices while positive staggers generate the incorrect right-handed helices. This result suggests that the negative staggers are physiologically relevant structure of the amyloid β fibrils.
Collapse
|