1
|
Thwaites O, Christianson BM, Cowan AJ, Jäckel F, Liu LN, Gardner AM. Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes. J Phys Chem B 2023; 127:7283-7290. [PMID: 37556839 PMCID: PMC10461223 DOI: 10.1021/acs.jpcb.3c04466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.
Collapse
Affiliation(s)
- Owen Thwaites
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Bern M. Christianson
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Alexander J. Cowan
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Frank Jäckel
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- College
of Marine Life Sciences, and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Ocean University
of China, Qingdao 266003, China
| | - Adrian M. Gardner
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Early Career
Laser Laboratory, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
2
|
Yukihira N, Uragami C, Horiuchi K, Kosumi D, Gardiner AT, Cogdell RJ, Hashimoto H. Intramolecular charge-transfer enhances energy transfer efficiency in carotenoid-reconstituted light-harvesting 1 complex of purple photosynthetic bacteria. Commun Chem 2022; 5:135. [PMID: 36697849 PMCID: PMC9814923 DOI: 10.1038/s42004-022-00749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/04/2022] [Indexed: 01/28/2023] Open
Abstract
In bacterial photosynthesis, the excitation energy transfer (EET) from carotenoids to bacteriochlorophyll a has a significant impact on the overall efficiency of the primary photosynthetic process. This efficiency can be enhanced when the involved carotenoid has intramolecular charge-transfer (ICT) character, as found in light-harvesting systems of marine alga and diatoms. Here, we provide insights into the significance of ICT excited states following the incorporation of a higher plant carotenoid, β-apo-8'-carotenal, into the carotenoidless light-harvesting 1 (LH1) complex of the purple photosynthetic bacterium Rhodospirillum rubrum strain G9+. β-apo-8'-carotenal generates the ICT excited state in the reconstituted LH1 complex, achieving an efficiency of EET of up to 79%, which exceeds that found in the wild-type LH1 complex.
Collapse
Affiliation(s)
- Nao Yukihira
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Kota Horiuchi
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Daisuke Kosumi
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuou-ku, Kumamoto, 860-8555, Japan
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan.
| |
Collapse
|
3
|
Mondragón-Solórzano G, Sandoval-Lira J, Nochebuena J, Cisneros GA, Barroso-Flores J. Electronic Structure Effects Related to the Origin of the Remarkable Near-Infrared Absorption of Blastochloris viridis' Light Harvesting 1-Reaction Center Complex. J Chem Theory Comput 2022; 18:4555-4564. [PMID: 35767461 PMCID: PMC10408377 DOI: 10.1021/acs.jctc.2c00497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various photosynthetic organisms have evolved to absorb light in different regions of the visible light spectrum, thus adapting to the various lighting conditions available on Earth. While most of these autotrophic organisms absorb wavelengths around the 700-800 nm region, some are capable of red-shifted absorptions above this range, but none as remarkably as Blastochloris viridis whose main absorption is observed at 1015 nm, approximately 220 nm (0.34 eV) lower in energy than their main constituent pigments, BChl-b, whose main absorption is observed at 795 nm. The structure of its light harvesting 1-reaction center was recently elucidated by cryo-EM; however, the electronic structure details behind this red-shifted absorption remain unattended. We used hybrid quantum mechanics/molecular mechanics (QM/MM) calculations to optimize one of the active centers and performed classical molecular dynamics (MD) simulations to sample conformations beyond the optimized structure. We did excited state calculations with the time-dependent density functional theory method at the CAM-B3LYP/cc-pVDZ level of theory. We reproduced the near IR absorption by sequentially modifying the number of components involved in our systems using representative structures from the calculated MD ensemble. Natural transition orbital analysis reveals the participation of the BChl-b fragments to the main transition in the native structure and the structures obtained from the QM/MM and MD simulations. H-bonding pigment-protein interactions play a role on the conformation stabilization and orientation; however, the bacteriochlorin ring conformations and the exciton delocalization are the most relevant factors to explain the red-shifting phenomenon.
Collapse
Affiliation(s)
- Gustavo Mondragón-Solórzano
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM. Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano. Toluca de Lerdo 50200, México
- Instituto de Química. Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
| | - Jacinto Sandoval-Lira
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM. Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano. Toluca de Lerdo 50200, México
- Instituto de Química. Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
- Departamento de Ingeniería Ambiental, Instituto Tecnológico Superior de San Martín Texmelucan, TecNM, Camino a la Barranca de Pesos, C.P. 74120 San Martín Texmelucan, Puebla, México
| | - Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75801, United States
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75801, United States
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75801, United States
| | - Joaquín Barroso-Flores
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM. Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano. Toluca de Lerdo 50200, México
- Instituto de Química. Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
| |
Collapse
|
4
|
Ultrafast laser spectroscopic studies on carotenoids in solution and on those bound to photosynthetic pigment-protein complexes. Methods Enzymol 2022; 674:1-51. [DOI: 10.1016/bs.mie.2022.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Nupur, Kuzma M, Hájek J, Hrouzek P, Gardiner AT, Lukeš M, Moos M, Šimek P, Koblížek M. Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64. Sci Rep 2021; 11:15964. [PMID: 34354109 PMCID: PMC8342508 DOI: 10.1038/s41598-021-95254-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Gemmatimonas phototrophica AP64 is the first phototrophic representative of the bacterial phylum Gemmatimonadetes. The cells contain photosynthetic complexes with bacteriochlorophyll a as the main light-harvesting pigment and an unknown carotenoid with a single broad absorption band at 490 nm in methanol. The carotenoid was extracted from isolated photosynthetic complexes, and purified by liquid chromatography. A combination of nuclear magnetic resonance (1H NMR, COSY, 1H-13C HSQC, 1H-13C HMBC, J-resolved, and ROESY), high-resolution mass spectroscopy, Fourier-transformed infra-red, and Raman spectroscopy was used to determine its chemical structure. The novel linear carotenoid, that we have named gemmatoxanthin, contains 11 conjugated double bonds and is further substituted by methoxy, carboxyl and aldehyde groups. Its IUPAC-IUBMB semi-systematic name is 1'-Methoxy-19'-oxo-3',4'-didehydro-7,8,1',2'-tetrahydro- Ψ, Ψ carotene-16-oic acid. To our best knowledge, the presence of the carboxyl, methoxy and aldehyde groups on a linear C40 carotenoid backbone is reported here for the first time.
Collapse
Affiliation(s)
- Nupur
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Jan Hájek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Alastair T Gardiner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Lukeš
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic.
| |
Collapse
|
6
|
Razjivin A, Götze J, Lukashev E, Kozlovsky V, Ashikhmin A, Makhneva Z, Moskalenko A, Lokstein H, Paschenko V. Lack of Excitation Energy Transfer from the Bacteriochlorophyll Soret Band to Carotenoids in Photosynthetic Complexes of Purple Bacteria. J Phys Chem B 2021; 125:3538-3545. [PMID: 33818091 DOI: 10.1021/acs.jpcb.1c00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The excitation energy transfer (EET) from the bacteriochlorophyll (BChl) Soret band to the second excited state(s) (S2) of carotenoids in pigment-protein complexes of purple bacteria was investigated. The efficiency of EET was determined, based on fluorescence excitation and absorption spectra of chromatophores, peripheral light-harvesting complexes (LH2), core complexes (LH1-RC), and pigments in solution. Carotenoid-containing and carotenoid-less samples were compared: LH1-RC and LH2 from Allochromatium minutissimum, Ectothiorhodospira haloalkaliphila, and chromatophores from Rhodobacter sphaeroides and Rhodospirillum rubrum wild type and carotenoid-free strains R-26 and G9. BChl-to-carotenoid EET was absent, or its efficiency was less than the accuracy of the measurements of ∼5%. Quantum chemical calculations support the experimental results: The transition dipole moments of spatially close carotenoid/BChl pairs were found to be nearly orthogonal. The structural arrangements suggest that Soret EET may be lacking for the studied systems, however, EET from carotenoids to Qx appears to be possible.
Collapse
Affiliation(s)
- Andrei Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jan Götze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Evgeny Lukashev
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Kozlovsky
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Zoya Makhneva
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Andrey Moskalenko
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Vladimir Paschenko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
|
8
|
Piwosz K, Kaftan D, Dean J, Šetlík J, Koblížek M. Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacteriumDinoroseobacter shibae. Environ Microbiol 2017; 20:724-733. [DOI: 10.1111/1462-2920.14003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Kasia Piwosz
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| | - David Kaftan
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| | - Jason Dean
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| | - Jiří Šetlík
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| | - Michal Koblížek
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| |
Collapse
|
9
|
Razjivin AP, Lukashev EP, Kompanets VO, Kozlovsky VS, Ashikhmin AA, Chekalin SV, Moskalenko AA, Paschenko VZ. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible. PHOTOSYNTHESIS RESEARCH 2017; 133:289-295. [PMID: 28205063 DOI: 10.1007/s11120-017-0341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.
Collapse
Affiliation(s)
- A P Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - E P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - V O Kompanets
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia, 142190
| | - V S Kozlovsky
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - A A Ashikhmin
- Institute of Fundamental Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - S V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia, 142190
| | - A A Moskalenko
- Institute of Fundamental Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V Z Paschenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
10
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Martin EC, Bocian DF, Hunter CN, Holten D. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2017; 131:291-304. [PMID: 27854005 PMCID: PMC5313593 DOI: 10.1007/s11120-016-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, "blue" form with an S2 (11B u+ ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, "red" form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u+ ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u+ ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u+ ) → S0 (11A g- ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid-protein interactions, including the inferred hydrogen bonding.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO, 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
11
|
Selyanin V, Hauruseu D, Koblížek M. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. PHOTOSYNTHESIS RESEARCH 2016; 128:35-43. [PMID: 26482589 DOI: 10.1007/s11120-015-0197-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Light-harvesting capacity was investigated in six species of aerobic anoxygenic phototrophic (AAP) bacteria using absorption spectroscopy, fluorescence emission spectroscopy, and pigment analyses. Aerobically grown AAP cells contained approx. 140-1800 photosynthetic reaction centers per cell, an order of magnitude less than purple non-sulfur bacteria grown semiaerobically. Three of the studied AAP species did not contain outer light-harvesting complexes, and the size of their reaction center core complexes (RC-LH1 core complexes) varied between 29 and 36 bacteriochlorophyll molecules. In AAP species containing accessory antennae, the size was frequently reduced, providing between 5 and 60 additional bacteriochlorophyll molecules. In Roseobacter litoralis, it was found that cells grown at a higher light intensity contained more reaction centers per cell, while the size of the light-harvesting complexes was reduced. The presented results document that AAP species have both the reduced number and size of light-harvesting complexes which is consistent with the auxiliary role of phototrophy in this bacterial group.
Collapse
Affiliation(s)
- Vadim Selyanin
- Center Algatech, Institute of Microbiology CAS, 37981, Třeboň, Czech Republic.
| | - Dzmitry Hauruseu
- Center Algatech, Institute of Microbiology CAS, 37981, Třeboň, Czech Republic
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology CAS, 37981, Třeboň, Czech Republic
| |
Collapse
|
12
|
Keşan G, Durchan M, Tichý J, Minofar B, Kuznetsova V, Fuciman M, Šlouf V, Parlak C, Polívka T. Different Response of Carbonyl Carotenoids to Solvent Proticity Helps To Estimate Structure of the Unknown Carotenoid from Chromera velia. J Phys Chem B 2015; 119:12653-63. [PMID: 26362118 DOI: 10.1021/acs.jpcb.5b08152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to estimate the possible structure of the unknown carbonyl carotenoid related to isofucoxanthin from Chromera velia denoted as isofucoxanthin-like carotenoid (Ifx-l), we employed steady-state and ultrafast time-resolved spectroscopic techniques to investigate spectroscopic properties of Ifx-l in various solvents. The results were compared with those measured for related carotenoids with known structure: fucoxanthin (Fx) and isofucoxanthin (Ifx). The experimental data were complemented by quantum chemistry calculations and molecular modeling. The data show that Ifx-l must have longer effective conjugation length than Ifx. Yet, the magnitude of polarity-dependent changes in Ifx-l is larger than for Ifx, suggesting significant differences in structure of these two carotenoids. The most interesting spectroscopic feature of Ifx-l is its response to solvent proticity. The transient absorption data show that (1) the magnitude of the ICT-like band of Ifx-l in acetonitrile is larger than in methanol and (2) the S1/ICT lifetime of Ifx-l in acetonitrile, 4 ps, is markedly shorter than in methanol (10 ps). This is opposite behavior than for Fx and Ifx whose S1/ICT lifetimes are always shorter in protic solvent methanol (20 and 13 ps) than in aprotic acetonitrile (30 and 17 ps). Comparison with other carbonyl carotenoids reported earlier showed that proticity response of Ifx-l is consistent with presence of a conjugated lactone ring. Combining the experimental data and quantum chemistry calculations, we estimated a possible structure of Ifx-l.
Collapse
Affiliation(s)
- Gürkan Keşan
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Milan Durchan
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic.,Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences , České Budějovice, Czech Republic
| | - Josef Tichý
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic.,Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences , České Budějovice, Czech Republic
| | - Babak Minofar
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic.,Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic , Nové Hrady, Czech Republic
| | - Valentyna Kuznetsova
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Václav Šlouf
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Cemal Parlak
- Department of Physics, Dumlupınar University , Kütahya, Turkey
| | - Tomáš Polívka
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic.,Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences , České Budějovice, Czech Republic
| |
Collapse
|
13
|
Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 2015; 39:854-70. [DOI: 10.1093/femsre/fuv032] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
|
14
|
Sato-Takabe Y, Hamasaki K, Suzuki K. Photosynthetic competence of the marine aerobic anoxygenic phototrophic bacterium Roseobacter sp. under organic substrate limitation. Microbes Environ 2014; 29:100-3. [PMID: 24492676 PMCID: PMC4041232 DOI: 10.1264/jsme2.me13130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This paper describes the photosynthetic response of a Roseobacter strain of marine aerobic anoxygenic phototrophic bacteria to an organic substrate limitation. In batch cultures, higher values of the spheroidenone/bacteriochlorophyll a ratio were observed under substrate-deficient conditions. Interestingly, the maximum photochemical quantum efficiencies of the photosystem under substrate-deficient conditions using blue or green excitation were significantly higher than those under substrate-replete conditions. These results indicate that spheroidenone, which can absorb green light, may play an important role in their photosynthesis as a light-harvesting antenna pigment, and the photosynthetic competence of the Roseobacter strain can increase in an organic substrate-deficient environment.
Collapse
|