1
|
Ding S, Yin Q, He Q, Feng X, Yang C, Gui X, Xing Y. Role of hydrophobic fine particles in coarse particle flotation: An analysis of bubble-particle attachment and detachment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
2
|
Ma X, Nguyen NN, Nguyen AV. A review on quantifying the influence of lateral capillary interactions on the particle floatability and stability of particle-laden interfaces. Adv Colloid Interface Sci 2022; 307:102731. [DOI: 10.1016/j.cis.2022.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
|
3
|
Huang B, Nan X, Fu C, Guo T. Study of the bubble collapse mechanism and its influencing factors on stability under ultra-low surface tension. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Yamamoto R, Molina JJ, Nakayama Y. Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles. SOFT MATTER 2021; 17:4226-4253. [PMID: 33908448 DOI: 10.1039/d0sm02210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A general method is presented for computing the motions of hydrodynamically interacting particles in various kinds of host fluids for arbitrary Reynolds numbers. The method follows the standard procedure for performing direct numerical simulations (DNS) of particulate systems, where the Navier-Stokes equation must be solved consistently with the motion of the rigid particles, which defines the temporal boundary conditions to be satisfied by the Navier-Stokes equation. The smoothed profile (SP) method provides an efficient numerical scheme for coupling the continuum fluid mechanics with the dispersed moving particles, which are allowed to have arbitrary shapes. In this method, the sharp boundaries between solid particles and the host fluid are replaced with a smeared out thin shell (interfacial) region, which can be accurately resolved on a fixed Cartesian grid utilizing a SP function with a finite thickness. The accuracy of the SP method is illustrated by comparison with known exact results. In the present paper, the high degree of versatility of the SP method is demonstrated by considering several types of active and passive particle suspensions.
Collapse
Affiliation(s)
- Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - John J Molina
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Yasuya Nakayama
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Ling X, Mayer A, Yang X, Bournival G, Ata S. Motion of Particles in a Monolayer Induced by Coalescing of a Bubble with a Planar Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3648-3661. [PMID: 33745278 DOI: 10.1021/acs.langmuir.1c00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The motion of particles in a monolayer induced by the coalescing of a bare bubble with a planar air-water interface was investigated in a modified Langmuir trough. Experiments were performed to understand the effect of particle hydrophobicity, subphase pH, packing density, the presence of a weak surfactant, and particle size distribution on the behavior of particle movement in the monolayer during the coalescence process. Video tracking software was used to track the particles and extract data based on the video footage. Visual inspection indicated that the coalescence of the bubble with the monolayer was a chaotic process which led the interface to oscillate to an extent that the particles underwent complete rearrangement. A simple analysis was carried out on the main forces involved in particle motion and rearrangement at the oscillating air-water interface. The motion characteristic of particles was evaluated by speed and mean-square displacement (MSD). The results showed that the butanol-treated particles had higher speed and MSD than the particles with a stronger affinity to the air-water interface. Similar results were also found at high subphase pH and low packing factor.
Collapse
Affiliation(s)
- Xiangyang Ling
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander Mayer
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xingshi Yang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ghislain Bournival
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Seher Ata
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Jiang H, Han W, Zhao C, Luo H, Xiang G. Adsorption behaviors and mechanisms of quaternary ammonium salt collectors on quartz samples with different particle sizes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Jiang H, Xiang G, Khoso SA, Gao Y, Yang Q. Effects of residual concentration of collector CTAC on flotation behavior of illite. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2018.1548480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guoyuan Xiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Sultan Ahmed Khoso
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Ya Gao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Qinhong Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
8
|
Garbin V. Collapse mechanisms and extreme deformation of particle-laden interfaces. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Fujii S, Nakamura Y. Stimuli-Responsive Bubbles and Foams Stabilized with Solid Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7365-7379. [PMID: 28478676 DOI: 10.1021/acs.langmuir.7b01024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Particle-stabilized bubbles and foams have been observed and used in a wide range of industrial sectors and have been exploited as a technology platform for the production of advanced functional materials. The stability, structure, shape, and movement of these bubbles and foams can be controlled by external stimuli such as the pH, temperature, magnetic fields, ultrasonication, mechanical stress, surfactants, and organic solvents. Stimuli-responsive modes can be categorized into three classes: (i) bubbles/foams whose stability can be controlled by the adsorption/desorption/dissolution of solid particles to/from/at gas-liquid interfaces, (ii) bubbles/foams that can move, and (iii) bubbles/foams that can change their shapes and structures. The stimuli-responsive characteristics of bubbles and foams offer potential applications in the areas of controlled encapsulation, delivery, and release.
Collapse
Affiliation(s)
- Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology , 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology , 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
10
|
Wang G, Evans GM, Jameson GJ. Experiments on the detachment of particles from bubbles in a turbulent vortex. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Controlling Pickering Emulsion Destabilisation: A Route to Fabricating New Materials by Phase Inversion. MATERIALS 2016; 9:ma9080626. [PMID: 28773747 PMCID: PMC5509044 DOI: 10.3390/ma9080626] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022]
Abstract
The aim of this paper is to review the key findings about how particle-stabilised (or Pickering) emulsions respond to stress and break down. Over the last ten years, new insights have been gained into how particles attached to droplet (and bubble) surfaces alter the destabilisation mechanisms in emulsions. The conditions under which chemical demulsifiers displace, or detach, particles from the interface were established. Mass transfer between drops and the continuous phase was shown to disrupt the layers of particles attached to drop surfaces. The criteria for causing coalescence by applying physical stress (shear or compression) to Pickering emulsions were characterised. These findings are being used to design the structures of materials formed by breaking Pickering emulsions.
Collapse
|
12
|
Bournival G, Ata S, Wanless EJ. Behavior of Bubble Interfaces Stabilized by Particles of Different Densities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6226-6238. [PMID: 27223404 DOI: 10.1021/acs.langmuir.6b00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stability of bubbles laden with particles of different densities was investigated. Capillary-held bubbles were produced and coated with particles across the density range of 1.2-3.6 g·cm(-3). The materials used were poly(methyl methacrylate) (PMMA), glass, and anatase. The interaction of the bubbles, once brought into contact, was monitored using high-speed video recording. Visual inspection indicated that denser particles were more easily displaced during the contact of the bubbles and therefore the PMMA particles provided a particle barrier more resistant to coalescence. The coalescence events yielded information on the surface properties of the bubble and the detachment of particles. The attached particles commonly dampen the oscillation of the coalesced bubbles through viscous drag and change in the surface properties (e.g., area-exclusion principle). The dampening of the oscillation generally leads to a reduced mass of particles detaching from the bubble surface. It was found that the different materials investigated did not offer clear evidence of the effect of particle detachment on the bubble surface properties in the present systems. On the other hand, the detachment of different particle materials seemed to be consistent with one another when comparing the attachment and detachment forces exerted on the particles based on their density, size, and hydrophobicity. It was concluded that particles of lower density are more effective in stabilizing interfaces, and thus particle density is an important parameter in the selection of materials for the handling of dispersions.
Collapse
Affiliation(s)
- Ghislain Bournival
- The School of Mining Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Seher Ata
- The School of Mining Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, The University of Newcastle , Callaghan, New South Wales 2308, Australia
| |
Collapse
|
13
|
Bournival G, Ata S, Wanless EJ. The roles of particles in multiphase processes: Particles on bubble surfaces. Adv Colloid Interface Sci 2015; 225:114-33. [PMID: 26344866 DOI: 10.1016/j.cis.2015.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/16/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
Abstract
Particle-stabilised foams (or froths) form the fundamental framework of industrial processes like froth flotation. This review provides an overview of the effects of particles on bubble surfaces. The characteristics of the particles have a profound effect on the stability of the bubbles although the stabilisation mechanisms may differ. It is well known that layers of particles may provide a steric barrier between two interfaces, which prevents the coalescence of bubbles. Although perhaps considered of lesser importance, it is interesting to note that particles may affect the bubble surface and momentarily suppress coalescence despite being absent from the film separating two bubbles. Foams are at best metastable and coalescence occurs to achieve a state of minimum energy. Despite this, particles have been reported to stabilise bubbles for significant periods of time. Bubble coalescence is accompanied by a release of energy triggered by the sudden change in surface area. This produces a distinctive oscillation of the bubble surface, which may be influenced by the presence of incompressible particles yielding unique surface properties. A survey of the literature shows that the properties of these composite materials are greatly affected by the physicochemical characteristics of the particles such as hydrophobicity and size. The intense energy released during the coalescence of bubbles may be sufficient to expel particles from the bubble surface. It is noted that the detachment of particles may preferentially occur from specific locations on the bubble surface. Examination of the research accounts again reveals that the properties of the particles may affect their detachment upon the oscillation of the bubble surface. However, it is believed that most parameters affecting the detachment of particles are in fact modifying the dynamics of the three-phase line of contact. Both the oscillation of a coalescing bubble and the resulting detachment of particles are highly dynamic processes. They would greatly benefit from computer simulation studies.
Collapse
|
14
|
Ueno K, Bournival G, Wanless EJ, Nakayama S, Giakoumatos EC, Nakamura Y, Fujii S. Liquid marble and water droplet interactions and stability. SOFT MATTER 2015; 11:7728-7738. [PMID: 26296006 DOI: 10.1039/c5sm01584g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interactions between two individual water droplets were investigated in air using a combination of coalescence rig and high speed video camera. This combination allows the visualization of droplet coalescence dynamics with millisecond resolution which provides information on droplet stability. Bare water droplets coalesced rapidly upon contact, while droplet stability was achieved by coating the droplets with polystyrene particles carrying pH-responsive poly[2-(diethylamino)ethyl methacrylate] hairs (PDEA-PS particles) to form liquid marbles. The asymmetric interaction of a water droplet (pH 3 or 10) armoured with the PDEA-PS particles (liquid marble) with a bare droplet at pH 3 exhibited intermediate stability with coalescence observed following an induction time. The induction time was longer for the pH 10 liquid marble, where the PDEA-PS particles have a hydrophobic surface, than in the case of a pH 3 liquid marble, where the PDEA-PS particles have a hydrophilic surface. Furthermore, film formation of PDEA-PS particles on the liquid marble surface with toluene vapour confirmed capsule formation which prevented coalescence with the neighbouring water droplet instead wetting the capsule upon contact within 3 milliseconds. This study illuminates the stability of individual particle-stabilized droplets and has potential impact on processes and formulations which involve their interaction.
Collapse
Affiliation(s)
- Kazuyuki Ueno
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bournival G, de Oliveira e Souza L, Ata S, Wanless EJ. Effect of alcohol frothing agents on the coalescence of bubbles coated with hydrophobized silica particles. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
|
17
|
Rojo L, Castro-Hurtado I, Morant-Miñana MC, Mandayo GG, Castaño E. Li2CO3 thin films fabricated by sputtering techniques: the role of temperature on their properties. CrystEngComm 2014. [DOI: 10.1039/c4ce00476k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work present the first steps of thin film solid state electrochemical devices development based on Li2CO3.
Collapse
Affiliation(s)
- Lander Rojo
- CEIT
- 20018 Donostia-San Sebastián, Spain
- CIC microGUNE
- , Spain
| | | | | | | | | |
Collapse
|