1
|
Choroba K, Palion-Gazda J, Kryczka A, Malicka E, Machura B. Push-pull effect - how to effectively control photoinduced intramolecular charge transfer processes in rhenium(I) chromophores with ligands of D-A or D-π-A structure. Dalton Trans 2025; 54:2209-2223. [PMID: 39801429 DOI: 10.1039/d4dt03237c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands. Such compounds can be treated as bichromophoric systems with two close-lying excited states, metal-to-ligand charge transfer (MLCT) and intraligand-charge-transfer (ILCT). A role of ILCT transitions in controlling photobehaviour was discussed for Re(I) tricarbonyls with six different diimine cores decorated by various electron-rich amine, sulphur-based and π-conjugated aryl groups. It was evidenced that this approach is an effective tool for enhancement of the visible absorptivity, bathochromic emission shift and significant prolongation of the excited-state, opening up new possibilities in the development of more efficient materials and expand the range of their applications.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Anna Kryczka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Ewa Malicka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
2
|
Palion-Gazda J, Choroba K, Maroń AM, Malicka E, Machura B. Structural and Photophysical Trends in Rhenium(I) Carbonyl Complexes with 2,2':6',2″-Terpyridines. Molecules 2024; 29:1631. [PMID: 38611910 PMCID: PMC11013590 DOI: 10.3390/molecules29071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
This is the first comprehensive review of rhenium(I) carbonyl complexes with 2,2':6',2″-terpyridine-based ligands (R-terpy)-encompassing their synthesis, molecular features, photophysical behavior, and potential applications. Particular attention has been devoted to demonstrating how the coordination mode of 2,2':6',2″-terpyridine (terpy-κ2N and terpy-κ3N), structural modifications of terpy framework (R), and the nature of ancillary ligands (X-mono-negative anion, L-neutral ligand) may tune the photophysical behavior of Re(I) complexes [Re(X/L)(CO)3(R-terpy-κ2N)]0/+ and [Re(X/L)(CO)2(R-terpy-κ3N)]0/+. Our discussion also includes homo- and heteronuclear multicomponent systems with {Re(CO)3(R-terpy-κ2N)} and {Re(CO)2(R-terpy-κ3N)} motifs. The presented structure-property relationships are of high importance for controlling the photoinduced processes in these systems and making further progress in the development of more efficient Re-based luminophores, photosensitizers, and photocatalysts for modern technologies.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| | | | | | | | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| |
Collapse
|
3
|
Palion-Gazda J, Choroba K, Penkala M, Rawicka P, Machura B. Further Insights into the Impact of Ligand-Localized Excited States on the Photophysics of Phenanthroline-Based Rhenium(I) Tricarbonyl Complexes. Inorg Chem 2024; 63:1356-1366. [PMID: 38155540 DOI: 10.1021/acs.inorgchem.3c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The present work shows the pivotal role of N-donor substituents attached to 1,10-phenanthroline at the 4,7-positions in perturbation of ground- and excited-state properties of fac-[ReCl(CO)3(R2phen)]. Excited-state processes occurring upon photoexcitation in the designed systems were thoroughly explored with a wide range of steady-state and time-resolved spectroscopic techniques, including transient absorption, as well as experimental results were complemented by theoretical studies based on the density functional theory (DFT). It was demonstrated that the attachment of six-membered heterocyclic amines (piperidine─ppr, morpholine─mor, and thiomorpholine─tmor) is a very effective tool for extending absorptivity and excited-state lifetimes of resulting fac-[ReCl(CO)3(R2phen)] due to the contribution of the excited state localized on the phenanthroline-based ligand. Both absorption and emission properties of these systems were attributed to configurationally mixed MLCT/IL excited states. Re(I) complexes with phenoxazine (pxz) and phenothiazine (ptz) substituents were shown to possess charge-separated excited states, clearly evidenced by the simultaneous presence of signals typical of phen-* and pxz+* or ptz+* in transient absorption spectra. Both complexes are rare examples of NIR light-emitting coordination compounds. The decoration of the phen framework with less polar 9,9-dimethyl-9,10-dihydroacridine (dmac) groups resulted in the formation of [ReCl(CO)3(R2phen)] with mixed 3MLCT/3ILCT triplet excited state.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Patrycja Rawicka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
4
|
Palion-Gazda J, Szłapa-Kula A, Penkala M, Erfurt K, Machura B. Photoinduced Processes in Rhenium(I) Terpyridine Complexes Bearing Remote Amine Groups: New Insights from Transient Absorption Spectroscopy. Molecules 2022; 27:7147. [PMID: 36363973 PMCID: PMC9656794 DOI: 10.3390/molecules27217147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 04/28/2025] Open
Abstract
Photophysical properties of two Re(I) complexes [ReCl(CO)3(R-C6H4-terpy-κ2N)] with remote amine groups, N-methyl-piperazinyl (1) and (2-cyanoethyl)methylamine (2), were investigated. The complexes show strong absorption in the visible region corresponding to metal-to-ligand charge transfer (1MLCT) and intraligand-charge-transfer (1ILCT) transitions. The energy levels of 3MLCT and 3ILCT excited-states, and thus photoluminescence properties of 1 and 2, were found to be strongly affected by the solvent polarity. Compared to the parent chromophore [ReCl(CO)3(C6H5-terpy-κ2N)] (3), both designed complexes show significantly prolonged (by 1-2 orders of magnitude) phosphorescence lifetimes in acetonitrile and dimethylformamide, contrary to their lifetimes in less polar chloroform and tetrahydrofuran, which are comparable to those for 3. The femtosecond transient absorption (fsTA) measurements confirmed the interconversion between the 3MLCT and 3ILCT excited-states in polar solvents. In contrast, the emissive state of 1 and 2 in less polar environments is of predominant 3MLCT nature.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agata Szłapa-Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Penkala
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
5
|
Investigation of intermolecular interactions in organic solutions by combining two-dimensional correlation Raman spectroscopy and DFT simulation: Example of methanol and Chloralkane. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Choroba K, Maroń A, Switlicka A, Szłapa-Kula A, Siwy M, Grzelak J, Maćkowski S, Pedzinski T, Schab-Balcerzak E, Machura B. Carbazole effect on ground- and excited-state properties of rhenium(i) carbonyl complexes with extended terpy-like ligands. Dalton Trans 2021; 50:3943-3958. [PMID: 33645614 DOI: 10.1039/d0dt04340k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ground- and excited-state properties of three novel complexes [ReCl(CO)3(Ln-κ2N)] bearing 2,2':6',2''-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine functionalized with 9-carbazole attached to the central pyridine ring of the triimine core via phenylene linkage were investigated by spectroscopic and electrochemical methods and were simulated using density functional theory (DFT) and time-dependent DFT. To get a deeper and broader understanding of structure-property relationships, the designed Re(i) carbonyl complexes were compared with previously reported analogous systems - without any groups attached to the phenyl ring and bearing pyrrolidine instead of 9-carbazole. The results indicated that attachment of the N-carbazolyl substituent to the triimine core has less influence on the nature of the triplet excited state of [ReCl(CO)3(Ln-κ2N)] than the pyrrolidine group. Additionally, the impact of the ligand structural modifications on the light emission of the Re(i) complexes under external voltage was preliminarily examined with electroluminescence spectra of diodes containing the synthesized new molecules in an active layer.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
De Azevedo ODCC, Elliott PIP, Gabbutt CD, Heron BM, Jacquemin D, Rice CR, Scattergood PA. Quenching of the phosphorescence of thermally reversible photochromic naphthopyran Re(i) complexes initiated by either visible or ultraviolet radiation. Dalton Trans 2021; 50:830-834. [PMID: 33427837 DOI: 10.1039/d0dt04220j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Re(i) complexes bearing thermally reversible photochromic naphthopyran axial ligands undergo highly efficient, reversible phosphorescence quenching actuated by either visible or UV irradiation. The photoinduced quenching of the triplet metal-to-ligand charge-transfer (3MLCT) emission is interpreted based on changes in the relative energies of the excited states.
Collapse
Affiliation(s)
- Orlando D C C De Azevedo
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Maroń AM, Szlapa-Kula A, Matussek M, Kruszynski R, Siwy M, Janeczek H, Grzelak J, Maćkowski S, Schab-Balcerzak E, Machura B. Photoluminescence enhancement of Re(i) carbonyl complexes bearing D-A and D-π-A ligands. Dalton Trans 2020; 49:4441-4453. [PMID: 32181459 DOI: 10.1039/c9dt04871e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three Re(i) carbonyl complexes [ReCl(CO)3(Ln)] bearing 2,2'-bipyridine, 2,2':6',2''-terpyridine, and 1,10-phenanthroline functionalized with diphenylamine/or triphenylamine units (L1-L3) were synthesized to explore the impact of highly electron donating units appended to the imine ligand on the thermal and optoelectronic properties of Re(i) systems. Additionally, for comparison, the ligands L1-3 and parent complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)] were investigated. The thermal stability was evaluated by differential scanning calorimetry. The ground- and excited-state electronic properties of the Re(i) complexes were studied by cyclic voltammetry and differential pulse voltammetry, absorption and emission spectroscopy, as well as using density-functional theory (DFT). The majority of the compounds form amorphous molecular materials with high glass transition temperatures above 100 °C. Compared to the unsubstituted complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)], the HOMO-LUMO gap of the corresponding Re(i) systems bearing modified imine ligands is reduced, and the decrease in the value of the ΔEH-L is mainly caused by the increase in HOMO energy level. In relation to the parent complexes, all designed Re(i) carbonyls were found to show enhanced photoluminescence, both in solution and in solid state. The investigated ligands and complexes were also preliminarily tested as luminophores in light emitting diodes with the structures ITO/PEDOT:PSS/compound/Al and ITO/PEDOT:PSS/PVK:PBD:compound/Al. The pronounced effect of the ligand chemical structure on electroluminescence ability was clearly visible.
Collapse
Affiliation(s)
- Anna M Maroń
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Agata Szlapa-Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Justyna Grzelak
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland. and Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| |
Collapse
|
9
|
Li X, Valdiviezo J, Banziger SD, Zhang P, Ren T, Beratan DN, Rubtsov IV. Symmetry controlled photo-selection and charge separation in butadiyne-bridged donor–bridge–acceptor compounds. Phys Chem Chem Phys 2020; 22:9664-9676. [DOI: 10.1039/d0cp01235a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transfer (ET) in donor–bridge–acceptor (DBA) compounds featuring alkyne bridges depends strongly on the torsion angle between the donor and acceptor.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry
- Tulane University
- New Orleans
- USA
| | | | | | - Peng Zhang
- Department of Chemistry
- Duke University
- Durham
- USA
| | - Tong Ren
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - David N. Beratan
- Department of Chemistry
- Duke University
- Durham
- USA
- Department of Physics, Duke University
| | | |
Collapse
|
10
|
Klemens T, Świtlicka A, Szlapa-Kula A, Krompiec S, Lodowski P, Chrobok A, Godlewska M, Kotowicz S, Siwy M, Bednarczyk K, Libera M, Maćkowski S, Pędziński T, Schab-Balcerzak E, Machura B. Experimental and computational exploration of photophysical and electroluminescent properties of modified 2,2′:6′,2″-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine ligands and their Re(I) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tomasz Klemens
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Anna Świtlicka
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Stanisław Krompiec
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Piotr Lodowski
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Anna Chrobok
- Faculty of Chemistry; Silesian University of Technology; 9 Strzody Str. 44-100 Gliwice Poland
| | - Magdalena Godlewska
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences; Kasprzaka 44/52, PO Box 58 01-224 Warszawa Poland
| | - Sonia Kotowicz
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 34 M. Curie-Sklodowska Str. 41-819 Zabrze Poland
| | - Katarzyna Bednarczyk
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Marcin Libera
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University; 5 Grudziądzka Str. 87-100 Torun Poland
| | - Tomasz Pędziński
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; 89b Umultowska 61-614 Poznań Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 34 M. Curie-Sklodowska Str. 41-819 Zabrze Poland
| | - Barbara Machura
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| |
Collapse
|
11
|
Karthikeyan M, Govindarajan R, Ashok Kumar C, Kumar U, Manimaran B. Rectangular and hammock shaped ester functionalized chalcogenolato-bridged rhenium(I) tetranuclear metallacyclophanes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Carreño A, Solis-Céspedes E, Páez-Hernández D, Arratia-Pérez R. Exploring the geometrical and optical properties of neutral rhenium (I) tricarbonyl complex of 1,10-phenanthroline-5,6-diol using relativistic methods. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
X-ray diffraction and relativistic DFT studies on the molecular biomarker fac-Re(CO)3(4,4′-dimethyl-2,2′-bpy)(E-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol)(PF6). CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0196-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Horvath R, Huff GS, Gordon KC, George MW. Probing the excited state nature of coordination complexes with blended organic and inorganic chromophores using vibrational spectroscopy. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Yue Y, Grusenmeyer T, Ma Z, Zhang P, Schmehl RH, Beratan DN, Rubtsov IV. Electron transfer rate modulation in a compact Re(i) donor–acceptor complex. Dalton Trans 2015; 44:8609-16. [DOI: 10.1039/c4dt02145b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Excitation of the vibrational modes at the bipyridine ligand results in modulation of the electron transfer rate between the electron donating and accepting ligands in a Re(i) complex.
Collapse
Affiliation(s)
- Yuankai Yue
- Department of Chemistry
- Tulane University
- New Orleans
- USA
| | | | - Zheng Ma
- Departments of Chemistry
- Biochemistry
- and Physics
- Duke University
- Durham
| | - Peng Zhang
- Departments of Chemistry
- Biochemistry
- and Physics
- Duke University
- Durham
| | | | - David N. Beratan
- Departments of Chemistry
- Biochemistry
- and Physics
- Duke University
- Durham
| | | |
Collapse
|
16
|
Bonn AG, Neuburger M, Wenger OS. Photoinduced Electron Transfer in Rhenium(I)–Oligotriarylamine Molecules. Inorg Chem 2014; 53:11075-85. [DOI: 10.1021/ic501620g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Annabell G. Bonn
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Markus Neuburger
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| |
Collapse
|
17
|
Delor M, Sazanovich IV, Towrie M, Spall SJ, Keane T, Blake AJ, Wilson C, Meijer AJHM, Weinstein JA. Dynamics of Ground and Excited State Vibrational Relaxation and Energy Transfer in Transition Metal Carbonyls. J Phys Chem B 2014; 118:11781-91. [DOI: 10.1021/jp506326u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Milan Delor
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, STFC, Chilton, Oxfordshire, OX11 0QX, U.K
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, STFC, Chilton, Oxfordshire, OX11 0QX, U.K
| | - Steven J. Spall
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Theo Keane
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Claire Wilson
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | | | | |
Collapse
|
18
|
Yue Y, Grusenmeyer T, Ma Z, Zhang P, Schmehl RH, Beratan DN, Rubtsov IV. Full-Electron Ligand-to-Ligand Charge Transfer in a Compact Re(I) Complex. J Phys Chem A 2014; 118:10407-15. [DOI: 10.1021/jp5039877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuankai Yue
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tod Grusenmeyer
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Zheng Ma
- Departments of Chemistry, Biochemistry,
and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Peng Zhang
- Departments of Chemistry, Biochemistry,
and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Russell H. Schmehl
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - David N. Beratan
- Departments of Chemistry, Biochemistry,
and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Igor V. Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|