1
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
2
|
Electrostatically Driven Encapsulation of Hydrophilic, Non-Conformational Peptide Epitopes into Liposomes. Pharmaceutics 2019; 11:pharmaceutics11110619. [PMID: 31752070 PMCID: PMC6920922 DOI: 10.3390/pharmaceutics11110619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Since the first use of liposomes as carriers for antigens, much work has been done to elucidate the mechanisms involved in the encapsulation of vaccine-relevant biomolecules. However, only a few studies have specifically investigated the encapsulation of hydrophilic, non-conformational peptide epitopes. We performed comprehensive and systematic screening studies, in order to identify conditions that favor the electrostatic interaction of such peptides with lipid membranes. Moreover, we have explored bi-terminal sequence extension as an approach to modify the isoelectric point of peptides, in order to modulate their membrane binding behavior and eventually shift/expand the working range under which they can be efficiently encapsulated in an electrostatically driven manner. The findings of our membrane interaction studies were then applied to preparing peptide-loaded liposomes. Our results show that the magnitude of membrane binding observed in our exploratory in situ setup translates to corresponding levels of encapsulation efficiency in both of the two most commonly employed methods for the preparation of liposomes, i.e., thin-film hydration and microfluidic mixing. We believe that the methods and findings described in the present studies will be of use to a wide audience and can be applied to address the ongoing relevant issue of the efficient encapsulation of hydrophilic biomolecules.
Collapse
|
3
|
Rezaei N, Mehrnejad F, Vaezi Z, Sedghi M, Asghari SM, Naderi-Manesh H. Encapsulation of an endostatin peptide in liposomes: Stability, release, and cytotoxicity study. Colloids Surf B Biointerfaces 2019; 185:110552. [PMID: 31648117 DOI: 10.1016/j.colsurfb.2019.110552] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/21/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
The endostatin protein is a potent inhibitor of angiogenesis and tumor growth. The anti-angiogenic and antitumor properties of full-length endostatin can be mimicked by its N-terminal segment, including residues 1-27. Therefore, our previous studies have shown that a mutant N-terminal peptide which the Zn-binding loop was replaced by a disulfide loop (referred to as the ES-SS peptide) has preserved antiangiogenic and antitumor properties compared to the native peptide. To increase stability and plasma half-life of the ES-SS peptide, the nano-sized liposomal formulations of the peptide with different ratio of phosphocholine (PC) were synthesized. The liposomal peptide formulations possessed an average size of around 100 nm with (-4 to -36 mv) in zeta potential. The encapsulation efficiency of the ES-SS peptide was in the range of 24-54% with different lipid: peptide molar ratios. In vitro release of the peptide from liposomes indicated a complete peptide release after 7 days. Cytotoxicity assay was evaluated using the human umbilical vein endothelial cells (HUVECs) for various concentrations of the liposomal peptide. The results depicted the gradual release of the peptide through liposomes. By comparing with the free peptide, the liposomal peptide formulations have indicated higher cell viability with IC50 value about 0.1 μM. The peptide-liposome interactions, as well as the peptide effect on the liposome structure, were also investigated through coarse-grained molecular dynamics (CG-MD) simulation. The results revealed that the peptides were assembled in the hydrophilic core of the liposome. The peptide behavior in liposome can stabilize the liposome structure and be a response to the observed low peptide release rate. The investigation is promising for designing a liposome-based anti-angiogenesis peptide delivery system.
Collapse
Affiliation(s)
- Nastaran Rezaei
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, 14395-1561 Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, 14395-1561 Tehran, Iran.
| | - Zahra Vaezi
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Mosslim Sedghi
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, 41335-19141 Rasht, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran.
| |
Collapse
|
4
|
Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Smeijers AF, Pieterse K, Hilbers PAJ, Markvoort AJ. Multivalency in a Dendritic Host-Guest System. Macromolecules 2019; 52:2778-2788. [PMID: 30983632 PMCID: PMC6458993 DOI: 10.1021/acs.macromol.8b02357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/06/2019] [Indexed: 01/26/2023]
Abstract
![]()
Multivalency is an important instrument
in the supramolecular chemistry
toolkit for the creation of strong specific interactions. In this
paper we investigate the multivalency effect in a dendritic host–guest
system using molecular dynamics simulations. Specifically, we consider
urea–adamantyl decorated poly(propyleneimine) dendrimers that
together with compatible mono-, bi-, and tetravalent ureidoacetic
acid guests can form dynamic patchy nanoparticles. First, we simulate
the self-assembly of these particles into macromolecular nanostructures,
showing guest-controlled reduction of dendrimer aggregation. Subsequently,
we systematically study guest concentration dependent multivalent
binding. At low guest concentrations multivalency of the guests clearly
increases relative binding as tethered headgroups bind more often
than free guests’ headgroups. We find that despite an abundance
of binding sites, most of the tethered headgroups bind in close proximity,
irrespective of the spacer length; nevertheless, longer spacers do
increase binding. At high guest concentrations the dendrimer becomes
saturated with bound headgroups, independent of guest valency. However,
in direct competition the tetravalent guests prevail over the monovalent
ones. This demonstrates the benefit of multivalency at high as well
as low concentrations.
Collapse
Affiliation(s)
- A F Smeijers
- Computational Biology Group, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Koen Pieterse
- Computational Biology Group, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter A J Hilbers
- Computational Biology Group, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert J Markvoort
- Computational Biology Group, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Becton M, Averett R, Wang X. Artificial biomembrane morphology: a dissipative particle dynamics study. J Biomol Struct Dyn 2017; 36:2976-2987. [PMID: 28853329 DOI: 10.1080/07391102.2017.1373705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Artificial membranes mimicking biological structures are rapidly breaking new ground in the areas of medicine and soft-matter physics. In this endeavor, we use dissipative particle dynamics simulation to investigate the morphology and behavior of lipid-based biomembranes under conditions of varied lipid density and self-interaction. Our results show that a less-than-normal initial lipid density does not create the traditional membrane; but instead results in the formation of a 'net', or at very low densities, a series of disparate 'clumps' similar to the micelles formed by lipids in nature. When the initial lipid density is high, a membrane forms, but due to the large number of lipids, the naturally formed membrane would be larger than the simulation box, leading to 'rippling' behavior as the excess repulsive force of the membrane interior overcomes the bending energy of the membrane. Once the density reaches a certain point however, 'bubbles' appear inside the membrane, reducing the rippling behavior and eventually generating a relatively flat, but thick, structure with micelles of water inside the membrane itself. Our simulations also demonstrate that the interaction parameter between individual lipids plays a significant role in the formation and behavior of lipid membrane assemblies, creating similar structures as the initial lipid density distribution. This work provides a comprehensive approach to the intricacies of lipid membranes, and offers a guideline to design biological or polymeric membranes through self-assembly processes as well as develop novel cellular manipulation and destruction techniques.
Collapse
Affiliation(s)
- Matthew Becton
- a College of Engineering , University of Georgia , Athens , GA , USA
| | - Rodney Averett
- a College of Engineering , University of Georgia , Athens , GA , USA
| | - Xianqiao Wang
- a College of Engineering , University of Georgia , Athens , GA , USA
| |
Collapse
|
7
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
8
|
Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BYM, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1688-709. [PMID: 26930298 DOI: 10.1016/j.bbamem.2016.02.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
Most therapeutic agents suffer from poor solubility, rapid clearance from the blood stream, a lack of targeting, and often poor translocation ability across cell membranes. Drug/gene delivery systems (DDSs) are capable of overcoming some of these barriers to enhance delivery of drugs to their right place of action, e.g. inside cancer cells. In this review, we focus on nanoparticles as DDSs. Complementary experimental and computational studies have enhanced our understanding of the mechanism of action of nanocarriers and their underlying interactions with drugs, biomembranes and other biological molecules. We review key biophysical aspects of DDSs and discuss how computer modeling can assist in rational design of DDSs with improved and optimized properties. We summarize commonly used experimental techniques for the study of DDSs. Then we review computational studies for several major categories of nanocarriers, including dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, and carbon-based DDSs, and gold nanoparticles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- M Ramezanpour
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S S W Leung
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - K H Delgado-Magnero
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - B Y M Bashe
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - J Thewalt
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - D P Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Smeijers AF, Markvoort AJ, Pieterse K, Hilbers PAJ. Coarse-grained simulations of poly(propylene imine) dendrimers in solution. J Chem Phys 2016; 144:074903. [DOI: 10.1063/1.4941379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
10
|
Smeijers A, Markvoort A, Pieterse K, Hilbers P. Coarse-grained modelling of urea-adamantyl functionalised poly(propylene imine) dendrimers. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1096359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A.F. Smeijers
- Computational Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - A.J. Markvoort
- Computational Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - K. Pieterse
- Computational Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - P.A.J. Hilbers
- Computational Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| |
Collapse
|
11
|
D'Aguanno E, Altamura E, Mavelli F, Fahr A, Stano P, Luisi PL. Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life (Basel) 2015; 5:969-96. [PMID: 25793278 PMCID: PMC4390888 DOI: 10.3390/life5010969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/10/2015] [Indexed: 01/18/2023] Open
Abstract
How did primitive living cells originate? The formation of early cells, which were probably solute-filled vesicles capable of performing a rudimentary metabolism (and possibly self-reproduction), is still one of the big unsolved questions in origin of life. We have recently used lipid vesicles (liposomes) as primitive cell models, aiming at the study of the physical mechanisms for macromolecules encapsulation. We have reported that proteins and ribosomes can be encapsulated very efficiently, against statistical expectations, inside a small number of liposomes. Moreover the transcription-translation mixture, which realistically mimics a sort of minimal metabolic network, can be functionally reconstituted in liposomes owing to a self-concentration mechanism. Here we firstly summarize the recent advancements in this research line, highlighting how these results open a new vista on the phenomena that could have been important for the formation of functional primitive cells. Then, we present new evidences on the non-random entrapment of macromolecules (proteins, dextrans) in phospholipid vesicle, and in particular we show how enzymatic reactions can be accelerated because of the enhancement of their concentration inside liposomes.
Collapse
Affiliation(s)
- Erica D'Aguanno
- Science Department, Roma Tre University, Viale G. Marconi 446, I-00146 Rome, Italy.
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany.
| | - Emiliano Altamura
- Science Department, Roma Tre University, Viale G. Marconi 446, I-00146 Rome, Italy.
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70125 Bari, Italy.
| | - Fabio Mavelli
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70125 Bari, Italy.
| | - Alfred Fahr
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany.
| | - Pasquale Stano
- Science Department, Roma Tre University, Viale G. Marconi 446, I-00146 Rome, Italy.
| | - Pier Luigi Luisi
- Science Department, Roma Tre University, Viale G. Marconi 446, I-00146 Rome, Italy.
| |
Collapse
|
12
|
de Souza TP, Fahr A, Luisi PL, Stano P. Spontaneous Encapsulation and Concentration of Biological Macromolecules in Liposomes: An Intriguing Phenomenon and Its Relevance in Origins of Life. J Mol Evol 2014; 79:179-92. [DOI: 10.1007/s00239-014-9655-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
|
13
|
Wu HL, Sheng YJ, Tsao HK. Phase behaviors and membrane properties of model liposomes: Temperature effect. J Chem Phys 2014; 141:124906. [DOI: 10.1063/1.4896382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Hsing-Lun Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli 320, Taiwan
| |
Collapse
|