1
|
Blazquez S, de Lucas M, Vega C, Gámez F. Acidifying the Madrid-2019 force field: A rigid model for H3O+ with scaled charges. J Chem Phys 2025; 162:171101. [PMID: 40326599 DOI: 10.1063/5.0267223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
A classical and rigid force field for the oxonium cation, H3O+, optimized in solutions of TIP4P/2005 water, is introduced. While the charges of both H3O+ and the selected counteranions (i.e., Cl-, Br-, I-, and NO3-) are scaled by a factor of 0.85, following the philosophy of the so-called Madrid-2019 model for ions, the charge distribution of H3O+ was derived within the framework of the self-consistent atomic dipole-corrected Hirshfeld approach. Considering the simplicity of the model, the agreement between experimental data and molecular dynamics simulation results for the curvature of the solution density as a function of the solute concentration is remarkable. However, limitations persist in capturing ion-pairing behavior and long-range hydrogen-bonding dynamics in polyatomic systems. We found that a scaled charge of 0.85e provides an accurate description of the local structure of hydrogen halides but is detrimental to predicting the viscosity of the solution. The opposite effect is observed for HNO3. Nonetheless, the newly optimized potential parameters for H3O+ expand the family of ions with scaled charges in the Madrid-2019 force field, providing a computationally efficient and versatile platform to study electrolyte solutions in acidic environments. These findings contribute to the advancement of molecular modeling techniques and to improving our understanding of the interplay between local structure (solvation, ion pairing) and transport properties in complex systems.
Collapse
Affiliation(s)
- S Blazquez
- Depto. de Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M de Lucas
- Depto. de Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Vega
- Depto. de Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F Gámez
- Depto. de Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Scalfi L, Lehmann L, Dos Santos AP, Becker MR, Netz RR. Propensity of hydroxide and hydronium ions for the air-water and graphene-water interfaces from ab initio and force field simulations. J Chem Phys 2024; 161:144701. [PMID: 39377332 DOI: 10.1063/5.0226966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Understanding acids and bases at interfaces is relevant for a range of applications from environmental chemistry to energy storage. We present combined ab initio and force-field molecular dynamics simulations of hydrochloric acid and sodium hydroxide highly concentrated electrolytes at the interface with air and graphene. In agreement with surface tension measurements at the air-water interface, we find that HCl presents an ionic surface excess, while NaOH displays an ionic surface depletion, for both interfaces. We further show that graphene becomes less hydrophilic as the water ions concentration increases, with a transition to being hydrophobic for highly basic solutions. For HCl, we observe that hydronium adsorbs to both interfaces and orients strongly toward the water phase, due to the hydrogen bonding behavior of hydronium ions, which donate three hydrogen bonds to bulk water molecules when adsorbed at the interface. For NaOH, we observe density peaks of strongly oriented hydroxide ions at the interface with air and graphene. To extrapolate our results from concentrated electrolytes to dilute solutions, we perform single ion-pair ab initio simulations, as well as develop force-field parameters for ions and graphene that reproduce the density profiles at high concentrations. We find the behavior of hydronium ions to be rather independent of concentration. For NaOH electrolytes, the force-field simulations of dilute NaOH solutions suggest no hydroxide adsorption but some adsorption at high concentrations. For both interfaces, we predict that the surface potential is positive for HCl and close to neutral for NaOH.
Collapse
Affiliation(s)
- Laura Scalfi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Louis Lehmann
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP, 91501-970 Porto Alegre, RS, Brazil
| | - Maximilian R Becker
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
3
|
Kacenauskaite L, Moncada Cohen M, Van Wyck SJ, Fayer MD. Fast Structural Dynamics in Concentrated HCl Solutions: From Proton Hopping to the Bulk Viscosity. J Am Chem Soc 2024; 146:12355-12364. [PMID: 38682723 DOI: 10.1021/jacs.3c11620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Concentrated acid solutions, particularly HCl, have been studied extensively to examine the proton hopping and infrared spectral signatures of hydronium ions. Much less attention has been given to the structural dynamics of concentrated HCl solutions. Here, we apply optical heterodyne detected-optical Kerr effect (OHD-OKE) measurements to examine HCl concentration-dependent dynamics from moderate (0.8 m) to very high (15.5 m) concentrations and compare the results to the dynamics of NaCl solutions, as Na+ is similar in size to the hydronium cation. Both HCl and NaCl OHD-OKE signals decay as triexponentials at all concentrations, in contrast to pure water, which decays as a biexponential. Two remarkable features of the HCl dynamics are the following: (1) the bulk viscosity is linearly related to the slowest decay constant, t3, and (2) the concentration-dependent proton hopping times, determined by ab initio MD simulations and 2D IR chemical exchange experiments, both obtained from the literature, fall on the same line as the slowest structural dynamics relaxation time, t3, within experimental error. The structural dynamics of hydronium/chloride/water clusters, with relaxation times t3, are responsible for the concentration dependence of microscopic property of proton hopping and the macroscopic bulk viscosity. The slowest time constant (t3), which does not have a counterpart in pure water, is 3 ps at 0.8 m and increases by a factor of ∼2 by 15.5 m. The two fastest HCl decay constants, t1 and t2, are similar to those of pure water and increase mildly with the concentration.
Collapse
Affiliation(s)
- Laura Kacenauskaite
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Max Moncada Cohen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Reidelbach M, Bai M, Schneeberger M, Zöllner MS, Kubicek K, Kirchberg H, Bressler C, Thorwart M, Herrmann C. Solvent Dynamics of Aqueous Halides before and after Photoionization. J Phys Chem B 2023; 127:1399-1413. [PMID: 36728132 DOI: 10.1021/acs.jpcb.2c07992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electron transfer reactions can be strongly influenced by solvent dynamics. We study the photoionization of halides in water as a model system for such reactions. There are no internal nuclear degrees of freedom in the solute, allowing the dynamics of the solvent to be uniquely identified. We simulate the equilibrium solvent dynamics for Cl-, Br-, I-, and their respective neutral atoms in water, comparing quantum mechanical/molecular mechanical (QM/MM) and classical molecular dynamics (MD) methods. On the basis of the obtained configurations, we calculate the extended X-ray absorption fine structure (EXAFS) spectra rigorously based on the MD snapshots and compare them in detail with other theoretical and experimental results available in the literature. We find our EXAFS spectra based on QM/MM MD simulations in good agreement with their experimental counterparts for the ions. Classical MD simulations for the ions lead to EXAFS spectra that agree equally well with the experiment when it comes to the oscillatory period of the signal, even though they differ from the QM/MM radial distribution functions extracted from the MD. The amplitude is, however, considerably overestimated. This suggests that to judge the reliability of theoretical simulation methods or to elucidate fine details of the atomistic dynamics of the solvent based on EXAFS spectra, the amplitude as well as the oscillatory period need to be considered. If simulations fail qualitatively, as does the classical MD for the aqueous neutral halogen atoms, the resulting EXAFS will also be strongly affected in both oscillatory period and amplitude. The good reliability of QM/MM-based EXAFS simulations, together with clear qualitative differences in the EXAFS spectra found between halides and their atomic counterparts, suggests that a combined theory and experimental EXAFS approach is suitable for elucidating the nonequilibrium solvent dynamics in the photoionization of halides and possibly also for electron transfer reactions in more complex systems.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Mei Bai
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Michaela Schneeberger
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Martin Sebastian Zöllner
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Katharina Kubicek
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Henning Kirchberg
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Christian Bressler
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Michael Thorwart
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Carmen Herrmann
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| |
Collapse
|
5
|
Artemov V, Ryzhov A, Ouerdane H, Stevenson KJ. Ionization Difference between Weak and Strong Electrolytes as Perturbed by Conductivity Spectra Analysis. J Phys Chem B 2023; 127:261-268. [PMID: 36583593 DOI: 10.1021/acs.jpcb.2c06713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While the static structure of aqueous electrolytes has been studied for decades, their dynamic microscopic structure remains unresolved yet critical in many areas. We report a comparative study of dc and ac (1 Hz to 20 GHz) conductivity data of weak and strong electrolytes, highlighting previously missing differences and similarities. Based on these results, we introduce into consideration the intrinsic short-lived ions of water, namely, excess protons (H3O+) and proton holes (OH-). We show that the model accounting for the neutralization of these ions by the species of electrolyte explains the conductivity of aqueous solutions in the concentration range 10-7-10 M. Based on independent experimental data, we hypothesize that the aggregation of the species in weak electrolytes may determine the main difference between the conductivity of weak and strong electrolytes. Our results push forward the understanding of the dynamic structure of aqueous electrolyte solutions and are important to nanofluidic, biological, and electrochemical systems.
Collapse
Affiliation(s)
- Vasily Artemov
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015Lausanne, Switzerland
| | - Alexander Ryzhov
- Skolkovo Institute of Science and Technology, 121205Moscow, Russia
| | - Henni Ouerdane
- Skolkovo Institute of Science and Technology, 121205Moscow, Russia
| | | |
Collapse
|
6
|
Konermann L, Haidar Y. Mechanism of Magic Number NaCl Cluster Formation from Electrosprayed Water Nanodroplets. Anal Chem 2022; 94:16491-16501. [DOI: 10.1021/acs.analchem.2c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
7
|
Driscoll DM, Shiery RC, D'Annunzio N, Boglaienko D, Balasubramanian M, Levitskaia TG, Pearce CI, Govind N, Cantu DC, Fulton JL. Water Defect Stabilizes the Bi 3+ Lone-Pair Electronic State Leading to an Unusual Aqueous Hydration Structure. Inorg Chem 2022; 61:14987-14996. [PMID: 36099562 DOI: 10.1021/acs.inorgchem.2c01693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aqueous hydration structure of the Bi3+ ion is probed using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) simulations of ion-water clusters and condensed-phase solutions. Anomalous features in the EXAFS spectra are found to be associated with a highly asymmetric first-solvent water shell. The aqueous chemistry and structure of the Bi3+ ion are dramatically controlled by the water stabilization of a lone-pair electronic state involving the mixed 6s and 6p orbitals. This leads to a distinct multimodal distribution of water molecules in the first shell that are separated by about 0.2 Å. The lone-pair structure is stabilized by a collective response of multiple waters that are localized near the lone-pair anti-bonding site. The findings indicate that the lone-pair stereochemistry of aqueous Bi3+ ions plays a major role in the binding of water and ligands in aqueous solutions.
Collapse
Affiliation(s)
- Darren M Driscoll
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Richard C Shiery
- Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Nicolas D'Annunzio
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Daria Boglaienko
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Tatiana G Levitskaia
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Niranjan Govind
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David C Cantu
- Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - John L Fulton
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Brünig FN, Rammler M, Adams EM, Havenith M, Netz RR. Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions. Nat Commun 2022; 13:4210. [PMID: 35864099 PMCID: PMC9304333 DOI: 10.1038/s41467-022-31700-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
The theoretical basis for linking spectral signatures of hydrated excess protons with microscopic proton-transfer mechanisms has so far relied on normal-mode analysis. We introduce trajectory-decomposition techniques to analyze the excess-proton dynamics in ab initio molecular-dynamics simulations of aqueous hydrochloric-acid solutions beyond the normal-mode scenario. We show that the actual proton transfer between two water molecules involves for relatively large water-water separations crossing of a free-energy barrier and thus is not a normal mode, rather it is characterized by two non-vibrational time scales: Firstly, the broadly distributed waiting time for transfer to occur with a mean value of 200-300 fs, which leads to a broad and weak shoulder in the absorption spectrum around 100 cm-1, consistent with our experimental THz spectra. Secondly, the mean duration of a transfer event of about 14 fs, which produces a rather well-defined spectral contribution around 1200 cm-1 and agrees in location and width with previous experimental mid-infrared spectra.
Collapse
Affiliation(s)
- Florian N Brünig
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany
| | - Manuel Rammler
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany
| | - Ellen M Adams
- Ruhr-Universität Bochum, Department of Physical Chemistry II, 44780, Bochum, Germany
| | - Martina Havenith
- Ruhr-Universität Bochum, Department of Physical Chemistry II, 44780, Bochum, Germany
| | - Roland R Netz
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany.
| |
Collapse
|
9
|
Ma X, Li M, Pfeiffer P, Eisener J, Ohl CD, Sun C. Ion adsorption stabilizes bulk nanobubbles. J Colloid Interface Sci 2022; 606:1380-1394. [PMID: 34492474 DOI: 10.1016/j.jcis.2021.08.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The mechanism leading to the extraordinary stability of bulk nanobubbles in aqueous solutions remains an outstanding problem in soft matter, modern surface science, and physical chemistry science. In this work, the stability of bulk nanobubbles in electrolyte solutions under different pH levels and ionic strengths is studied. Nanobubbles are generated via the technique of ultrasonic cavitation, and characterized for size, number concentration and zeta potential under ambient conditions. Experimental results show that nanobubbles can survive in both acidic and basic solutions with pH values far away from the isoelectric point. We attribute the enhanced stability with increasing acidity or alkalinity of the aqueous solutions to the effective accumulation of net charges, regardless of their sign. The kinetic stability of the nanobubbles in various aqueous solutions is evaluated within the classic DLVO framework. Further, by combining a modified Poisson-Boltzmann equation with a modified Langmuir adsorption model, we describe a simple model that captures the influence of ion species and bulk concentration and reproduce the dependence of the nanobubble's surface potential on pH. We also discuss the apparent contradiction between quantitative calculation by ion stabilization model and experimental results. This essentially requires insight into the structure and dynamics of interfacial water on the atomic-scale.
Collapse
Affiliation(s)
- Xiaotong Ma
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Mingbo Li
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Patricia Pfeiffer
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39016 Magdeburg, Germany
| | - Julian Eisener
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39016 Magdeburg, Germany
| | - Claus-Dieter Ohl
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39016 Magdeburg, Germany
| | - Chao Sun
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Kazmierczak L, Janik I, Wolszczak M, Swiatla-Wojcik D. Dynamics of Ion Pairing in Dilute Aqueous HCl Solutions by Spectroscopic Measurements of Hydroxyl Radical Conversion into Dichloride Radical Anions. J Phys Chem B 2021; 125:9564-9571. [PMID: 34383496 PMCID: PMC8404193 DOI: 10.1021/acs.jpcb.1c05642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The rate of formation
of dichloride anions (Cl2•–) in
dilute aqueous solutions of HCl (2–100
mmol·kg–1) was measured by the technique of
pulse radiolysis over the temperature range of 288–373 K. The
obtained Arrhenius dependence shows a concentration averaged activation
energy of 7.3 ± 1.8 kJ·mol–1, being half
of that expected from the mechanism assuming the •OHCl– intermediate and supporting the ionic equilibrium-based
mechanism, i.e., the formation of Cl2•– in the reaction of •OH with a hydronium–chloride
(Cl–·H3O+) contact ion
pair. Assuming diffusion-controlled encounter of the hydronium and
chloride ions and including the effect of the ionic atmosphere, we
showed that the reciprocal of τ, the lifetime of (Cl–·H3O+), follows an Arrhenius dependence
with an activation energy of 23 ± 4 kJ·mol–1, independent of the acid concentration. This result indicates that
the contact pair is stabilized by hydrogen bonding interaction of
the solvent molecules. We also found that at a fixed temperature,
τ is noticeably increased in less-concentrated solutions (mHCl < 0.01 m). Since this concentration effect
is particularly pronounced at near ambient temperatures, the increasing
pair lifetime may result from the solvent cage effect enhanced by
the presence of large supramolecular structures (patches) formed by
continuously connected four-bonded water molecules.
Collapse
Affiliation(s)
- Lukasz Kazmierczak
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| | - Ireneusz Janik
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marian Wolszczak
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, Lodz 93-590, Poland
| | - Dorota Swiatla-Wojcik
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
11
|
Duignan TT, Kathmann SM, Schenter GK, Mundy CJ. Toward a First-Principles Framework for Predicting Collective Properties of Electrolytes. Acc Chem Res 2021; 54:2833-2843. [PMID: 34137593 DOI: 10.1021/acs.accounts.1c00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given the universal importance of electrolyte solutions, it is natural to expect that we have a nearly complete understanding of the fundamental properties of these solutions (e.g., the chemical potential) and that we can therefore explain, predict, and control the phenomena occurring in them. In fact, reality falls short of these expectations. But, recent advances in the simulation and modeling of electrolyte solutions indicate that it should soon be possible to make progress toward these goals. In this Account, we will discuss the use of first-principles interaction potentials based in quantum mechanics (QM) to enhance our understanding of electrolyte solutions. Specifically, we will focus on the use of quantum density functional theory (DFT) combined with molecular dynamics simulation (DFT-MD) as the foundation for our approach. The overarching concept is to understand and accurately reproduce the balance between local or short-ranged (SR) structural details and long-range (LR) correlations, allowing the prediction of the thermodynamics of both single ions in solution as well as the collective interactions characterized by activity/osmotic coefficients. In doing so, relevant collective motions and driving forces characterized by chemical potentials can be determined.In this Account, we will make the case that understanding electrolyte solutions requires a faithful QM representation of the SR nature of the ion-ion, ion-water, and water-water interactions. However, the number of molecules that is required for collective behavior makes the direct application of high-level QM methods that contain the best SR physics untenable, making methods that balance accuracy and efficiency a practical goal. Alternatives such as continuum solvent models (CSMs) and empirically based classical molecular dynamics have been extensively employed to resolve this problem but without yet overcoming the fundamental issue of SR accuracy. We will demonstrate that accurately describing the SR interaction is imperative for predicting both intrinsic properties, namely, at infinite dilution, and collective properties of electrolyte solutions.DFT has played an important role in our understanding of condensed phase systems, e.g., bulk liquid water, the air-water interface, ions in bulk, and at the air-water interface. This approach holds huge promise to provide benchmark calculations of electrolyte solution properties that will allow for the development and improvement of more efficient methods, as well as an enhanced understanding of fundamental phenomena. However, the standard protocol using the generalized gradient approximation with van der Waals (vdW) correction requires improvement in order to achieve a high level of quantitative accuracy. Simply simulating with higher level DFT functionals may not be the best route considering the significant computational cost. Alternative methods of incorporating information from higher levels of QM should be explored; e.g., using force matching techniques on small clusters, where high level benchmark calculations are possible, to develop ideal correction terms to the DFT functional is a promising possibility. We argue that DFT with statistical mechanics is becoming an increasingly useful framework enabling the prediction of collective electrolyte properties.
Collapse
Affiliation(s)
- Timothy T. Duignan
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Shawn M. Kathmann
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Gregory K. Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Christopher J. Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
- Affiliate Professor, Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
de Oliveira DM, Bredt AJ, Miller TC, Corcelli SA, Ben-Amotz D. Spectroscopic and Structural Characterization of Water-Shared Ion-Pairs in Aqueous Sodium and Lithium Hydroxide. J Phys Chem B 2021; 125:1439-1446. [PMID: 33512171 DOI: 10.1021/acs.jpcb.0c10564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Aria J. Bredt
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tierney C. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Calio PB, Li C, Voth GA. Molecular Origins of the Barriers to Proton Transport in Acidic Aqueous Solutions. J Phys Chem B 2020; 124:8868-8876. [PMID: 32924490 DOI: 10.1021/acs.jpcb.0c06223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The self-consistent iterative multistate empirical valence bond (SCI-MS-EVB) method is used to analyze the structure, thermodynamics, and dynamics of hydrochloric acid solutions. The reorientation time scales of irreversible proton transport are elucidated by simulating 0.43, 0.85, 1.68, and 3.26 M HCl solutions at 270, 285, 300, 315, and 330 K. The results indicate increased counterion pairing with increasing concentration, which manifests itself via a reduced hydronium oxygen-chloride (O*-Cl) structuring in the radial distribution functions. Increasing ionic concentration also reduces the diffusion of the hydrated excess protons, principally by reducing the contribution of the Grotthuss proton hopping (shuttling) mechanism to the overall diffusion process. In agreement with prior experimental findings, a decrease in the activation energy of reorientation time scales was also observed, which is explicitly explained by using activated rate theory and an energy-entropy decomposition of the state-averaged radial distribution functions. These results provide atomistic verification of suggestions from recent two-dimensional infrared spectroscopy experiments that chloride anions (as opposed to hydrated excess protons) create entropic barriers to proton transport.
Collapse
Affiliation(s)
- Paul B Calio
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Calio PB, Hocky GM, Voth GA. Minimal Experimental Bias on the Hydrogen Bond Greatly Improves Ab Initio Molecular Dynamics Simulations of Water. J Chem Theory Comput 2020; 16:5675-5684. [DOI: 10.1021/acs.jctc.0c00558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul B. Calio
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Glen M. Hocky
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Roy S, Schenter GK, Napoli JA, Baer MD, Markland TE, Mundy CJ. Resolving Heterogeneous Dynamics of Excess Protons in Aqueous Solution with Rate Theory. J Phys Chem B 2020; 124:5665-5675. [DOI: 10.1021/acs.jpcb.0c02649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Gregory K. Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Joseph A. Napoli
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Marcel D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Thomas E. Markland
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Christopher J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
- Affiliate Professor, Department of Chemical Engineering, University of Washington, Seattle, United States
| |
Collapse
|
16
|
Dreßler C, Kabbe G, Brehm M, Sebastiani D. Exploring non-equilibrium molecular dynamics of mobile protons in the solid acid CsH2PO4 at the micrometer and microsecond scale. J Chem Phys 2020; 152:164110. [DOI: 10.1063/5.0002167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Christian Dreßler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Gabriel Kabbe
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Martin Brehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Daniel Sebastiani
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Das S, Imoto S, Sun S, Nagata Y, Backus EHG, Bonn M. Nature of Excess Hydrated Proton at the Water-Air Interface. J Am Chem Soc 2020; 142:945-952. [PMID: 31867949 PMCID: PMC6966913 DOI: 10.1021/jacs.9b10807] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 01/02/2023]
Abstract
Understanding the interfacial molecular structure of acidic aqueous solutions is important in the context of, e.g., atmospheric chemistry, biophysics, and electrochemistry. The hydration of the interfacial proton is necessarily different from that in the bulk, given the lower effective density of water at the interface, but has not yet been elucidated. Here, using surface-specific vibrational spectroscopy, we probe the response of interfacial protons at the water-air interface and reveal the interfacial proton continuum. Combined with spectral calculations based on ab initio molecular dynamics simulations, the proton at the water-air interface is shown to be well-hydrated, despite the limited availability of hydration water, with both Eigen and Zundel structures coexisting at the interface. Notwithstanding the interfacial hydrated proton exhibiting bulk-like structures, a substantial interfacial stabilization by -1.3 ± 0.2 kcal/mol is observed experimentally, in good agreement with our free energy calculations. The surface propensity of the proton can be attributed to the interaction between the hydrated proton and its counterion.
Collapse
Affiliation(s)
- Sudipta Das
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sho Imoto
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shumei Sun
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Yuki Nagata
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ellen H. G. Backus
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Mischa Bonn
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
18
|
Bakhshandeh A, Frydel D, Diehl A, Levin Y. Charge Regulation of Colloidal Particles: Theory and Simulations. PHYSICAL REVIEW LETTERS 2019; 123:208004. [PMID: 31809122 DOI: 10.1103/physrevlett.123.208004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 06/10/2023]
Abstract
To explore charge regulation (CR) in physicochemical and biophysical systems, we present a model of colloidal particles with sticky adsorption sites which account for the formation of covalent bonds between the hydronium ions and the surface functional groups. Using this model and Monte Carlo simulations, we find that the standard Ninham and Parsegian (NP) theory of CR leads to results which deviate significantly from computer simulations. The problem with the NP approach is traced back to the use of a bulk equilibrium constant to account for surface chemical reactions. To resolve this difficulty we present a new theory of CR. The fundamental ingredient of the new approach is the sticky length, which is nontrivially related to the bulk equilibrium constant. The theory is found to be in excellent agreement with computer simulations, without any adjustable parameters. As an application of the theory we calculate the effective charge of colloidal particles containing carboxyl groups, as a function of pH and salt concentration.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Programa de Pós-Graduação em Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Derek Frydel
- Department of Chemistry, Federico Santa Maria Technical University, Campus San Joaquin, 7820275 Santiago, Chile
| | - Alexandre Diehl
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Bresnahan CG, David R, Milet A, Kumar R. Ion Pairing in HCl-Water Clusters: From Electronic Structure Investigations to Multiconfigurational Force-Field Development. J Phys Chem A 2019; 123:9371-9381. [PMID: 31589444 DOI: 10.1021/acs.jpca.9b07775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the bulk, condensed-phase HCl exists as a dissociated Cl- ion and a proton that is delocalized over solvating water molecules. However, in the gas phase, HCl is covalent, and even on the introduction of hydrating water molecules, the HCl covalent state dominates small clusters and is relevant at larger clusters including 21 water molecules. Electronic structure calculations (at the MP2 level) and ab initio metadynamics simulations (at the DFT level) have been carried out on HCl-(H2O)n clusters with n = 2-22 to investigate distinct solvation environments in clusters from covalent HCl structure, to contact ion pairs and solvent-separated ion pairs. The data were further used to train and validate a multiconfigurational force-field for HCl-water clusters that incorporates covalent HCl states into the MS-EVB3.2 formalism. Additionally, the many-body interaction of the Cl- ion with water and the excess proton was modeled by the introduction of two geometric three-body terms that incorporates the dominant many-body interaction in an efficient noniterative manner.
Collapse
Affiliation(s)
- Caitlin G Bresnahan
- Department of Chemistry , 232 Choppin Hall , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Rolf David
- Department of Chemistry , 232 Choppin Hall , Louisiana State University , Baton Rouge , Louisiana 70803 , United States.,Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Anne Milet
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Revati Kumar
- Department of Chemistry , 232 Choppin Hall , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
20
|
|
21
|
Yuan R, Napoli JA, Yan C, Marsalek O, Markland TE, Fayer MD. Tracking Aqueous Proton Transfer by Two-Dimensional Infrared Spectroscopy and ab Initio Molecular Dynamics Simulations. ACS CENTRAL SCIENCE 2019; 5:1269-1277. [PMID: 31403075 PMCID: PMC6661862 DOI: 10.1021/acscentsci.9b00447] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 05/26/2023]
Abstract
Proton transfer in water is ubiquitous and a critical elementary event that, via proton hopping between water molecules, enables protons to diffuse much faster than other ions. The problem of the anomalous nature of proton transport in water was first identified by Grotthuss over 200 years ago. In spite of a vast amount of modern research effort, there are still many unanswered questions about proton transport in water. An experimental determination of the proton hopping time has remained elusive due to its ultrafast nature and the lack of direct experimental observables. Here, we use two-dimensional infrared spectroscopy to extract the chemical exchange rates between hydronium and water in acid solutions using a vibrational probe, methyl thiocyanate. Ab initio molecular dynamics (AIMD) simulations demonstrate that the chemical exchange is dominated by proton hopping. The observed experimental and simulated acid concentration dependence then allow us to extrapolate the measured single step proton hopping time to the dilute limit, which, within error, gives the same value as inferred from measurements of the proton mobility and NMR line width analysis. In addition to obtaining the proton hopping time in the dilute limit from direct measurements and AIMD simulations, the results indicate that proton hopping in dilute acid solutions is induced by the concerted multi-water molecule hydrogen bond rearrangement that occurs in pure water. This proposition on the dynamics that drive proton hopping is confirmed by a combination of experimental results from the literature.
Collapse
Affiliation(s)
- Rongfeng Yuan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Joseph A. Napoli
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chang Yan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ondrej Marsalek
- Charles
University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Thomas E. Markland
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Carpenter WB, Lewis NHC, Fournier JA, Tokmakoff A. Entropic barriers in the kinetics of aqueous proton transfer. J Chem Phys 2019; 151:034501. [PMID: 31325917 DOI: 10.1063/1.5108907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aqueous proton transport is uniquely rapid among aqueous processes, mediated by fluctuating hydrogen bond reorganization in liquid water. In a process known as Grotthuss diffusion, the excess charge diffuses primarily by sequential proton transfers between water molecules rather than standard Brownian motion, which explains the anomalously high electrical conductivity of acidic solutions. Employing ultrafast IR spectroscopy, we use the orientational anisotropy decay of the bending vibrations of the hydrated proton complex to study the picosecond aqueous proton transfer kinetics as a function of temperature, concentration, and counterion. We find that the orientational anisotropy decay exhibits Arrhenius behavior, with an apparent activation energy of 2.4 kcal/mol in 1M and 2M HCl. Interestingly, acidic solutions at high concentration with longer proton transfer time scales display corresponding decreases in activation energy. We interpret this counterintuitive trend by considering the entropic and enthalpic contributions to the activation free energy for proton transfer. Halide counteranions at high concentrations impose entropic barriers to proton transfer in the form of constraints on the solution's collective H-bond fluctuations and obstruction of potential proton transfer pathways. The corresponding proton transfer barrier decreases due to weaker water-halide H-bonds in close proximity to the excess proton, but the entropic effects dominate and result in a net reduction in the proton transfer rate. We estimate the activation free energy for proton transfer as ∼1.0 kcal/mol at 280 K.
Collapse
Affiliation(s)
- William B Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph A Fournier
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
23
|
Drexler CI, Miller TC, Rogers BA, Li YC, Daly CA, Yang T, Corcelli SA, Cremer PS. Counter Cations Affect Transport in Aqueous Hydroxide Solutions with Ion Specificity. J Am Chem Soc 2019; 141:6930-6936. [DOI: 10.1021/jacs.8b13458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Tierney C. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | - Clyde A. Daly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | |
Collapse
|
24
|
Zdrali E, Baer MD, Okur HI, Mundy CJ, Roke S. The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface. J Phys Chem B 2019; 123:2414-2423. [DOI: 10.1021/acs.jpcb.8b10207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evangelia Zdrali
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marcel D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Halil I. Okur
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christopher J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Zavitsas AA. Quest To Demystify Water: Ideal Solution Behaviors Are Obtained by Adhering to the Equilibrium Mass Action Law. J Phys Chem B 2019; 123:869-883. [DOI: 10.1021/acs.jpcb.8b07166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andreas A. Zavitsas
- Department of Chemistry and Biochemistry, Long Island University, 1 University Plaza, Brooklyn, New York 11201, United States
| |
Collapse
|
26
|
Lewis NHC, Fournier JA, Carpenter WB, Tokmakoff A. Direct Observation of Ion Pairing in Aqueous Nitric Acid Using 2D Infrared Spectroscopy. J Phys Chem B 2018; 123:225-238. [DOI: 10.1021/acs.jpcb.8b10019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nicholas H. C. Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph A. Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - William B. Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Galib M, Schenter GK, Mundy CJ, Govind N, Fulton JL. Unraveling the spectral signatures of solvent ordering in K-edge XANES of aqueous Na+. J Chem Phys 2018; 149:124503. [DOI: 10.1063/1.5024568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Galib
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - G. K. Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - C. J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - N. Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - J. L. Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
28
|
Napoli JA, Marsalek O, Markland TE. Decoding the spectroscopic features and time scales of aqueous proton defects. J Chem Phys 2018; 148:222833. [PMID: 29907063 DOI: 10.1063/1.5023704] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Acid solutions exhibit a variety of complex structural and dynamical features arising from the presence of multiple interacting reactive proton defects and counterions. However, disentangling the transient structural motifs of proton defects in the water hydrogen bond network and the mechanisms for their interconversion remains a formidable challenge. Here, we use simulations treating the quantum nature of both the electrons and nuclei to show how the experimentally observed spectroscopic features and relaxation time scales can be elucidated using a physically transparent coordinate that encodes the overall asymmetry of the solvation environment of the proton defect. We demonstrate that this coordinate can be used both to discriminate the extremities of the features observed in the linear vibrational spectrum and to explain the molecular motions that give rise to the interconversion time scales observed in recent nonlinear experiments. This analysis provides a unified condensed-phase picture of the proton structure and dynamics that, at its extrema, encompasses proton sharing and spectroscopic features resembling the limiting Eigen [H3O(H2O)3]+ and Zundel [H(H2O)2]+ gas-phase structures, while also describing the rich variety of interconverting environments in the liquid phase.
Collapse
Affiliation(s)
- Joseph A Napoli
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Ondrej Marsalek
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
29
|
Sessa F, D’Angelo P, Migliorati V. Combined distribution functions: A powerful tool to identify cation coordination geometries in liquid systems. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.11.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Sahle CJ, Niskanen J, Schmidt C, Stefanski J, Gilmore K, Forov Y, Jahn S, Wilke M, Sternemann C. Cation Hydration in Supercritical NaOH and HCl Aqueous Solutions. J Phys Chem B 2017; 121:11383-11389. [DOI: 10.1021/acs.jpcb.7b09688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph J. Sahle
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Johannes Niskanen
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str.
15, 12489 Berlin, Germany
| | - Christian Schmidt
- Deutsches GeoForschungsZentrum GFZ, Section 4.3, Telegrafenberg, 14473 Potsdam, Germany
| | - Johannes Stefanski
- Institute
of Geology and Mineralogy, University of Cologne, Zülpicher
Strasse 49b, 50674 Köln, Germany
| | - Keith Gilmore
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yury Forov
- Fakultät
Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Sandro Jahn
- Institute
of Geology and Mineralogy, University of Cologne, Zülpicher
Strasse 49b, 50674 Köln, Germany
| | - Max Wilke
- Institute
of Earth and Environmental Science-Earth Science, Universität Potsdam, 14476 Potsdam, Germany
| | | |
Collapse
|
31
|
Daly CA, Streacker LM, Sun Y, Pattenaude SR, Hassanali AA, Petersen PB, Corcelli SA, Ben-Amotz D. Decomposition of the Experimental Raman and Infrared Spectra of Acidic Water into Proton, Special Pair, and Counterion Contributions. J Phys Chem Lett 2017; 8:5246-5252. [PMID: 28976760 DOI: 10.1021/acs.jpclett.7b02435] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Textbooks describe excess protons in liquid water as hydronium (H3O+) ions, although their true structure remains lively debated. To address this question, we have combined Raman and infrared (IR) multivariate curve resolution spectroscopy with ab initio molecular dynamics and anharmonic vibrational spectroscopic calculations. Our results are used to resolve, for the first time, the vibrational spectra of hydrated protons and counterions and reveal that there is little ion-pairing below 2 M. Moreover, we find that isolated excess protons are strongly IR active and nearly Raman inactive (with vibrational frequencies of ∼1500 ± 500 cm-1), while flanking water OH vibrations are both IR and Raman active (with higher frequencies of ∼2500 ± 500 cm-1). The emerging picture is consistent with Georg Zundel's seminal work, as well as recent ultrafast dynamics studies, leading to the conclusion that protons in liquid water are primarily hydrated by two flanking water molecules, with a broad range of proton hydrogen bond lengths and asymmetries.
Collapse
Affiliation(s)
- Clyde A Daly
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Louis M Streacker
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Yuchen Sun
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Shannon R Pattenaude
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Ali A Hassanali
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics , Strada Costiera, 11, I-34151 Trieste, Italy
| | - Poul B Petersen
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
32
|
Zakai I, Varner ME, Gerber RB. Concerted transfer of multiple protons in acid-water clusters: [(HCl)(H 2O)] 2 and [(HF)(H 2O)] 4. Phys Chem Chem Phys 2017; 19:20641-20646. [PMID: 28737803 DOI: 10.1039/c7cp04006g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations using directly ab initio potentials are carried out for the ionically bonded clusters [(Cl-)(H3O+)]2 and [(F-)(H3O+)]4 to explore their transitions to the hydrogen-bonded [(HCl)(H2O)]2 and [(HF)(H2O)]4 structures during the first picosecond of simulation. Both the ionic and the H-bonded structures that are formed are highly symmetric. It is found that proton transfers are concerted in all trajectories for [(Cl-)(H3O+)]2. For [(F-)(H3O+)]4, the fully concerted mechanism is dominant but partially concerted transfers of two or three protons at the same time also occur. The concerted mechanism also holds for the reverse process of ionization of neutral acid molecules. It is suggested that the high symmetry of the ionic and the H-bonded structures plays a role in the preference for concerted transfers. Possible implications of the results for proton transfers in other systems are discussed.
Collapse
Affiliation(s)
- I Zakai
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
33
|
Lam RK, Smith JW, Rizzuto AM, Karslıoğlu O, Bluhm H, Saykally RJ. Reversed interfacial fractionation of carbonate and bicarbonate evidenced by X-ray photoemission spectroscopy. J Chem Phys 2017. [DOI: 10.1063/1.4977046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Royce K. Lam
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jacob W. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anthony M. Rizzuto
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Osman Karslıoğlu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hendrik Bluhm
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Richard J. Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
34
|
Galib M, Baer MD, Skinner LB, Mundy CJ, Huthwelker T, Schenter GK, Benmore CJ, Govind N, Fulton JL. Revisiting the hydration structure of aqueous Na+. J Chem Phys 2017; 146:084504. [DOI: 10.1063/1.4975608] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- M. Galib
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - M. D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - L. B. Skinner
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C. J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - T. Huthwelker
- Swiss Light Source, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - G. K. Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - C. J. Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - N. Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - J. L. Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
35
|
Koga Y, Miki K, Nishikawa K. Effects of H + and OH − on H 2O as probed by the 1-propanol probing methodology: differential thermodynamic approach. Phys Chem Chem Phys 2017; 19:27413-27420. [DOI: 10.1039/c7cp05519f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional characterization map of H+ and OH−, together with other ions.
Collapse
Affiliation(s)
- Yoshikata Koga
- Department of Chemistry
- The University of British Columbia
- Vancouver, BC
- V6T 1Z1, Canada, and Suitekijuku
- Vancouver
| | - Kumiko Miki
- Department of Liberal Arts and Basic Sciences
- College of Industrial Technology
- Nihon University
- Narashino
- Japan
| | - Keiko Nishikawa
- Graduate School of Advanced Integration Science, Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
36
|
Jin XY, Liao RB, Huang ZJ, Wu H, Zou Y, Zhang H. Theoretical study on activation mechanism of fluorine substitution reactions of Keggin-MAl 12 in aqueous solutions. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1223290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiao-Yan Jin
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, PR China
| | - Rong-Bao Liao
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, PR China
| | - Zheng-Jie Huang
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, PR China
| | - Hai Wu
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, PR China
| | - Ying Zou
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, PR China
| | - Hong Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, PR China
| |
Collapse
|
37
|
Antalek M, Pace E, Hedman B, Hodgson KO, Chillemi G, Benfatto M, Sarangi R, Frank P. Solvation structure of the halides from x-ray absorption spectroscopy. J Chem Phys 2016; 145:044318. [PMID: 27475372 PMCID: PMC4967075 DOI: 10.1063/1.4959589] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/11/2016] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, and a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (-0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.
Collapse
Affiliation(s)
- Matthew Antalek
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Elisabetta Pace
- Laboratori Nazionali di Frascati-INFN, P.O. Box 13, 00044 Frascati, Italy
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Via dei Tizii 6, 00185 Roma, Italy
| | - Maurizio Benfatto
- Laboratori Nazionali di Frascati-INFN, P.O. Box 13, 00044 Frascati, Italy
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Patrick Frank
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| |
Collapse
|
38
|
Agmon N, Bakker HJ, Campen RK, Henchman RH, Pohl P, Roke S, Thämer M, Hassanali A. Protons and Hydroxide Ions in Aqueous Systems. Chem Rev 2016; 116:7642-72. [PMID: 27314430 DOI: 10.1021/acs.chemrev.5b00736] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.
Collapse
Affiliation(s)
- Noam Agmon
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Huib J Bakker
- FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - R Kramer Campen
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - Richard H Henchman
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Peter Pohl
- Johannes Kepler University Linz , Institute of Biophysics, Gruberstrasse 40, 4020 Linz, Austria
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Material Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015, Lausanne, Switzerland
| | - Martin Thämer
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany.,Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - Ali Hassanali
- CMSP Section, The Abdus Salaam International Center for Theoretical Physics , I-34151 Trieste, Italy
| |
Collapse
|
39
|
Ions interacting in solution: Moving from intrinsic to collective properties. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Skinner LB, Galib M, Fulton JL, Mundy CJ, Parise JB, Pham VT, Schenter GK, Benmore CJ. The structure of liquid water up to 360 MPa from x-ray diffraction measurements using a high Q-range and from molecular simulation. J Chem Phys 2016; 144:134504. [DOI: 10.1063/1.4944935] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- L. B. Skinner
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Mineral Physics Institute, Stony Brook University, Stony Brook, New York, New York 11794-2100, USA
| | - M. Galib
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - J. L. Fulton
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - C. J. Mundy
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - J. B. Parise
- Mineral Physics Institute, Stony Brook University, Stony Brook, New York, New York 11794-2100, USA
- Department of Geosciences, Stony Brook University, Stony Brook, New York, New York 11794-2100, USA
- Photon Sciences Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - V.-T. Pham
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
- Center for Quantum Electronics, Institute of Physics, Vietnam Academy of Science and Technology, P.O. Box 429, Boho, Hanoi 10000, Viet Nam
| | - G. K. Schenter
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - C. J. Benmore
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
41
|
Wang Y, Bowman JM, Kamarchik E. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions. J Chem Phys 2016; 144:114311. [DOI: 10.1063/1.4943580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yimin Wang
- Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M. Bowman
- Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Eugene Kamarchik
- Quantum Pomegranate, LLC, 2604 Kings Lake Court NE, Atlanta, Georgia 30345, USA
| |
Collapse
|
42
|
Daily MD, Baer MD, Mundy CJ. Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer. J Phys Chem B 2016; 120:2198-208. [DOI: 10.1021/acs.jpcb.5b12277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael D. Daily
- Physical
Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Marcel D. Baer
- Physical
Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher J. Mundy
- Physical
Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
43
|
Baer MD, Mundy CJ. Local Aqueous Solvation Structure Around Ca2+ During Ca2+···Cl– Pair Formation. J Phys Chem B 2016; 120:1885-93. [DOI: 10.1021/acs.jpcb.5b09579] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcel D. Baer
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher J. Mundy
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
44
|
Pluhařová E, Baer MD, Schenter GK, Jungwirth P, Mundy CJ. Dependence of the Rate of LiF Ion-Pairing on the Description of Molecular Interaction. J Phys Chem B 2015; 120:1749-58. [DOI: 10.1021/acs.jpcb.5b09344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eva Pluhařová
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Marcel D. Baer
- Physical
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gregory K. Schenter
- Physical
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Pavel Jungwirth
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Christopher J. Mundy
- Physical
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
45
|
Thämer M, De Marco L, Ramasesha K, Mandal A, Tokmakoff A. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 2015; 350:78-82. [DOI: 10.1126/science.aab3908] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite decades of study, the structures adopted to accommodate an excess proton in water and the mechanism by which they interconvert remain elusive. We used ultrafast two-dimensional infrared (2D IR) spectroscopy to investigate protons in aqueous hydrochloric acid solutions. By exciting O–H stretching vibrations and detecting the spectral response throughout the mid-IR region, we observed the interaction between the stretching and bending vibrations characteristic of the flanking waters of the Zundel complex, [H(H2O)2]+, at 3200 and 1760 cm−1, respectively. From time-dependent shifts of the stretch-bend cross peak, we determined a lower limit on the lifetime of this complex of 480 femtoseconds. These results suggest a key role for the Zundel complex in aqueous proton transfer.
Collapse
|
46
|
Duignan TT, Parsons DF, Ninham BW. Hydronium and hydroxide at the air–water interface with a continuum solvent model. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Bankura A, Santra B, DiStasio RA, Swartz CW, Klein ML, Wu X. A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1059959] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Arindam Bankura
- Institute for Computational Molecular Science and Department of Chemistry, Temple University , Philadelphia, PA, USA
| | - Biswajit Santra
- Department of Chemistry, Princeton University , Princeton, NJ, USA
| | | | - Charles W. Swartz
- Institute for Computational Molecular Science and Department of Chemistry, Temple University , Philadelphia, PA, USA
| | - Michael L. Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University , Philadelphia, PA, USA
| | - Xifan Wu
- Department of Physics, Temple University , Philadelphia, PA, USA
| |
Collapse
|
48
|
Ohm PB, Asato C, Wexler AS, Dutcher CS. Isotherm-Based Thermodynamic Model for Electrolyte and Nonelectrolyte Solutions Incorporating Long- and Short-Range Electrostatic Interactions. J Phys Chem A 2015; 119:3244-52. [DOI: 10.1021/jp512646k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Peter B. Ohm
- Department
of Mechanical Engineering, University of Minnesota, Twin Cities, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Caitlin Asato
- Air
Quality Research Center, University of California at Davis, One Shields
Avenue, Davis, California 95616, United States
| | - Anthony S. Wexler
- Air
Quality Research Center, University of California at Davis, One Shields
Avenue, Davis, California 95616, United States
| | - Cari S. Dutcher
- Department
of Mechanical Engineering, University of Minnesota, Twin Cities, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
49
|
|