1
|
Dash SR, Vanka K. Exploring Unconventional σ-Hole Interactions: Computational Insights into the Interaction of XeO 3 with Non-Aromatic Coordinating Solvents. Chemphyschem 2024; 25:e202300908. [PMID: 38240413 DOI: 10.1002/cphc.202300908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Indexed: 02/15/2024]
Abstract
In order to control the explosiveness and shock sensitivity of XeO3 , we have investigated its plausible interaction with various non-aromatic coordinating solvents, serving as potential Lewis base donors, through density functional theory (DFT) calculations. Out of twenty six such solvents, the top ten were thus identified and then thoroughly examined by employing various computational tools such as the mapping of the electrostatic potential surface (MESP), Wiberg bond indices (WBIs), non-covalent interaction (NCI) plots, Bader's theory of atoms-in-molecules (AIM), natural bond orbital (NBO) analysis, and the energy decomposition analysis (EDA). The amphoteric nature of XeO3 was also explored by investigating the extent of back donation from the lone pair of Xe to the antibonding orbital of the donating atom/group of the solvent molecules. The C-H…O interactions were also found to be a contributing factor in the stabilization of these adducts. Although these aerogen-bonding interactions were found to be predominantly electrostatic, significant contributions from the orbital contributions, as well as dispersion interactions, were observed. The top three non-aromatic solvents (among the twenty six studied) which form the strongest adducts with XeO3 are proposed to be hexamethylphosphoramide (HMPA), N,N'-dimethylpropyleneurea (DMPU) and tetramethylethylenediamine (TMEDA).
Collapse
Affiliation(s)
- Soumya Ranjan Dash
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Lei F, Liu Q, Zhong Y, Cui X, Yu J, Hu Z, Feng G, Zeng Z, Lu T. Computational Insight into the Nature and Strength of the π-Hole Type Chalcogen∙∙∙Chalcogen Interactions in the XO 2∙∙∙CH 3YCH 3 Complexes (X = S, Se, Te; Y = O, S, Se, Te). Int J Mol Sci 2023; 24:16193. [PMID: 38003384 PMCID: PMC10671658 DOI: 10.3390/ijms242216193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the non-covalent interactions between chalcogen centers have aroused substantial research interest because of their potential applications in organocatalysis, materials science, drug design, biological systems, crystal engineering, and molecular recognition. However, studies on π-hole-type chalcogen∙∙∙chalcogen interactions are scarcely reported in the literature. Herein, the π-hole-type intermolecular chalcogen∙∙∙chalcogen interactions in the model complexes formed between XO2 (X = S, Se, Te) and CH3YCH3 (Y = O, S, Se, Te) were systematically studied by using quantum chemical computations. The model complexes are stabilized via one primary X∙∙∙Y chalcogen bond (ChB) and the secondary C-H∙∙∙O hydrogen bonds. The binding energies of the studied complexes are in the range of -21.6~-60.4 kJ/mol. The X∙∙∙Y distances are significantly smaller than the sum of the van der Waals radii of the corresponding two atoms. The X∙∙∙Y ChBs in all the studied complexes except for the SO2∙∙∙CH3OCH3 complex are strong in strength and display a partial covalent character revealed by conducting the quantum theory of atoms in molecules (QTAIM), a non-covalent interaction plot (NCIplot), and natural bond orbital (NBO) analyses. The symmetry-adapted perturbation theory (SAPT) analysis discloses that the X∙∙∙Y ChBs are primarily dominated by the electrostatic component.
Collapse
Affiliation(s)
- Fengying Lei
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Qingyu Liu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Yeshuang Zhong
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Xinai Cui
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Jie Yu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Zuquan Hu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China;
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Tao Lu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| |
Collapse
|
3
|
Ghinato S, Giordana A, Diana E, Gomila RM, Priola E, Frontera A. Synthesis, X-ray characterization and DFT analysis of dicyanidoaurate telluronium salts: on the importance of charge assisted chalcogen bonds. Dalton Trans 2023; 52:15688-15696. [PMID: 37854010 DOI: 10.1039/d3dt02787b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this manuscript we report the synthesis and X-ray characterization of two cyanidoaurate telluronium salts, namely (3-fluorophenyl)(methyl)(phenyl)telluronium dicyanidoaurate [(3-F-Ph)(Me)(Ph)Te][Au(CN)2] (1) and methyldiphenyltelluronium dicyanidoaurate [(Me)(Ph)2Te][Au(CN)2] (2). In the solid state, the tellurium atom establishes three concurrent and directional chalcogen bonds (ChBs) with the adjacent anions, in both compounds. These charge-assisted ChBs (CAChBs) have been analyzed using DFT calculations and several computational tools. The MEP surface analysis discloses the existence of three σ-holes at the Te-atoms capable of establishing strong CAChBs with the counter-ions. In addition, significant charge transfer from the lone pair orbital at the N-atom of the anion to the antibonding σ*(Te-C) orbital of the cation is observed in some cases.
Collapse
Affiliation(s)
- Simone Ghinato
- Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Alessia Giordana
- Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Eliano Diana
- Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Emanuele Priola
- Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| |
Collapse
|
4
|
Adhav VA, Shelke SS, Balanarayan P, Saikrishnan K. Sulfur-mediated chalcogen versus hydrogen bonds in proteins: a see-saw effect in the conformational space. QRB DISCOVERY 2023; 4:e5. [PMID: 37564297 PMCID: PMC10411326 DOI: 10.1017/qrd.2023.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 08/12/2023] Open
Abstract
Divalent sulfur (S) forms a chalcogen bond (Ch-bond) via its σ-holes and a hydrogen bond (H-bond) via its lone pairs. The relevance of these interactions and their interplay for protein structure and function is unclear. Based on the analyses of the crystal structures of small organic/organometallic molecules and proteins and their molecular electrostatic surface potential, we show that the reciprocity of the substituent-dependent strength of the σ-holes and lone pairs correlates with the formation of either Ch-bond or H-bond. In proteins, cystines preferentially form Ch-bonds, metal-chelated cysteines form H-bonds, while methionines form either of them with comparable frequencies. This has implications for the positioning of these residues and their role in protein structure and function. Computational analyses reveal that the S-mediated interactions stabilise protein secondary structures by mechanisms such as helix capping and protecting free β-sheet edges by negative design. The study highlights the importance of S-mediated Ch-bond and H-bond for understanding protein folding and function, the development of improved strategies for protein/peptide structure prediction and design and structure-based drug discovery.
Collapse
Affiliation(s)
| | - Sanket Satish Shelke
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Pananghat Balanarayan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
5
|
Scheiner S. Competition Between the Two σ-Holes in the Formation of a Chalcogen Bond. Chemphyschem 2023; 24:e202200936. [PMID: 36744997 DOI: 10.1002/cphc.202200936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
A chalcogen atom Y contains two separate σ-holes when in a R1 YR2 molecular bonding pattern. Quantum chemical calculations consider competition between these two σ-holes to engage in a chalcogen bond (ChB) with a NH3 base. R groups considered include F, Br, I, and tert-butyl (tBu). Also examined is the situation where the Y lies within a chalcogenazole ring, where its neighbors are C and N. Both electron-withdrawing substituents R1 and R2 act cooperatively to deepen the two σ-holes, but the deeper of the two holes consistently lies opposite to the more electron-withdrawing group, and is also favored to form a stronger ChB. The formation of two simultaneous ChBs in a triad requires the Y atom to act as double electron acceptor, and so anti-cooperativity weakens each bond relative to the simple dyad. This effect is such that some of the shallower σ-holes are unable to form a ChB at all when a base occupies the other site.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, 84322-0300, Logan, Utah, USA
| |
Collapse
|
6
|
Selenoxides as Excellent Chalcogen Bond Donors: Effect of Metal Coordination. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248837. [PMID: 36557974 PMCID: PMC9785337 DOI: 10.3390/molecules27248837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
The chalcogen bond has been recently defined by the IUPAC as the attractive noncovalent interaction between any element of group 16 acting as an electrophile and any atom (or group of atoms) acting as a nucleophile. Commonly used chalcogen bond donor molecules are divalent selenium and tellurium derivatives that exhibit two σ-holes. In fact, the presence of two σ-hole confers to the chalcogen bonding additional possibilities with respect to the halogen bond, the most abundant σ-hole interaction. In this manuscript, we demonstrate that selenoxides are good candidates to be used as σ-hole donor molecules. Such molecules have not been analyzed before as chalcogen bond donors, as far as our knowledge extends. The σ-hole opposite to the Se=O bond is adequate for establishing strong and directional ChBs, as demonstrated herein using the Cambridge structural database (CSD) and density functional theory (DFT) calculations. Moreover, the effect of the metal coordination of the selenoxide to transition metals on the strength of the ChB interaction has been analyzed theoretically. The existence of the ChBs has been further supported by the quantum theory of atoms in molecules (QTAIM) and the noncovalent interaction plot (NCIPlot).
Collapse
|
7
|
Robinson HT, Haakansson CT, Corkish TR, Watson PD, McKinley AJ, Wild DA. Hydrogen Bonding versus Halogen Bonding: Spectroscopic Investigation of Gas-Phase Complexes Involving Bromide and Chloromethanes. Chemphyschem 2022; 24:e202200733. [PMID: 36504309 DOI: 10.1002/cphc.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen bonding and halogen bonding are important non-covalent interactions that are known to occur in large molecular systems, such as in proteins and crystal structures. Although these interactions are important on a large scale, studying hydrogen and halogen bonding in small, gas-phase chemical species allows for the binding strengths to be determined and compared at a fundamental level. In this study, anion photoelectron spectra are presented for the gas-phase complexes involving bromide and the four chloromethanes, CH3 Cl, CH2 Cl2 , CHCl3 , and CCl4 . The stabilisation energy and electron binding energy associated with each complex are determined experimentally, and the spectra are rationalised by high-level CCSD(T) calculations to determine the non-covalent interactions binding the complexes. These calculations involve nucleophilic bromide and electrophilic bromine interactions with chloromethanes, where the binding motifs, dissociation energies and vertical detachment energies are compared in terms of hydrogen bonding and halogen bonding.
Collapse
Affiliation(s)
- Hayden T Robinson
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009
| | - Christian T Haakansson
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009
| | - Timothy R Corkish
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009
| | - Peter D Watson
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009.,Department of Chemistry, University of Oxford, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Allan J McKinley
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009
| | - Duncan A Wild
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009.,School of Science, Edith Cowan University, Joondalup, Western Australia, 6027
| |
Collapse
|
8
|
Adhav VA, Pananghat B, Saikrishnan K. Probing the Directionality of S···O/N Chalcogen Bond and Its Interplay with Weak C-H···O/N/S Hydrogen Bond Using Molecular Electrostatic Potential. J Phys Chem B 2022; 126:7818-7832. [PMID: 36179131 DOI: 10.1021/acs.jpcb.2c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The directionality of the chalcogen bond (Ch-bond) formed by S and its interplay with other weak interactions have important chemical and biological implications. Here, dimers made of CH3-S-X and O/N containing nucleophiles are studied and found to be stabilized by coexisting S···O/N and C-H···O/N interactions. Based on experimentally accessible electron density and molecular electrostatic potentials (MESPs), we showed that reciprocity between S···O/N and C-H···O/N interactions in the stability of cumulative molecular interaction (ΔE) was dependent on the strength of the σ-hole on S (Vs,max). Direct correlation between ΔE of dimers with Vs,max of S supports the electrostatic nature of the Ch-bond. Such interplay of the Ch-bond is necessary for its directionality in complex nucleophiles (carbonyl groups) with multiple electron-rich centers, which is explained using MESP. A correlation between the MESP minima in the π-region and the strength of the S-π interaction explains the directional selectivity of the Ch-bond.
Collapse
Affiliation(s)
- Vishal Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune411008, India
| | - Balanarayan Pananghat
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali140306, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune411008, India
| |
Collapse
|
9
|
Definition of the Pnictogen Bond: A Perspective. INORGANICS 2022. [DOI: 10.3390/inorganics10100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This article proposes a definition for the term “pnictogen bond” and lists its donors, acceptors, and characteristic features. These may be invoked to identify this specific subset of the inter- and intramolecular interactions formed by elements of Group 15 which possess an electrophilic site in a molecular entity.
Collapse
|
10
|
Ranjbar M, Nowroozi A, Nakhaei E. The first principle study of chalcogen bonds, pnicogen bond and their mutual effects in a set of complexes between the triazine with SHF and PH2F ligands. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
|
12
|
Abstract
The chalcogen Y atom in the aromatic ring of thiophene and its derivatives YC4H4 (Y = S, Se, Te) can engage in a number of different interactions with another such unit within the homodimer. Quantum calculations show that the two rings can be oriented perpendicular to one another in a T-shaped dimer in which the Y atom accepts electron density from the π-system of the other unit in a Y···π chalcogen bond (ChB). This geometry best takes advantage of attractions between the electrostatic potentials surrounding the two monomers. There are two other geometries in which the two Y atoms engage in a ChB with one another. However, instead of a simple interaction between a σ-hole on one Y and the lone pair of its neighbor, the interaction is better described as a pair of symmetrically equivalent Y···Y interactions, in which charge is transferred in both directions simultaneously, thereby effectively doubling the strength of the bond. These geometries differ from what might be expected based simply on the juxtaposition of the electrostatic potentials of the two monomers.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
13
|
Metal Coordination Enhances Chalcogen Bonds: CSD Survey and Theoretical Calculations. Int J Mol Sci 2022; 23:ijms23084188. [PMID: 35457005 PMCID: PMC9030556 DOI: 10.3390/ijms23084188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
In this study the ability of metal coordinated Chalcogen (Ch) atoms to undergo Chalcogen bonding (ChB) interactions has been evaluated at the PBE0-D3/def2-TZVP level of theory. An initial CSD (Cambridge Structural Database) inspection revealed the presence of square planar Pd/Pt coordination complexes where divalent Ch atoms (Se/Te) were used as ligands. Interestingly, the coordination to the metal center enhanced the σ-hole donor ability of the Ch atom, which participates in ChBs with neighboring units present in the X-ray crystal structure, therefore dictating the solid state architecture. The X-ray analyses were complemented with a computational study (PBE0-D3/def2-TZVP level of theory), which shed light into the strength and directionality of the ChBs studied herein. Owing to the new possibilities that metal coordination offers to enhance or modulate the σ-hole donor ability of Chs, we believe that the findings presented herein are of remarkable importance for supramolecular chemists as well as for those scientists working in the field of solid state chemistry.
Collapse
|
14
|
Ibrahim MAA, Moussa NAM, Saad SMA, Ahmed MN, Shawky AM, Soliman MES, Mekhemer GAH, Rady ASSM. σ-Hole and LP-Hole Interactions of Pnicogen···Pnicogen Homodimers under the External Electric Field Effect: A Quantum Mechanical Study. ACS OMEGA 2022; 7:11264-11275. [PMID: 35415328 PMCID: PMC8992284 DOI: 10.1021/acsomega.2c00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
σ-Hole and lone-pair (lp)-hole interactions within σ-hole···σ-hole, σ-hole···lp-hole, and lp-hole···lp-hole configurations were comparatively investigated on the pnicogen···pnicogen homodimers (PCl3)2, for the first time, under field-free conditions and the influence of the external electric field (EEF). The electrostatic potential calculations emphasized the impressive versatility of the examined PCl3 monomers to participate in σ-hole and lp-hole pnicogen interactions. Crucially, the sizes of σ-hole and lp-hole were enlarged under the influence of the positively directed EEF and decreased in the case of reverse direction. Interestingly, the energetic quantities unveiled more favorability of the σ-hole···lp-hole configuration of the pnicogen···pnicogen homodimers, with significant negative interaction energies, than σ-hole···σ-hole and lp-hole···lp-hole configurations. Quantum theory of atoms in molecules and noncovalent interaction index analyses were adopted to elucidate the nature and origin of the considered interactions, ensuring their closed shell nature and the occurrence of attractive forces within the studied homodimers. Symmetry-adapted perturbation theory-based energy decomposition analysis alluded to the dispersion force as the main physical component beyond the occurrence of the examined interactions. The obtained findings would be considered as a fundamental underpinning for forthcoming studies pertinent to chemistry, materials science, and crystal engineering.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Sherif M. A. Saad
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Muhammad Naeem Ahmed
- Department
of Chemistry, The University of Azad Jammu
and Kashmir, Muzaffarabad 13100, Pakistan
| | - Ahmed M. Shawky
- Science
and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mahmoud E. S. Soliman
- Molecular
Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Gamal A. H. Mekhemer
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Al-shimaa S. M. Rady
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
15
|
Sperlich E, Köckerling M. [Nb6Cl14(pyrazine)4], a Versatile Precursor for Ligand-Supported Hexanuclear Niobium Cluster Compounds: Synthesis, Characterization, Follow-Up Reactions, and Intermolecular Interactions. Inorg Chem 2022; 61:2409-2420. [DOI: 10.1021/acs.inorgchem.1c03109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric Sperlich
- University of Potsdam Institute of Chemistry, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Martin Köckerling
- University of Rostock, Institute of Chemistry, Solid-State Inorganic Chemistry Group, Albert-Einstein-Strasse 3a, D-18059 Rostock, Germany
- University of Rostock, Department Life, Light and Matter, D-18051 Rostock, Germany
| |
Collapse
|
16
|
Gomila RM, Bauza A, Frontera A. Enhancing chalcogen bonding by metal coordination. Dalton Trans 2022; 51:5977-5982. [DOI: 10.1039/d2dt00796g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript shows that chalcogen bonding (ChB) interaction is enhanced by the coordination of the chalcogen atom to metal centers, as evidenced using DFT calculations (PBE0-D3/def2-TZVP level of theory). X-ray...
Collapse
|
17
|
Liang J, Shi Y, Lu Y, Xu Z, Liu H. Square tetravalent chalcogen bonds in dimeric aggregates: a joint crystallographic survey and theoretical study. CrystEngComm 2022. [DOI: 10.1039/d1ce01364e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Square tetravalent chalcogen bonds were systematically investigated through a combination of crystal structure analysis and DFT calculations.
Collapse
Affiliation(s)
- Jinwei Liang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yulong Shi
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunxiang Lu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
18
|
Kumar V, Singh S. Co-operative influence of co-crystallized solvent in sustaining supramolecular architectures of Zn(II)/Cd(II) homoleptic pyridyl functionalized dithiocarbamates complexes via non-covalent interactions. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.2002863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vinod Kumar
- Department of Chemistry, B.S.A. College, Mathura, India
| | - Suryabhan Singh
- Department of Chemistry, Guru Ghasidas Vishwvidyalaya, Bilaspur, India
| |
Collapse
|
19
|
Bag S, Chandra S, Ghosh J, Bera A, Bernstein ER, Bhattacharya A. The attochemistry of chemical bonding. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1976499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sampad Bag
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Sankhabrata Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Jayanta Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Anupam Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | | | - Atanu Bhattacharya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Venkataramanan NS. Electronic structure, stability, and cooperativity of chalcogen bonding in sulfur dioxide and hydrated sulfur dioxide clusters: a DFT study and wave functional analysis. Struct Chem 2021. [DOI: 10.1007/s11224-021-01827-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Ibrahim MAA, Moussa NAM, Soliman MES, Moustafa MF, Al-Fahemi JH, El-Mageed HRA. On the Potentiality of X-T-X 3 Compounds (T = C, Si, and Ge, and X = F, Cl, and Br) as Tetrel- and Halogen-Bond Donors. ACS OMEGA 2021; 6:19330-19341. [PMID: 34337270 PMCID: PMC8320108 DOI: 10.1021/acsomega.1c03183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 05/08/2023]
Abstract
The versatility of the X-T-X3 compounds (where T = C, Si, and Ge, and X = F, Cl, and Br) to participate in tetrel- and halogen-bonding interactions was settled out, at the MP2/aug-cc-pVTZ level of theory, within a series of configurations for (X-T-X3)2 homodimers. The electrostatic potential computations ensured the remarkable ability of the investigated X-T-X3 monomers to participate in σ-hole halogen and tetrel interactions. The energetic findings significantly unveil the favorability of the tetrel···tetrel directional configuration with considerable negative binding energies over tetrel···halogen, type III halogen···halogen, and type II halogen···halogen analogs. Quantum theory of atoms in molecules and noncovalent interaction analyses were accomplished to disclose the nature of the tetrel- and halogen-bonding interactions within designed configurations, giving good correlations between the total electron densities and binding energies. Further insight into the binding energy physical meanings was invoked through using symmetry-adapted perturbation theory-based energy decomposition analysis, featuring the dispersion term as the most prominent force beyond the examined interactions. The theoretical results were supported by versatile crystal structures which were characterized by the same type of interactions. Presumably, the obtained findings would be considered as a solid underpinning for future supramolecular chemistry, materials science, and crystal engineering studies, as well as a fundamental linchpin for a better understanding of the biological activities of chemicals.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mahmoud E. S. Soliman
- Molecular
Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Mahmoud F. Moustafa
- Department
of Biology, College of Science, King Khalid
University, Abha 9004, Saudi Arabia
- Department
of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Jabir H. Al-Fahemi
- Chemistry
Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - H. R. Abd El-Mageed
- Micro-Analysis,
Environmental Research and Community Affairs Center (MAESC), Faculty
of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
22
|
Iribarren I, Sánchez-Sanz G, Alkorta I, Elguero J, Trujillo C. Evaluation of Electron Density Shifts in Noncovalent Interactions. J Phys Chem A 2021; 125:4741-4749. [PMID: 34061527 PMCID: PMC8279648 DOI: 10.1021/acs.jpca.1c00830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Indexed: 12/12/2022]
Abstract
In the present paper, we report the quantitative evaluation of the electron density shift (EDS) maps within different complexes. Values associated with the total EDS maps exhibited good correlation with different quantities such as interaction energies, Eint, intermolecular distances, bond critical points, and LMOEDA energy decomposition terms. Besides, EDS maps at different cutoffs were also evaluated and related with the interaction energies values. Finally, EDS maps and their corresponding values are found to correlate with Eint within systems with cooperative effects. To our knowledge, this is the first time that the EDS has been quanitatively evaluated.
Collapse
Affiliation(s)
- Iñigo Iribarren
- Trinity
Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin, Dublin 2, Ireland
| | - Goar Sánchez-Sanz
- Irish
Centre For High-End Computing, 7 Floor, The Tower, Grand Canal Quay, Dublin 2 D02 HP83, Ireland
| | - Ibon Alkorta
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - José Elguero
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Cristina Trujillo
- Trinity
Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin, Dublin 2, Ireland
| |
Collapse
|
23
|
Mehta N, Fellowes T, White JM, Goerigk L. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions? J Chem Theory Comput 2021; 17:2783-2806. [PMID: 33881869 DOI: 10.1021/acs.jctc.1c00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present the CHAL336 benchmark set-the most comprehensive database for the assessment of chalcogen-bonding (CB) interactions. After careful selection of suitable systems and identification of three high-level reference methods, the set comprises 336 dimers each consisting of up to 49 atoms and covers both σ- and π-hole interactions across four categories: chalcogen-chalcogen, chalcogen-π, chalcogen-halogen, and chalcogen-nitrogen interactions. In a subsequent study of DFT methods, we re-emphasize the need for using proper London dispersion corrections when treating noncovalent interactions. We also point out that the deterioration of results and systematic overestimation of interaction energies for some dispersion-corrected DFT methods does not hint at problems with the chosen dispersion correction but is a consequence of large density-driven errors. We conclude this work by performing the most detailed DFT benchmark study for CB interactions to date. We assess 109 variations of dispersion-corrected and dispersion-uncorrected DFT methods and carry out a detailed analysis of 80 of them. Double-hybrid functionals are the most reliable approaches for CB interactions, and they should be used whenever computationally feasible. The best three double hybrids are SOS0-PBE0-2-D3(BJ), revDSD-PBEP86-D3(BJ), and B2NCPLYP-D3(BJ). The best hybrids in this study are ωB97M-V, PW6B95-D3(0), and PW6B95-D3(BJ). We do not recommend using the popular B3LYP functional nor the MP2 approach, which have both been frequently used to describe CB interactions in the past. We hope to inspire a change in computational protocols surrounding CB interactions that leads away from the commonly used, popular methods to the more robust and accurate ones recommended herein. We would also like to encourage method developers to use our set for the investigation and reduction of density-driven errors in new density functional approximations.
Collapse
Affiliation(s)
- Nisha Mehta
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Thomas Fellowes
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
24
|
Michalczyk M, Malik M, Zierkiewicz W, Scheiner S. Experimental and Theoretical Studies of Dimers Stabilized by Two Chalcogen Bonds in the Presence of a N···N Pnicogen Bond. J Phys Chem A 2021; 125:657-668. [PMID: 33423496 DOI: 10.1021/acs.jpca.0c10814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of the 5,6-dichloro-2,1,3-benzoselenadiazole homodimer, obtained by adding the ligand, 4,5-dichloro-o-phenylenediamine, to the methanolic solution of SeCl4, was determined by X-ray crystallography, augmented by Fourier transform infrared, Raman, and NMR spectroscopy. The binding motif involves a pair of Se···N chalcogen bonds, with a supplementary N···N pnicogen bond. Quantum calculations provide assessments of the strengths of the individual interactions as well as their contributing factors. All together, these three bonds compose a total interaction energy between 5.4 and 16.8 kcal/mol, with the larger chalcogen atom associated with the strongest interactions. Replacement of the Se atoms by S and Te analogues allows analysis of the dependence of these forces on the nature of the chalcogen atom. Calculations also measure the importance to the binding of the presence of a second N atom on each diazole unit as well as the substituted phenyl ring to which it is fused.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, Utah 84322-0300, United States
| |
Collapse
|
25
|
Abstract
The heavier chalcogen atoms S, Se, and Te can each participate in a range of different noncovalent interactions. They can serve as both proton donor and acceptor in H-bonds. Each atom can also act as electron acceptor in a chalcogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
26
|
Ibrahim MAA, Rady ASM, Al‐Fahemi JH, Telb EMZ, Ahmed SA, Shawky AM, Moussa NAM. ±
π‐Hole Interactions: A Comparative Investigation Based on Boron‐Containing Molecules. ChemistrySelect 2020. [DOI: 10.1002/slct.202003231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Al‐shimaa S. M. Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Jabir H. Al‐Fahemi
- Chemistry Department, Faculty of Applied Sciences Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ebtisam M. Z. Telb
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Saleh A. Ahmed
- Chemistry Department, Faculty of Applied Sciences Umm Al-Qura University Makkah 21955 Saudi Arabia
- Chemistry Department, Faculty of Science Assiut University Assiut 71519 Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU) Umm Al-Qura University Makkah 21955 Saudi Arabia
- Central Laboratory for Micro-analysis Minia University Minia 61519 Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| |
Collapse
|
27
|
Haberhauer G, Gleiter R. The Nature of Strong Chalcogen Bonds Involving Chalcogen-Containing Heterocycles. Angew Chem Int Ed Engl 2020; 59:21236-21243. [PMID: 32776609 PMCID: PMC7693109 DOI: 10.1002/anie.202010309] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Chalcogen bonds are σ hole interactions and have been used in recent years as an alternative to hydrogen bonds. In general, the electrostatic potential at the chalcogen atom and orbital delocalization effects are made responsible for the orientation of the chalcogen bond. Here, we were able to show by means of SAPT calculations that neither the induction (orbital delocalization effects) nor the electrostatic term is causing the spatial orientation of strong chalcogen bonds in tellurium-containing aromatics. Instead, steric interactions (Pauli repulsion) are responsible for the orientation. Against chemical intuition the dispersion energies of the examined tellurium-containing aromatics are far less important for the net attractive forces compared to the energies in the corresponding sulfur and selenium compounds. Our results underline the importance of often overlooked steric interactions (Pauli repulsion) in conformational control of σ hole interactions.
Collapse
Affiliation(s)
- Gebhard Haberhauer
- Institut für Organische ChemieUniversität Duisburg-EssenUniversitätsstr. 745117EssenGermany
| | - Rolf Gleiter
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
28
|
Die Natur starker Chalkogenbindungen unter Beteiligung chalkogenhaltiger Heterocyclen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Frontera A. Noble Gas Bonding Interactions Involving Xenon Oxides and Fluorides. Molecules 2020; 25:molecules25153419. [PMID: 32731517 PMCID: PMC7435756 DOI: 10.3390/molecules25153419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Noble gas (or aerogen) bond (NgB) can be outlined as the attractive interaction between an electron-rich atom or group of atoms and any element of Group-18 acting as an electron acceptor. The IUPAC already recommended systematic nomenclature for the interactions of groups 17 and 16 (halogen and chalcogen bonds, respectively). Investigations dealing with noncovalent interactions involving main group elements (acting as Lewis acids) have rapidly grown in recent years. They are becoming acting players in essential fields such as crystal engineering, supramolecular chemistry, and catalysis. For obvious reasons, the works devoted to the study of noncovalent Ng-bonding interactions are significantly less abundant than halogen, chalcogen, pnictogen, and tetrel bonding. Nevertheless, in this short review, relevant theoretical and experimental investigations on noncovalent interactions involving Xenon are emphasized. Several theoretical works have described the physical nature of NgB and their interplay with other noncovalent interactions, which are discussed herein. Moreover, exploring the Cambridge Structural Database (CSD) and Inorganic Crystal Structure Database (ICSD), it is demonstrated that NgB interactions are crucial in governing the X-ray packing of xenon derivatives. Concretely, special attention is given to xenon fluorides and xenon oxides, since they exhibit a strong tendency to establish NgBs.
Collapse
Affiliation(s)
- Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| |
Collapse
|
30
|
Affiliation(s)
- Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| |
Collapse
|
31
|
Galmés B, Adrover J, Terraneo G, Frontera A, Resnati G. Radicalradical chalcogen bonds: CSD analysis and DFT calculations. Phys Chem Chem Phys 2020; 22:12757-12765. [PMID: 32463046 DOI: 10.1039/d0cp01643h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This manuscript reports a combination of crystallographic analysis (Cambridge Structural Database) and theoretical DFT calculations in chalcogen bonding interactions involving radicals in both the Ch bond (ChB) donor and acceptor. As a radical ChB acceptor (nucleophile) we have used benzodithiazolyl radical (BDTA) and as Ch bond donors (electrophile) we have used dithiadiazolyl and diselenadiazolyl radicals of the general formula p-X-C6F4-CNChChN (Ch = S, and Se). We have evaluated how the para substituent (X) affects the interaction energy, spin density and charge/spin transfer from the electron rich BDTA radical to the electron poor dichalcogenadiazolyl ring. The ability of the latter rings to form ChBs in the solid state has been examined by a comprehensive search in the CSD; several cases are used to exemplify the preferred geometric features of the complexes and they are compared with the theory. The molecular surface electrostatic potentials calculated for these ChB donors allow for a very precise rationalization of the self-assembly motifs most frequently adopted in the crystalline state and of their relative robustness.
Collapse
Affiliation(s)
- Bartomeu Galmés
- Department of Chemistry Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Jaume Adrover
- Department of Chemistry Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Giancarlo Terraneo
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| | - Antonio Frontera
- Department of Chemistry Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Giuseppe Resnati
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
32
|
Galmés B, Juan‐Bals A, Frontera A, Resnati G. Charge‐Assisted Chalcogen Bonds: CSD and DFT Analyses and Biological Implication in Glucosidase Inhibitors. Chemistry 2020; 26:4599-4606. [DOI: 10.1002/chem.201905498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/06/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Bartomeu Galmés
- Department of ChemistryUniversitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Aida Juan‐Bals
- Department of ChemistryUniversitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Giuseppe Resnati
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di Milano Via L. Mancinelli 7 20131 Milano Italy
| |
Collapse
|
33
|
Zins EL. Microhydration of a Carbonyl Group: How does the Molecular Electrostatic Potential (MESP) Impact the Formation of (H 2O) n:(R 2C═O)Complexes? J Phys Chem A 2020; 124:1720-1734. [PMID: 32049521 DOI: 10.1021/acs.jpca.9b09992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of a carbonyl group in a molecule usually leads to the identification of a π-hole on the molecular electrostatic potential (MESP) of the species. How does this electrophilic site influence the formation of microhydrated complexes? To address this point, a panel of R2CO solutes with various MESPs was selected, and we identified the structures and properties of several complexes containing one, two, three and six water molecules. The following solutes were considered in the present study: H2CO, F2CO, Cl2CO,(NC)2CO and H2C═CO. Geometry optimizations and frequency calculations were carried out at the LC-ωPBE/6-311++G(d,p) level, with the GD3BJ empirical correction for dispersion. For a number of n water molecules around the R2CO solute, the structure and the features of the most stable (H2O)n:(R2CO) complexes are highly dependent on the MESP of the isolated R2CO solute. The formation of pi-hole bondings appears to play a decisive role in the initiation of a three-dimensional organization of water molecules around the solute.
Collapse
Affiliation(s)
- Emilie-Laure Zins
- De la Molécule aux Nano-Objets: Réactivité, Interactions Spectroscopies, MONARIS, CNRS, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
34
|
Bauzá A, Frontera A. σ/π-Hole noble gas bonding interactions: Insights from theory and experiment. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213112] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Structures and energetics of clusters surrounding diatomic anions stabilized by hydrogen, halogen, and other noncovalent bonds. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Scheiner S, Michalczyk M, Zierkiewicz W. Coordination of anions by noncovalently bonded σ-hole ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213136] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Hou M, Zhu Y, Li Q, Scheiner S. Tuning the Competition between Hydrogen and Tetrel Bonds by a Magnesium Bond. Chemphyschem 2020; 21:212-219. [DOI: 10.1002/cphc.201901076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/04/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Mingchang Hou
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Yifan Zhu
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Steve Scheiner
- Department of Chemistry and BiochemistryUtah State University Logan UT 84322-0300 USA
| |
Collapse
|
38
|
Jin Y, Lu T, Feng G. The preferred conformation of the tetrafluoro-1,3-dithietane⋯isopropylamine complex as revealed by rotational spectroscopy. Phys Chem Chem Phys 2020; 22:28339-28344. [DOI: 10.1039/d0cp05033d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The favored conformation of the C2F4S2–IPA complex is determined by the strength of the S⋯N ChB as revealed by rotational spectroscopy.
Collapse
Affiliation(s)
- Yan Jin
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Tao Lu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Gang Feng
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| |
Collapse
|
39
|
Gomila RM, Frontera A. Charge assisted halogen and pnictogen bonds: insights from the Cambridge Structural Database and DFT calculations. CrystEngComm 2020. [DOI: 10.1039/d0ce00220h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This manuscript combines a search in the Cambridge Structural Database and DFT calculations to analyse the existence and importance of charge assisted pnictogen and halogen bonds in halophosphonium salts.
Collapse
Affiliation(s)
- Rosa M. Gomila
- Serveis Cientificotècnics
- University of Balearic Islands
- Palma
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
40
|
Unravelling the Importance of H bonds, σ–hole and π–hole-Directed Intermolecular Interactions in Nature. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00144-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
|
42
|
Scheiner S, Michalczyk M, Zierkiewicz W. Structures of clusters surrounding ions stabilized by hydrogen, halogen, chalcogen, and pnicogen bonds. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Nitropyridine-1-Oxides as Excellent π-Hole Donors: Interplay between σ-Hole (Halogen, Hydrogen, Triel, and Coordination Bonds) and π-Hole Interactions. Int J Mol Sci 2019; 20:ijms20143440. [PMID: 31336936 PMCID: PMC6678756 DOI: 10.3390/ijms20143440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023] Open
Abstract
In this manuscript, we use the primary source of geometrical information, i.e., Cambridge Structural Database (CSD), combined with density functional theory (DFT) calculations (PBE0-D3/def2-TZVP level of theory) to demonstrate the relevance of π-hole interactions in para-nitro substituted pyridine-1-oxides. More importantly, we show that the molecular electrostatic potential (MEP) value above and below the π–hole of the nitro group is largely influenced by the participation of the N-oxide group in several interactions like hydrogen-bonding (HB) halogen-bonding (XB), triel bonding (TrB), and finally, coordination-bonding (CB) (N+–O− coordinated to a transition metal). The CSD search discloses that p-nitro-pyridine-1-oxide derivatives have a strong propensity to participate in π-hole interactions via the nitro group and, concurrently, N-oxide group participates in a series of interactions as electron donor. Remarkably, the DFT calculations show from strong to moderate cooperativity effects between π–hole and HB/XB/TrB/CB interactions (σ-bonding). The synergistic effects between π-hole and σ-hole bonding interactions are studied in terms of cooperativity energies, using MEP surface analysis and the Bader’s quantum theory of atoms in molecules (QTAIM).
Collapse
|
44
|
Su H, Wu H, Wang H, Wang H, Ni Y, Lu Y, Zhu Z. A comparative study of S···π chalcogen bonds between SF2 or SFH and C C multiple bonds. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
|
46
|
Sánchez-Sanz G, Trujillo C. Cyclohexane-Based Scaffold Molecules Acting as Anion Transport, Anionophores, via Noncovalent Interactions. J Chem Inf Model 2019; 59:2212-2217. [PMID: 30908020 DOI: 10.1021/acs.jcim.9b00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A theoretical study of a variety of cyclohexane-based anion transporters interacting with the chloride anion has been conducted using density functional theory. The calculations have been performed in the gas phase but also, in order to describe the solvation effects on the interaction, two different solvents-chloroform and dimethylsulfoxide-have been taken into account. Gas-phase interaction energies within the complexes are found to be up to 400 kJ/mol, while, when solvent effects are considered, the interaction energy values decreased drastically concomitantly with an elongation in the interatomic distances. Atoms in molecules and natural bond analysis corroborate the trends found for the intermolecular energies and Cl···H distances, suggesting strong donations from the Cl- anion into the σ*H-N antibonding orbitals, as well as with noncovalent interaction plots showing large areas of electron density overlap within the chloride anion surroundings.
Collapse
Affiliation(s)
- Goar Sánchez-Sanz
- Irish Centre for High-End Computing (ICHEC) , Grand Canal Quay, Dublin 2 , Ireland
| | - Cristina Trujillo
- School of Chemistry , Trinity Biomedical Sciences, Trinity College Dublin , 152-160 Pearse Street , Dublin 2 , Ireland
| |
Collapse
|
47
|
Franconetti A, Frontera A. Theoretical and Crystallographic Study of Lead(IV) Tetrel Bonding Interactions. Chemistry 2019; 25:6007-6013. [DOI: 10.1002/chem.201900447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Antonio Franconetti
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.7 07122 Palma de Mallorca Spain
| | - Antonio Frontera
- Departament de QuímicaUniversitat de les Illes Balears Crta de Valldemossa km 7.7 07122 Palma de Mallorca Spain
| |
Collapse
|
48
|
Bauzá A, Seth SK, Frontera A. Tetrel bonding interactions at work: Impact on tin and lead coordination compounds. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Chu R, Zeng Y, Liu M, Zheng S, Meng L. Insight into the Effects of Electrostatic Potentials on the Conversion Mechanism of the Hydrogen-Bonded Complexes and Carbon-Bonded Complexes: An Ab Initio and Quantum Theory of "Atoms in Molecules" Investigation. ACS OMEGA 2019; 4:231-241. [PMID: 31459327 PMCID: PMC6648873 DOI: 10.1021/acsomega.8b02669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/21/2018] [Indexed: 06/10/2023]
Abstract
Carbon bond and hydrogen bond are common noncovalent interactions; although recent advances on these interactions have been achieved in both the experimental and computational aspects, little is known about the conversion mechanism between them. Here, MP2 calculations with aug-cc-pVDZ basis set (aug-cc-pVDZ-pp for element Sn) were used to optimize the geometric configurations of the hydrogen-bonded complexes MH3F···HCN (M = C, Si, Ge, and Sn), carbon-bonded complexes HCN···MH3F (M = C, Si, Ge, and Sn), and transition states; the conversion mechanism between these two types of interactions has been carried out. The molecular electrostatic potential, especially the σ-hole, is directly related to the flatten degree of intrinsic reaction coordinate (IRC) curve. The energy barriers from the hydrogen-bonded complexes to the carbon-bonded complexes are 6.99, 7.73, 10.56, and 13.59 kJ·mol-1. The energy barriers from the carbon-bonded complexes to the hydrogen-bonded complexes are 4.65, 7.81, 9.10, and 13.04 kJ·mol-1. The breakage and formation of the bonds along the reaction paths have been discussed by the topological analysis of electronic density. The energy barriers are obviously related to the width of the structure transition region (STR). For the first derivative curve of IRC energy surface versus reaction coordinate, there is a maximum peak and a minimum peak, reflecting the structural transition states in the ring STRs.
Collapse
Affiliation(s)
- Runtian Chu
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yanli Zeng
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Mengyu Liu
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Shijun Zheng
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Lingpeng Meng
- Institute
of Computational Quantum Chemistry, College of Chemistry
and Material Science, and National Demonstration Center for Experimental Chemistry
Education, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
50
|
Dual Geometry Schemes in Tetrel Bonds: Complexes between TF₄ (T = Si, Ge, Sn) and Pyridine Derivatives. Molecules 2019; 24:molecules24020376. [PMID: 30669688 PMCID: PMC6359171 DOI: 10.3390/molecules24020376] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
When an N-base approaches the tetrel atom of TF4 (T = Si, Ge, Sn) the latter molecule deforms from a tetrahedral structure in the monomer to a trigonal bipyramid. The base can situate itself at either an axial or equatorial position, leading to two different equilibrium geometries. The interaction energies are considerably larger for the equatorial structures, up around 50 kcal/mol, which also have a shorter R(T··N) separation. On the other hand, the energy needed to deform the tetrahedral monomer into the equatorial structure is much higher than the equivalent deformation energy in the axial dimer. When these two opposite trends are combined, it is the axial geometry which is somewhat more stable than the equatorial, yielding binding energies in the 8–34 kcal/mol range. There is a clear trend of increasing interaction energy as the tetrel atom grows larger: Si < Ge < Sn, a pattern which is accentuated for the binding energies.
Collapse
|