1
|
Ma C, Lin X, Han Z, Xiao S, He Y, He Z, Wang F, Cheng H, Zuo T. In situ small-angle X-ray scattering measurement at the Very Small Angle Neutron Scattering Instrument at the China Spallation Neutron Source. J Appl Crystallogr 2025; 58:573-580. [PMID: 40170974 PMCID: PMC11957413 DOI: 10.1107/s1600576725001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/11/2025] [Indexed: 04/03/2025] Open
Abstract
Small-angle X-ray and neutron scattering (SAXS and SANS) offer complementary insights into multi-scale and multiphase structures. Efforts have been made to integrate SAXS into SANS instruments, with only D22 at the Institut Laue-Langevin successfully implementing a SAXS setup; this was constrained to a horizontal geometry due to space limitations and high radiation noise. Here, we introduce an in situ vertical SAXS setup at beamline 14, Very Small Angle Neutron Scattering (VSANS) instrument, at the China Spallation Neutron Source. The compact vertical SAXS instrument without a beam stop, measuring 87 cm × 93 cm × 240 cm (W × L × H) and featuring a hoisting frame, can be easily installed in the VSANS sample room within 5 h. Utilizing a 50 mm-diameter neutron collimation guide, we can simultaneously detect X-rays from below and neutrons from behind, with the backboard of the SAXS chamber coated in a boron-aluminium alloy to reduce neutron background interference. Through testing with standard samples like deuterated and hydrogenated PEG, silver behenate, LaB6, and glass carbon, we demonstrate that concurrent neutron and X-ray measurements are successful.
Collapse
Affiliation(s)
- Changli Ma
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Xiong Lin
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Zehuan Han
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Songwen Xiao
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Yongcheng He
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Zhenqiang He
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Fangwei Wang
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
- School of Nuclear Science and Technology University of Chinese Academy of SciencesBeijing 100049 People’s Republic of China
- Institute of Physics Chinese Academy of SciencesBeijing 100190 People’s Republic of China
| | - He Cheng
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Taisen Zuo
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| |
Collapse
|
2
|
Unruh T, Götz K, Vogel C, Fröhlich E, Scheurer A, Porcar L, Steiniger F. Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions. ACS NANO 2024; 18:9746-9764. [PMID: 38514237 DOI: 10.1021/acsnano.4c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.
Collapse
Affiliation(s)
- Tobias Unruh
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Klaus Götz
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Carola Vogel
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Erik Fröhlich
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Lehrstuhl für Anorganische und Allgemeine Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Lionel Porcar
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Cholakova D, Denkov N. Polymorphic phase transitions in triglycerides and their mixtures studied by SAXS/WAXS techniques: In bulk and in emulsions. Adv Colloid Interface Sci 2024; 323:103071. [PMID: 38157769 DOI: 10.1016/j.cis.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Triacylglycerols (TAGs) exhibit a monotropic polymorphism, forming three main polymorphic forms upon crystallization: α, β' and β. The distinct physicochemical properties of these polymorphs, such as melting temperature, subcell lattice structure, mass density, etc., significantly impact the appearance, texture, and long-term stability of a wide range products in the food and cosmetics industries. Additionally, TAGs are also of special interest in the field of controlled drug delivery and sustained release in pharmaceuticals, being a key material in the preparation of solid lipid nanoparticles. The present article outlines our current understanding of TAG phase behavior in both bulk and emulsified systems. While our primary focus are investigations involving monoacid TAGs and their mixtures, we also include illustrative examples with natural TAG oils, highlighting the knowledge transfer from simple to intricate systems. Special attention is given to recent discoveries via X-ray scattering techniques. The main factors influencing TAG polymorphism are discussed, revealing that a higher occurrence of structural defects in the TAG structure always accelerates the rate of the α → β polymorphic transformation. Diverse approaches can be employed based on the specific system: incorporating foreign molecules or solid particles into bulk TAGs, reducing drop size in dispersed systems, or using surfactants that remain fluid during TAG particle crystallization, ensuring the necessary molecular mobility for the polymorphic transformation. Furthermore, we showcase the role of TAG polymorphism on a recently discovered phenomenon: the creation of nanoparticles as small as 20 nm from initial coarse emulsions without any mechanical energy input. This analysis underscores how the broader understanding of the TAG polymorphism can be effectively applied to comprehend and control previously unexplored processes of notable practical importance.
Collapse
Affiliation(s)
- Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria.
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
4
|
Freeze Thaw Stability and Heat Stability of Coconut Oil-in-Water Emulsions and Coconut Milk Emulsions Stabilized by Enzyme-Modified Soy Lecithin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Meng T, Qiao F, Ma S, Gao T, Li L, Hou Y, Yang J. Exploring the influence factors and improvement strategies of drug polymorphic transformation combined kinetic and thermodynamic perspectives during the formation of nanosuspensions. Drug Dev Ind Pharm 2022; 47:1867-1880. [PMID: 35362347 DOI: 10.1080/03639045.2022.2061988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanosuspensions can effectively increase saturation solubility and improve the bioavailability of poorly water-soluble drugs attributed to high loading and surface-to-volume ratio. Wet media milling has been regarded as a scalable method to prepare nanosuspensions because of its simple operation and easy scale-up. In recent years, besides particle aggregation and Ostwald ripening, polymorphic transformation induced by processing has become a critical factor leading to the instability of nanosuspensions. Therefore, this review aims to discuss the influence factors comprehensively and put forward the corresponding improvement strategies of polymorphic transformation during the formation of nanosuspensions. In addition, this review also demonstrates the implication of molecular simulation in polymorphic transformation. The competition between shear-induced amorphization and thermally activated crystallization is the global mechanism of polymorphic transformation during media milling. The factors affecting the polymorphic transformation and corresponding improvement strategies are summarized from formulation and process parameters perspectives during the formation of nanosuspensions. The development of analytical techniques has promoted the qualitative and quantitative characterization of polymorphic transformation, and some techniques can in-situ monitor dynamic transformation. The microhydrodynamic model can be referenced to study the stress intensities by analyzing formulation and process parameters during wet media milling. Molecular simulation can be used to explore the possible polymorphic transformation based on the crystal structure and energy. This review is helpful to improve the stability of nanosuspensions by regulating polymorphic transformation, providing quality assurance for nanosuspension-based products.
Collapse
Affiliation(s)
- Tingting Meng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Shijie Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Ting Gao
- Department of Preparation Center, General Hospital of Ningxia Medical University, No.804 Shengli South Street, Yinchuan, 750004, P. R. China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| |
Collapse
|
6
|
Steiner D, Emmendörffer JF, Bunjes H. Orodispersible Films: A Delivery Platform for Solid Lipid Nanoparticles? Pharmaceutics 2021; 13:2162. [PMID: 34959444 PMCID: PMC8709056 DOI: 10.3390/pharmaceutics13122162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
To overcome the poor bioavailability observed for many newly developed active pharmaceutical ingredients (APIs), an appropriate formulation strategy is necessary. One approach is the formulation of these substances in solid lipid nanoparticles and their further processing into solid dosage forms. A promising and innovative oral delivery platform could be orodispersible films (ODFs). ODFs were already investigated more closely, e.g., for the administration of API nanoparticles, and proved their suitability for this formulation approach. The current study was aimed at investigating if the HPMC (hydroxypropyl methyl cellulose) film matrix is also suitable to serve as an appropriate delivery platform for solid lipid nanoparticles. Dependent on the type of triglyceride nanoparticles embedded in the film matrix and the formulation of the lipid particles, lipid contents of up to 54 wt.% could be realized in the film matrix without the loss of the nanoparticulate state. Good mechanical properties were confirmed for these films by determining the tensile strength as well as the elongation before breakage. Interestingly, processing of a lipid suspension into this solid dosage form led to a significantly reduced transformation of the lipid particles from the metastable α- into the stable β-polymorph. This could prove very beneficial when the lipid particles are loaded with APIs.
Collapse
Affiliation(s)
- Denise Steiner
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany; (J.F.E.); (H.B.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - Jakob F. Emmendörffer
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany; (J.F.E.); (H.B.)
| | - Heike Bunjes
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany; (J.F.E.); (H.B.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Metwalli E, Götz K, Lages S, Bär C, Zech T, Noll DM, Schuldes I, Schindler T, Prihoda A, Lang H, Grasser J, Jacques M, Didier L, Cyril A, Martel A, Porcar L, Unruh T. A novel experimental approach for nanostructure analysis: simultaneous small-angle X-ray and neutron scattering. J Appl Crystallogr 2020; 53:722-733. [PMID: 32684887 PMCID: PMC7312133 DOI: 10.1107/s1600576720005208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022] Open
Abstract
Exploiting small-angle X-ray and neutron scattering (SAXS/SANS) on the same sample volume at the same time provides complementary nanoscale structural information in two different contrast situations. Unlike an independent experimental approach, the truly combined SAXS/SANS experimental approach ensures the exactness of the probed samples, particularly for in situ studies. Here, an advanced portable SAXS system that is dimensionally suitable for installation in the D22 zone of ILL is introduced. The SAXS apparatus is based on a Rigaku switchable copper/molybdenum microfocus rotating-anode X-ray generator and a DECTRIS detector with a changeable sample-to-detector distance of up to 1.6 m in a vacuum chamber. A case study is presented to demonstrate the uniqueness of the newly established method. Temporal structural rearrangements of both the organic stabilizing agent and organically capped gold colloidal particles during gold nanoparticle growth are simultaneously probed, enabling the immediate acquisition of correlated structural information. The new nano-analytical method will open the way for real-time investigations of a wide range of innovative nanomaterials and will enable comprehensive in situ studies on biological systems. The potential development of a fully automated SAXS/SANS system with a common control environment and additional sample environments, permitting a continual and efficient operation of the system by ILL users, is also introduced.
Collapse
Affiliation(s)
- Ezzeldin Metwalli
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Klaus Götz
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), Cauerstrasse 3, Erlangen, 91058, Germany
| | - Sebastian Lages
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Christian Bär
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Tobias Zech
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), Cauerstrasse 3, Erlangen, 91058, Germany
| | - Dennis M. Noll
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Isabel Schuldes
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Torben Schindler
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Annemarie Prihoda
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), Cauerstrasse 3, Erlangen, 91058, Germany
| | - Herbert Lang
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Jürgen Grasser
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Mark Jacques
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Luc Didier
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Amrouni Cyril
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Anne Martel
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Lionel Porcar
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), Cauerstrasse 3, Erlangen, 91058, Germany
| |
Collapse
|
8
|
Schjoerring-Thyssen J, Olsen K, Koehler K, Jouenne E, Rousseau D, Andersen ML. Morphology and Structure of Solid Lipid Nanoparticles Loaded with High Concentrations of β-Carotene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12273-12282. [PMID: 31610122 DOI: 10.1021/acs.jafc.9b04215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid lipid nanoparticles (SLNs) containing up to 37.5 wt % all-trans β-carotene in the lipid phase are potential water-dispersible food colorants. SLNs have been made by hot-melt high-pressure homogenization with fully hydrogenated sunflower oil and with polysorbate 80 and sunflower lecithin as stabilizers. Atomic force microscopy revealed the SLNs had thin platelet structures most likely derived from the triglyceride crystal β-form, as detected by X-ray diffraction. No indications of crystalline β-carotene were detected. High-performance liquid chromatography analysis showed the extensive isomerization of β-carotene into more than 10 cis isomers, suggesting that it is present as an amorphous mixture. The high β-carotene loadings did not affect the triglyceride crystal structure and the morphology of the SLNs. It is suggested the SLNs consist of a platelet core of crystalline triglyceride surrounded by an amorphous β-carotene-containing layer. The layered structure is suggested to affect the coloring power of the SLNs at β-carotene loadings above 15 wt % of the lipid phase.
Collapse
Affiliation(s)
| | - Karsten Olsen
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg , Denmark
| | - Klaus Koehler
- New Technology , Chr. Hansen Natural Colors A/S , Agern Allé 24 , 2970 Hoersholm , Denmark
| | - Eric Jouenne
- New Technology , Chr. Hansen Natural Colors A/S , Agern Allé 24 , 2970 Hoersholm , Denmark
| | - Dérick Rousseau
- Department of Chemistry and Biology , Ryerson University , 250 Victoria Street , Toronto , Ontario M5B 2K3 , Canada
| | - Mogens Larsen Andersen
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg , Denmark
| |
Collapse
|
9
|
Schuldes I, Noll DM, Schindler T, Zech T, Götz K, Appavou MS, Boesecke P, Steiniger F, Schulz PS, Unruh T. Internal Structure of Nanometer-Sized Droplets Prepared by Antisolvent Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13578-13587. [PMID: 31547660 DOI: 10.1021/acs.langmuir.9b00944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antisolvent precipitation (AP) is a low-cost and less-invasive preparation alternative for organic nanoparticles compared to top-down methods such as high-pressure homogenization or milling. Here we report on particularly small organic nanoparticles (NPs) prepared by AP. It has been found for various materials that these NPs in their liquid state exhibit a significant degree of molecular order at their interface toward the dispersion medium including ubiquinones (coenzyme Q10), triglycerides (trimyristin, tripalmitin), and alkanes (tetracosane). This finding is independent of the use of a stabilizer in the formulation. While this is obviously a quite general interfacial structuring effect, the respective structural details of specific NPs systems might differ. Here, a detailed structural characterization of very small liquid coenzyme Q10 (Q10) NPs is presented as a particular example for this phenomenon. The Q10 NPs have been prepared by AP in the presence of two different stabilizers, sodium dodecyl sulfate (SDS) and pentaethylene glycol monododecyl ether (C12E5), respectively, and without any stabilizer. The NPs' size is initially analyzed by photon correlation spectroscopy (PCS). The SDS-stabilized Q10 NPs have been studied further by differential scanning calorimetry (DSC), small-angle X-ray and neutron scattering (SAXS, SANS), wide-angle X-ray scattering (WAXS), and cryogenic transmission electron microscopy (CryoTEM). A simultaneous analysis of SAXS and contrast variation SANS studies revealed the molecular arrangement within the interface between the NPs and the dispersion medium. The Q10 NPs stabilized by SDS and C12E5, respectively, are small (down to 19.9 nm) and stable (for at least 16 months) even when no stabilizer is used. The SDS-stabilized Q10 NPs reported here, are therewith, to the best of our knowledge, the smallest organic NPs which have been reported to be prepared by AP so far. In particular, these NPs exhibit a core-shell structure consisting of an amorphous Q10 core and a surrounding shell, which is mainly composed of oriented Q10 molecules and aligned SDS molecules. This structure suggests a significant amphiphilic behavior and a rather unexpected stabilizing role of Q10 molecules.
Collapse
Affiliation(s)
- Isabel Schuldes
- Institute for Crystallography and Structural Physics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3 , 91058 Erlangen , Germany
| | - Dennis M Noll
- Institute for Crystallography and Structural Physics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3 , 91058 Erlangen , Germany
| | - Torben Schindler
- Institute for Crystallography and Structural Physics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3 , 91058 Erlangen , Germany
| | - Tobias Zech
- Institute for Crystallography and Structural Physics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstr. 3 , 91058 Erlangen , Germany
| | - Klaus Götz
- Institute for Crystallography and Structural Physics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstr. 3 , 91058 Erlangen , Germany
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich GmbH , Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Lichtenbergstr. 1 , 85748 Garching , Germany
| | - Peter Boesecke
- European Synchrotron Radiation Facility (ESRF) , 71 Avenue de Martyrs , CS40220, 38042 Grenoble CEDEX 9, France
| | - Frank Steiniger
- Center for Electron Microscopy of the Jena University Hospital , Ziegelmühlenweg 1 , 07743 Jena , Germany
| | - Peter S Schulz
- Chair for Chemical Engineering I (Reaction Engineering) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Egerlandstr. 3 , 91058 Erlangen , Germany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstr. 3 , 91058 Erlangen , Germany
| |
Collapse
|
10
|
Ladd Parada M, Sadeghpour A, Vieira J, Povey M, Rappolt M. Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the α-Phase (Part II). J Phys Chem B 2018; 122:10330-10336. [PMID: 30351126 DOI: 10.1021/acs.jpcb.8b06708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The early-stage crystallization behavior in a triacylglycerol mixture has been investigated on the nanoscale with a novel global small-angle X-ray scattering analysis technique. This method has been tailored for the determination of the electron density profiles (EDPs) replicating both (i) the nanostructural texture of molten triacylglycerols (TAGs) (refer to "Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the Molten State (Part I)" of this publication series) and (ii) the lamellar structure of the metastable α-polymorph. In a first stage, the α-phase scattering contribution alone was examined by classical Fourier analysis as well as by globally fitting the data, leading to practically identical EDPs. On the basis of these findings, we extended our analysis to the entire X-ray scattering contribution arising from molten TAGs and the solid α-phase fraction. Remarkably, the experimental and theoretical data agree very well, providing for the first time a detailed nanostructural understanding about the coexisting molecular assemblies. This, in turn, also allowed us to quantitatively determine the solid fat content (SFC) with X-ray scattering data. Our new theoretical approach for measurement of SFC is based on the global analysis of small-angle scattering/diffraction patterns, and the SFC results are in good agreement with values obtained from other techniques such as NMR spectroscopy.
Collapse
Affiliation(s)
- Marjorie Ladd Parada
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| | - Amin Sadeghpour
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K.,Department of Materials Meet Life , Center for X-ray Analytics, Empa , 8600 St. Gallen , Switzerland
| | | | - Megan Povey
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| | - Michael Rappolt
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
11
|
Sadeghpour A, Parada ML, Vieira J, Povey M, Rappolt M. Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the Molten State (Part I). J Phys Chem B 2018; 122:10320-10329. [PMID: 30351127 DOI: 10.1021/acs.jpcb.8b06704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study of triacylglycerols (TAGs) in their molten state is of fundamental importance for a deeper understanding of the TAG crystallization processes, being highly relevant for both manufacturing and medical applications. Although different models have been proposed to explain the nanostructured nature of the fluid state of TAGs, none of them are fully satisfactory. In this paper, we propose a new model consisting of positionally uncorrelated lamellar TAG assemblies embedded in an isotropic medium that assist as prenucleating structures. This model was validated by applying a novel global fitting method, resulting in an excellent agreement with the small-angle X-ray scattering data. A deeper analysis of the scattering patterns at different temperatures, both in cooling and heating directions, allowed us further to detect the crystalline traces of TAGs even after heating to 40 °C and record, on cooling, the onset of crystallization at 30-25 °C. The application of the presented novel model not only explains the outstandingly structured fluid of molten TAGs, but also lays the basis for analyzing first the crystallization steps in greater detail, which is outlined in our follow-up paper "Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the α-Phase (Part II)".
Collapse
Affiliation(s)
- Amin Sadeghpour
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K.,Department of Materials Meet Life, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 St. Gallen , Switzerland
| | - Marjorie Ladd Parada
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| | | | - Megan Povey
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| | - Michael Rappolt
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
12
|
The influence of n- hexanol on the morphology and composition of CTAB micelles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Changes within the stabilizing layer of ZnO nanoparticles upon washing. J Colloid Interface Sci 2017; 504:356-362. [PMID: 28582753 DOI: 10.1016/j.jcis.2017.05.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
ZnO nanoparticles (NPs) are highly relevant for various industrial applications, however, after synthesis of the NPs residual chemicals need to be removed from the colloidal raw product by washing, as they may influence the performance of the final device. In the present study we focus on the effect of washing by antisolvent flocculation with subsequent redispersion of the NPs on the stabilizing acetate shell. Purification of the ZnO nanoparticles is reported to be optimal with respect to zeta potential that has a maximum after one washing cycle. In this work, we will shed light on this observation using small angle X-ray and neutron scattering (SAXS, SANS) by demonstrating that after the first washing cycle the content of acetate in the ligand shell around the ZnO NPs increases. In detail, it was observed that the diffuse acetate shell shrinks to the size of a monolayer upon washing but the acetate content of this monolayer is higher than within the diffuse shell of the particles of the native dispersion. A second washing cycle reduces the acetate concentration within the stabilizing shell and the stability of the dispersion drops accordingly. After another (third) washing cycle strong agglomeration was observed for all investigated samples.
Collapse
|
14
|
Mazuryk J, Deptuła T, Polchi A, Gapiński J, Giovagnoli S, Magini A, Emiliani C, Kohlbrecher J, Patkowski A. Rapamycin-loaded solid lipid nanoparticles: Morphology and impact of the drug loading on the phase transition between lipid polymorphs. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Schmiele M, Busch S, Morhenn H, Schindler T, Schmutzler T, Schweins R, Lindner P, Boesecke P, Westermann M, Steiniger F, Funari SS, Unruh T. Structural Characterization of Lecithin-Stabilized Tetracosane Lipid Nanoparticles. Part II: Suspensions. J Phys Chem B 2016; 120:5513-26. [DOI: 10.1021/acs.jpcb.6b02520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Schmiele
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - S. Busch
- German
Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz
Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr.
1, 85747 Garching, Germany
| | - H. Morhenn
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85747 Garching, Germany
| | - T. Schindler
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - T. Schmutzler
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - R. Schweins
- DS/LSS, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS20156, 38042 Grenoble CEDEX 9, France
| | - P. Lindner
- DS/LSS, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS20156, 38042 Grenoble CEDEX 9, France
| | - P. Boesecke
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, CS40220, 38042 Grenoble CEDEX 9, France
| | - M. Westermann
- Center for Electron Microscopy of the Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - F. Steiniger
- Center for Electron Microscopy of the Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | | | - T. Unruh
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Schindler T, Schmiele M, Schmutzler T, Kassar T, Segets D, Peukert W, Radulescu A, Kriele A, Gilles R, Unruh T. A Combined SAXS/SANS Study for the in Situ Characterization of Ligand Shells on Small Nanoparticles: The Case of ZnO. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10130-10136. [PMID: 26327573 DOI: 10.1021/acs.langmuir.5b02198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
ZnO nanoparticles (NPs) have great potential for their use in, e.g., thin film solar cells due to their electro-optical properties adjustable on the nanoscale. Therefore, the production of well-defined NPs is of major interest. For a targeted production process, the knowledge of the stabilization layer of the NPs during and after their formation is of particular importance. For the study of the stabilizer layer of ZnO NPs prepared in a wet chemical synthesis from zinc acetate, only ex situ studies have been performed so far. An acetate layer bound to the surface of the dried NPs was found; however, an in situ study which addresses the stabilizing layer surrounding the NPs in a native dispersion was missing. By the combination of small angle scattering with neutrons and X-rays (SANS and SAXS) for the same sample, we are now able to observe the acetate shell in situ for the first time. In addition, the changes of this shell could be followed during the ripening process for different temperatures. With increasing size of the ZnO core (d(core)) the surrounding shell (d(shell)) becomes larger, and the acetate concentration within the shell is reduced. For all samples, the shell thickness was found to be larger than the maximum extension of an acetate molecule with acetate concentrations within the shell below 50 vol %. Thus, there is not a monolayer of acetate molecules that covers the NPs but rather a swollen shell of acetate ions. This shell is assumed to hinder the growth of the NPs to larger macrostructures. In addition, we found that the partition coefficient μ between acetate in the shell surrounding the NPs and the total amount of acetate in the solution is about 10% which is in good agreement with ex situ data determined by thermogravimetric analysis.
Collapse
Affiliation(s)
- T Schindler
- Chair of Crystallography and Structural Physics, Friedrich-Alexander-Universät Erlangen-Nürnberg , Staudtstraße 3, 91058 Erlangen, Germany
| | - M Schmiele
- Chair of Crystallography and Structural Physics, Friedrich-Alexander-Universät Erlangen-Nürnberg , Staudtstraße 3, 91058 Erlangen, Germany
| | - T Schmutzler
- Chair of Crystallography and Structural Physics, Friedrich-Alexander-Universät Erlangen-Nürnberg , Staudtstraße 3, 91058 Erlangen, Germany
| | - T Kassar
- Chair of Crystallography and Structural Physics, Friedrich-Alexander-Universät Erlangen-Nürnberg , Staudtstraße 3, 91058 Erlangen, Germany
| | - D Segets
- Institute of Particle Technology, Friedrich-Alexander-Universät Erlangen-Nürnberg , Cauerstraße 4, 91058 Erlangen, Germany
| | - W Peukert
- Institute of Particle Technology, Friedrich-Alexander-Universät Erlangen-Nürnberg , Cauerstraße 4, 91058 Erlangen, Germany
| | - A Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), Outstation at MLZ, 85747 Garching, Germany
| | - A Kriele
- Helmholtz Zentrum Geesthacht, Max-Plank-Straße 1, 21502 Geesthacht, Germany
| | - R Gilles
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München , 85747 Garching, Germany
| | | |
Collapse
|
17
|
Schmiele M, Knittel C, Unruh T, Busch S, Morhenn H, Boesecke P, Funari SS, Schweins R, Lindner P, Westermann M, Steiniger F. Analysis of the structure of nanocomposites of triglyceride platelets and DNA. Phys Chem Chem Phys 2015; 17:17939-56. [DOI: 10.1039/c5cp01241d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA-complexes with platelet-like, cationically modified lipid nanoparticles (cLNPs) are studied with regard to the formation of nanocomposite structures with a sandwich-like arrangement of the DNA and platelets.
Collapse
Affiliation(s)
- Martin Schmiele
- Professur für Nanomaterialcharakterisierung (Streumethoden)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Charlotte Knittel
- Professur für Nanomaterialcharakterisierung (Streumethoden)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Tobias Unruh
- Professur für Nanomaterialcharakterisierung (Streumethoden)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ)
- Helmholtz-Zentrum Geesthacht GmbH
- 85748 Garching
- Germany
| | - Humphrey Morhenn
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
- 85747 Garching
- Germany
| | - Peter Boesecke
- European Synchrotron Radiation Facility (ESRF)
- 38042 Grenoble Cedex 9
- France
| | | | - Ralf Schweins
- DS/LSS
- Institut Laue-Langevin (ILL)
- 38042 Grenoble Cedex 9
- France
| | - Peter Lindner
- DS/LSS
- Institut Laue-Langevin (ILL)
- 38042 Grenoble Cedex 9
- France
| | - Martin Westermann
- Center for Electron Microscopy of the Jena University Hospital
- 07743 Jena
- Germany
| | - Frank Steiniger
- Center for Electron Microscopy of the Jena University Hospital
- 07743 Jena
- Germany
| |
Collapse
|
18
|
Gehrer S, Schmiele M, Westermann M, Steiniger F, Unruh T. Liquid Crystalline Phase Formation in Suspensions of Solid Trimyristin Nanoparticles. J Phys Chem B 2014; 118:11387-96. [DOI: 10.1021/jp506787v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Gehrer
- Physik
Department, Friedrich-Alexander-Universität Erlangen−Nürnberg, Staudtstrasse 3, 91058 Erlangen, Germany
| | - Martin Schmiele
- Physik
Department, Friedrich-Alexander-Universität Erlangen−Nürnberg, Staudtstrasse 3, 91058 Erlangen, Germany
| | - Martin Westermann
- Center
for Electron Microscopy, Jena University Hospital, Ziegelmühlenweg
1, 07743 Jena, Germany
| | - Frank Steiniger
- Center
for Electron Microscopy, Jena University Hospital, Ziegelmühlenweg
1, 07743 Jena, Germany
| | - Tobias Unruh
- Physik
Department, Friedrich-Alexander-Universität Erlangen−Nürnberg, Staudtstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|