1
|
Doner AC, Dewey NS, Rotavera B. Unimolecular Reactions of 2-Methyloxetanyl and 2-Methyloxetanylperoxy Radicals. J Phys Chem A 2023; 127:6816-6829. [PMID: 37535464 PMCID: PMC10440797 DOI: 10.1021/acs.jpca.3c03918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
Alkyl-substituted cyclic ethers are intermediates formed in abundance during the low-temperature oxidation of hydrocarbons and biofuels via a chain-propagating step with ȮH. Subsequent reactions of cyclic ether radicals involve a competition between ring opening and reaction with O2, the latter of which enables pathways mediated by hydroperoxy-substituted carbon-centered radicals (Q̇OOH). Due to the resultant implications of competing unimolecular and bimolecular reactions on overall populations of ȮH, detailed insight into the chemical kinetics of cyclic ethers remains critical to high-fidelity numerical modeling of combustion. Cl-initiated oxidation experiments were conducted on 2-methyloxetane (an intermediate of n-butane oxidation) using multiplexed photoionization mass spectrometry (MPIMS), in tandem with calculations of stationary point energies on potential energy surfaces for unimolecular reactions of 2-methyloxetanyl and 2-methyloxetanylperoxy isomers. The potential energy surfaces were computed using the KinBot algorithm with stationary points calculated at the CCSD(T)-F12/cc-pVDZ-F12 level of theory. The experiments were conducted at 6 Torr and two temperatures (650 K and 800 K) under pseudo-first-order conditions to facilitate Ṙ + O2 reactions. Photoionization spectra were measured from 8.5 eV to 11.0 eV in 50-meV steps, and relative yields were quantified for species consistent with Ṙ → products and Q̇OOH → products. Species detected in the MPIMS experiments are linked to specific radicals of 2-methyloxetane. Species from Ṙ → products include methyl, ethene, formaldehyde, propene, ketene, 1,3-butadiene, and acrolein. Ion signals consistent with products from alkyl radical oxidation were detected, including for Q̇OOH-mediated species, which are also low-lying channels on their respective potential energy surfaces. In addition to species common to alkyl oxidation pathways, ring-opening reactions of Q̇OOH radicals derived from 2-methyloxetane produced ketohydroperoxide species (performic acid and 2-hydroperoxyacetaldehyde), which may impart additional chain-branching potential, and dicarbonyl species (3-oxobutanal and 2-methylpropanedial), which often serve as proxies for modeling reaction rates of ketohydroperoxides. The experimental and computational results underscore that reactions of cyclic ethers are inherently more complex than currently prescribed in chemical kinetic models utilized for combustion.
Collapse
Affiliation(s)
- Anna C. Doner
- University
of Georgia, Department of Chemistry, Athens, Georgia 30602, United States
| | - Nicholas S. Dewey
- University
of Georgia, Department of Chemistry, Athens, Georgia 30602, United States
| | - Brandon Rotavera
- University
of Georgia, Department of Chemistry, Athens, Georgia 30602, United States
- University
of Georgia, College of Engineering, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Zádor J, Martí C, Van de Vijver R, Johansen SL, Yang Y, Michelsen HA, Najm HN. Automated Reaction Kinetics of Gas-Phase Organic Species over Multiwell Potential Energy Surfaces. J Phys Chem A 2023; 127:565-588. [PMID: 36607817 DOI: 10.1021/acs.jpca.2c06558] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Automation of rate-coefficient calculations for gas-phase organic species became possible in recent years and has transformed how we explore these complicated systems computationally. Kinetics workflow tools bring rigor and speed and eliminate a large fraction of manual labor and related error sources. In this paper we give an overview of this quickly evolving field and illustrate, through five detailed examples, the capabilities of our own automated tool, KinBot. We bring examples from combustion and atmospheric chemistry of C-, H-, O-, and N-atom-containing species that are relevant to molecular weight growth and autoxidation processes. The examples shed light on the capabilities of automation and also highlight particular challenges associated with the various chemical systems that need to be addressed in future work.
Collapse
Affiliation(s)
- Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | | | - Sommer L Johansen
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Yoona Yang
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Hope A Michelsen
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder80309, Colorado, United States
| | - Habib N Najm
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| |
Collapse
|
3
|
Ali MA. Ab initio rate coefficients for reactions of 2,5-dimethylhexyl isomers with O 2: temperature- and pressure-dependent branching ratios. Phys Chem Chem Phys 2021; 23:6225-6240. [PMID: 33687383 DOI: 10.1039/d0cp06562e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemical kinetics of O2-addition to alkyl radicals (R), termed first O2-addition in the oxidation mechanism of alkanes, are of central importance to next-generation combustion strategies designed for operations in the low- to intermediate-temperature region (<1000 K). In the present work, stationary points on potential energy surfaces (PES), temperature- and pressure-dependent rate coefficients, and branching fractions of product formation from R + O2 reactions initiated by the addition of molecular oxygen (3O2) to the three alkyl radicals of a branched alkane, 2,5-dimethylhexane, are reported. The stationary points were determined utilizing ab initio/DFT methods and the reaction energies were computed using the composite CBS-QB3 method. Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation (ME) calculations were employed to compute rate coefficients, from which branching fractions were determined over the pressure range of 10-3-20 atm and the temperature range of 400-900 K on three different surfaces. The quantum chemistry results reveal several distinct features. For the addition of O2 to the tertiary alkyl radical 2,5-dimethylhex-2-yl, the most energetically favorable channel leads to the formation of 2,2,5,5,-tetramethyl-tetrahydrofuran, a cyclic ether intermediate formed coincident with OH in a chain-propagating step from the decomposition of tertiary-tertiary hydroperoxyalkyl (QOOH). On the R + O2 surface of the secondary radical, 2,5-dimethylhex-3-yl, the pathways for the formation of methyl-propanal + iso-butene + OH via concerted C-C and O-O bond scission of tertiary QOOH and that of cyclic ether + OH are the most energetically favorable pathways. The R + O2 surface for the reaction of the primary radical, 2,5-dimethylhex-1-yl, reveals two competitive chain-propagation channels, leading to 2-iso-propyl-4-methyl-tetrahydrofuran + OH and 2,2,5-trimethyltetrahydropyran + OH. Below 100 Torr, the formation of the aforementioned species dominates the respective total R + O2 rate coefficient, while at pressures above 1 atm collisionally stabilized alkylperoxy (ROO) dominates at the temperatures considered here. The results of this study are in very good agreement with the experimentally measured intermediates and products of the 2,5-dimethylhexyl radical + O2 reaction.
Collapse
Affiliation(s)
- Mohamad Akbar Ali
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
4
|
Randazzo JB, Sivaramakrishnan R, Jasper AW, Sikes T, Lynch PT, Tranter RS. An experimental and theoretical study of the high temperature reactions of the four butyl radical isomers. Phys Chem Chem Phys 2020; 22:18304-18319. [PMID: 32785311 DOI: 10.1039/d0cp02404j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high temperature gas phase chemistry of the four butyl radical isomers (n-butyl, sec-butyl, iso-butyl, and tert-butyl) was investigated in a combined experimental and theoretical study. Organic nitrites were used as convenient and clean sources of each of the butyl radical isomers. Rate coefficients for dissociation of each nitrite were obtained experimentally and are at, or close to, the high pressure limit. Low pressure experiments were performed in a diaphragmless shock tube with laser schlieren densitometry at post-shock pressures of 65, 130, and 260 Torr and post-shock temperatures of 700-1000 K. Additional experiments were conducted with iso-butyl radicals at 805 K and 8.7 bar to elucidate changes in mechanism at higher pressures. These experiments were performed in a miniature shock tube with synchrotron-based photoionization mass spectrometry. The mass spectra confirmed that scission of the O-NO bond is the primary channel by which the precursors dissociate, but they also provided evidence of a minor channel (<7.7%) through HNO loss and formation of an aldehyde. These high pressure experiments were also used to determine the disproportionation/recombination ratio for iso-butyl radicals as 0.3. Reanalysis of the lower-temperature literature and the present data yielded rate constants for the disproportionation reaction, iso-butyl + iso-butyl = iso-butene + iso-butane. A chemical kinetics model was developed for the reactions of the butyl isomers that included new paths for highly energized adducts. These adducts are formed by the addition of H, CH3 or C2H5 to the butyl radicals. Accompanying theoretical investigations show that chemically activated pathways are competitive with stabilization of the adduct by collision under the conditions of the laser schlieren experiments. These calculations also show that at 10 bar and T < 1000 K stabilization is the only important reaction, but at higher temperatures, even at 10 bar, chemically activated product channels should also be considered. Branching fractions and rate coefficients are presented for these reactions. This study also highlights the importance of the radical structure for determining branching ratios for disproportionation and recombination of alkyl radicals, and these were facilitated by theoretical calculations of recombination rate coefficients for the four butyl radical isomers. The results reveal previously unknown features of butyl radical chemistry under conditions that are relevant to a wide range of applications and reaction mechanisms are presented that incorporate pressure dependent rate coefficients for the key steps.
Collapse
Affiliation(s)
- John B Randazzo
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Li Y, Cao Z. Mechanisms and kinetics of the low-temperature oxidation of 2-methylfuran: insight from DFT calculations and kinetic simulations. Phys Chem Chem Phys 2020; 22:3290-3303. [PMID: 31970347 DOI: 10.1039/c9cp05937g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low-temperature oxidation (LTO) mechanisms of the 2-methylfuran (2-MF) biofuel and the corresponding thermodynamic and kinetic properties have been explored by density functional theory (DFT) and composite G4 methodologies as well as kinetic simulations. The O2 addition to the main furylCH2 radical from the methyl dehydrogenation in 2-MF forms three peroxide radicals PO1, PO2, and PO3 with the energy barriers of 15.1, 19.3, and 20.6 kcal mol-1 and the reaction ΔG of -8.2, 5.7, and -0.1 kcal mol-1 (298 K and 1 atm), respectively. Through hydrogen transfer followed by dehydroxylation, these nascent products evolve into stable aldehydes and cyclic ketones, which may further decompose into smaller species under the action of OH. Calculations and simulations show that the product P1 from the dehydroxylation of PO1 has a dominant population (higher than 96%) among the final products, although the temperature and pressure may influence the species profiles and rate constants to some extent. Based on the G4-calibrated thermodynamic parameters, the temperature and pressure dependence of the rate constants and the two- and three-parameter Arrhenius coefficients for all reactions considered here have been determined by using the transition state theory (TST) and Rice-Ramsperger-Kassel-Marcus (RRKM) methods. The present results provide a comprehensive understanding of the mechanisms and kinetics of the LTO process of the 2-MF biofuel.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Xing L, Bao JL, Wang Z, Wang X, Truhlar DG. Relative Rates of Hydrogen Shift Isomerizations Depend Strongly on Multiple-Structure Anharmonicity. J Am Chem Soc 2018; 140:17556-17570. [DOI: 10.1021/jacs.8b09381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Junwei Lucas Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minnesota 55455-0431, United States
| | - Zhandong Wang
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Xuetao Wang
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minnesota 55455-0431, United States
| |
Collapse
|
7
|
Yao Q, Sun XH, Li ZR, Chen FF, Li XY. Pressure-Dependent Rate Rules for Intramolecular H-Migration Reactions of Hydroperoxyalkylperoxy Radicals in Low Temperature. J Phys Chem A 2017; 121:3001-3018. [DOI: 10.1021/acs.jpca.6b10818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Yao
- College
of Chemistry and ‡College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiao-Hui Sun
- College
of Chemistry and ‡College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Ze-Rong Li
- College
of Chemistry and ‡College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Fang-Fang Chen
- College
of Chemistry and ‡College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiang-Yuan Li
- College
of Chemistry and ‡College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Zhang W, Du B. Theoretical Investigation on the Reaction between OH Radical and 4,4-Dimethyl-1-pentene in the Presence of O2. J Phys Chem A 2015; 119:4065-72. [PMID: 25849042 DOI: 10.1021/acs.jpca.5b02274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The atmospheric oxidation mechanism of 4,4-dimethyl-1-pentene (DMP441) initiated by OH radical has been theoretically investigated at the BH&HLYP/6-311++G(d,p) and CCSD(T)/6-31+G(d,p) levels of theory. HC(O)H and 3,3-dimethylbutanal [(CH3)3CCH2C(O)H] are identified in our calculations as major products in the OH-radical-initiated degradation of DMP441 in the presence of O2. However, the epoxide conformers and enols are expected to be minor products because of the high isomerization barriers involved. The calculated results are in qualitative accordance with experimental evidence. Conventional transition state theory has been used to calculate the rate constants of the initial addition channels of the OH + DMP441 reaction over the temperature range 220-500 K. The computed total rate constant at 298 K is 2.20 × 10(-11) cm(3) molecule(-1) s(-1), which is in very good agreement with the experimental value. Furthermore, it has been found that the calculated rate constant exhibits a weak non-Arrhenius behavior over the temperature range 220-500 K. The computed expression for the rate constant is k(OH+DMP441) = 1.22 × 10(-12) exp[(880 K)/T] cm(3) molecule(-1) s(-1).
Collapse
Affiliation(s)
- Weichao Zhang
- College of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Benni Du
- College of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|