1
|
Ozer G, Valeev EF, Quirk S, Hernandez R. Adaptive Steered Molecular Dynamics of the Long-Distance Unfolding of Neuropeptide Y. J Chem Theory Comput 2015; 6:3026-38. [PMID: 26616767 DOI: 10.1021/ct100320g] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) has been found to adopt two stable conformations in vivo: (1) a monomeric form called the PP-fold in which a polyproline tail is folded onto an α-helix via a β-turn and (2) a dimeric form of the unfolded proteins in which the α-helices interact with each other via side chains. The transition pathway and rates between the two conformations remain unknown and are important to the nature of the binding of the protein. Toward addressing this question, the present work suggests that the unfolding of the PP-fold is too slow to play a role in NPY monomeric binding unless the receptor catalyzes it to do so. Specifically, the dynamics and structural changes of the unfolding of a monomeric NPY protein have been investigated in this work. Temperature accelerated molecular dynamics (MD) simulations at 500 K under constant (N,V,E) conditions suggests a hinge-like unraveling of the tail rather than a random unfolding. The free energetics of the proposed unfolding pathway have been described using an adaptive steered MD (SMD) approach at various temperatures. This approach generalizes the use of Jarzynski's equality through a series of stages that allows for better convergence along nonlinear and long-distance pathways. Results acquired using this approach provide a potential of mean force (PMF) with narrower error bars and are consistent with some of the earlier reports on the qualitative behavior of NPY binding.
Collapse
Affiliation(s)
- Gungor Ozer
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, and Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199
| | - Edward F Valeev
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, and Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199
| | - Stephen Quirk
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, and Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199
| | - Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, and Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199
| |
Collapse
|
2
|
Todde G, Hovmöller S, Laaksonen A, Mocci F. Glucose oxidase from Penicillium amagasakiense: characterization of the transition state of its denaturation from molecular dynamics simulations. Proteins 2014; 82:2353-63. [PMID: 24810265 DOI: 10.1002/prot.24596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/22/2014] [Accepted: 04/29/2014] [Indexed: 01/07/2023]
Abstract
Glucose oxidase (GOx) is a flavoenzyme having applications in food and medical industries. However, GOx, as many other enzymes when extracted from the cells, has relatively short operational lifetimes. Several recent studies (both experimental and theoretical), carried out on small proteins (or small fractions of large proteins), show that a detailed knowledge of how the breakdown process starts and proceeds on molecular level could be of significant help to artificially improve the stability of fragile proteins. We have performed extended molecular dynamics (MD) simulations to study the denaturation of GOx (a protein dimer containing nearly 1200 amino acids) to identify weak points in its structure and in this way gather information to later make it more stable, for example, by mutations. A denaturation of a protein can be simulated by increasing the temperature far above physiological temperature. We have performed a series of MD simulations at different temperatures (300, 400, 500, and 600 K). The exit from the protein's native state has been successfully identified with the clustering method and supported by other methods used to analyze the simulation data. A common set of amino acids is regularly found to initiate the denaturation, suggesting a moiety where the enzyme could be strengthened by a suitable amino acid based modification.
Collapse
Affiliation(s)
- Guido Todde
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
3
|
Enhanced EGFP fluorescence emission in presence of PEG aqueous solutions and PIB1000-PEG6000-PIB1000 copolymer vesicles. BIOMED RESEARCH INTERNATIONAL 2013; 2013:329087. [PMID: 23936792 PMCID: PMC3723060 DOI: 10.1155/2013/329087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/13/2013] [Indexed: 11/29/2022]
Abstract
An EGFP construct interacting with the PIB1000-PEG6000-PIB1000 vesicles surface reported a ~2-fold fluorescence emission enhancement. Because of the constructs nature with the amphiphilic peptide inserted into the PIB core, EGFP is expected to experience a “pure” PEG environment. To unravel this phenomenon PEG/water solutions at different molecular weights and concentrations were used. Already at ~1 : 10 protein/PEG molar ratio the increase in fluorescence emission is observed reaching a plateau correlating with the PEG molecular weight. Parallel experiments in presence of glycerol aqueous solutions did show a slight fluorescence enhancement however starting at much higher concentrations. Molecular dynamics simulations of EGFP in neat water, glycerol, and PEG aqueous solutions were performed showing that PEG molecules tend to “wrap” the protein creating a microenvironment where the local PEG concentration is higher compared to its bulk concentration. Because the fluorescent emission can be perturbed by the refractive index surrounding the protein, the clustering of PEG molecules induces an enhanced fluorescence emission already at extremely low concentrations. These findings can be important when related to the use of EGFP as reported in molecular biology experiments.
Collapse
|
4
|
Baclayon M, Roos WH, Wuite GJL. Sampling protein form and function with the atomic force microscope. Mol Cell Proteomics 2010; 9:1678-88. [PMID: 20562411 PMCID: PMC2938060 DOI: 10.1074/mcp.r110.001461] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Indexed: 12/17/2022] Open
Abstract
To study the structure, function, and interactions of proteins, a plethora of techniques is available. Many techniques sample such parameters in non-physiological environments (e.g. in air, ice, or vacuum). Atomic force microscopy (AFM), however, is a powerful biophysical technique that can probe these parameters under physiological buffer conditions. With the atomic force microscope operating under such conditions, it is possible to obtain images of biological structures without requiring labeling and to follow dynamic processes in real time. Furthermore, by operating in force spectroscopy mode, it can probe intramolecular interactions and binding strengths. In structural biology, it has proven its ability to image proteins and protein conformational changes at submolecular resolution, and in proteomics, it is developing as a tool to map surface proteomes and to study protein function by force spectroscopy methods. The power of AFM to combine studies of protein form and protein function enables bridging various research fields to come to a comprehensive, molecular level picture of biological processes. We review the use of AFM imaging and force spectroscopy techniques and discuss the major advances of these experiments in further understanding form and function of proteins at the nanoscale in physiologically relevant environments.
Collapse
Affiliation(s)
- Marian Baclayon
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Wouter H. Roos
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Gijs J. L. Wuite
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|