1
|
Phogat P, Bansal A, Nain N, Khan S, Saso L, Kukreti S. Quest for space: Tenacity of DNA, Protein, and Lipid macromolecules in intracellular crowded environment. Biomol Concepts 2025; 16:bmc-2025-0053. [PMID: 40022308 DOI: 10.1515/bmc-2025-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025] Open
Abstract
The biochemical processes in the cellular milieu involving biomacromolecular interaction usually occur in crowded and heterogeneous environments, impacting their structure, stability, and reactivity. The crowded environment in vivo is typically ignored for experimental investigations since the studies get complex due to intracellular biophysical interactions between nucleic acids, proteins, cellular membranes, and various cations/anions present in the cell. Thus, being a ubiquitous property of all cells, studying those biophysical aspects affecting biochemical processes under realistically crowded conditions is of prime importance. Crowders or crowding agents are usually exploited to mimic the in vivo conditions on interacting with such genomic species, revealing structural and functional changes resulting from excluded volume and soft interactions. In the last few years, studies including crowders of varied sizes have gained attention concerning the consequences of crowding agents on biomolecular structural transitions and stability. This review comprehensively summarizes macromolecular crowding, emphasizing the biophysical effects and contribution of soft interactions in the heterogeneous cellular environment.
Collapse
Affiliation(s)
- Priyanka Phogat
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Aparna Bansal
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Nishu Nain
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi 110021, India
| | - Shoaib Khan
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Justo CAC, Jauset-Rubio M, Svobodova M, Skouridou V, Cools P, Mulinganya G, Ibáñez-Escribano A, Rivera WL, O'Sullivan CK. Sandwich enzyme-linked aptamer-based assay for the detection of Trichomonas vaginalis. Anal Biochem 2024; 695:115656. [PMID: 39216635 DOI: 10.1016/j.ab.2024.115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Trichomoniasis is the most prevalent curable, non-viral sexually transmitted infection (STI), with an estimated 156 million new infections in 2020. It can potentially result in adverse birth outcomes as well as infertility in men, whilst it also increases the risk of acquiring HIV and contracting other vaginal infections. It is mostly prevalent among women in low-income countries and especially in Africa and the Americas. This STI is caused by Trichomonas vaginalis (TV) and a robust, cost-effective, sensitive, specific and rapid diagnostic test is urgently required. We report the screening of 6 full-length and 4 truncated aptamers previously selected in our group for use in a microplate-based sandwich assay. The combination of dual aptamers comprising a short 14-mer truncated capture aptamer (termed A1_14mer) and a full-length non-truncated reporter aptamer (A6) was elucidated to be the optimum pair for a sensitive sandwich enzyme-linked aptamer assay (ELAA) for the detection of TV achieving a detection limit of 3.02 × 104 TV cells/mL. The results obtained with the A1_14mer-A6 ELAA correlate excellently with wet-mount microscopy for the detection of TV in clinical specimens, cervicovaginal lavages and vaginal swabs, highlighting the potential clinical application of this assay for cost-effective population screening and subsequent prevention of the onset of complications associated with undiagnosed and untreated TV.
Collapse
Affiliation(s)
- Christine Aubrey C Justo
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain(1); Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Miriam Jauset-Rubio
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain(1)
| | - Marketa Svobodova
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain(1)
| | - Vasso Skouridou
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain(1)
| | - Piet Cools
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Guy Mulinganya
- Faculty of Medicine, Catholic University of Bukavu, Bukavu, Congo; Department of Obstetrics and Gynecology, Hôpital Provincial Général de Référence de Bukavu, Bukavu, Congo; Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Alexandra Ibáñez-Escribano
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ciara K O'Sullivan
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain(1); Institució Catalana de Recerca I Estudis Avancats (ICREA), Barcelona, Spain.
| |
Collapse
|
3
|
Wang H, Zhuang H, Tang W, Zhu J, Zhu W, Jiang L. Coacervate-pore complexes for selective molecular transport and dynamic reconfiguration. Nat Commun 2024; 15:10069. [PMID: 39567561 PMCID: PMC11579452 DOI: 10.1038/s41467-024-54510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Despite surging interests on liquid-state coacervates and condensates, confinement within solid-state pores for selective permeation remains an unexplored area. Drawing inspiration from nuclear pore complexes (NPCs), we design and construct coacervate-pore complexes (CPCs) with regulatable permeability. We demonstrate universal CPC formation across 19 coacervate systems and 5 pore types, where capillarity drives the spontaneous imbibition of coacervate droplets into dispersed or interconnected pores. CPCs regulate through-pore transport by forming a fluidic network that modulates guest molecule permeability based on guest-coacervate affinity, mimicking NPC selectivity. While solid constructs of NPC mimicries are limited by spatial fixation of polymer chains, CPCs of a liquid nature feature dynamic healing and rapid phase transitioning for permeability recovery and regulation, respectively. Looking forward, we expect the current work to establish a basis for developing liquid-based NPC analogs using a large pool of synthetic coacervates and biomolecular condensates.
Collapse
Affiliation(s)
- Hao Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Zhuang
- Experimental Basis and Practical Training Center, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Tang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
5
|
Tanabe K, Miyazaki K, Umeno H, Takemoto M, Nakano S. Basic protein- and peptide-induced stabilization of long-loop DNA G-guadruplexes. Biochimie 2024; 219:110-117. [PMID: 37972915 DOI: 10.1016/j.biochi.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The human genome contains many G-quadruplex-forming sequences, including sequences containing long single-stranded loops that are believed to be unfavorable for G-quadruplex formation. The intracellular environment of biological cells is crowded with proteins with charged surfaces. Understanding the effects of protein-rich environments is important for understanding the formation of G-quadruplexes in an intracellular environment. In this study, we investigated the structural stability of DNA G-quadruplexes in the presence of several types of globular proteins (lysozyme, cytochrome c, bovine serum albumin, myoglobin, histone proteins, and serum proteins), unstructured polypeptides (protamine and poly-l-lysine), and oligopeptides (RGG/RG-domain peptides and short repeated peptides). Thermal melting studies of G-quadruplex-forming oligonucleotides derived from the human telomeric repeat sequence revealed that environments containing high concentrations of proteins and peptides differently affected the G-quadruplex stability according to their loop lengths. We found that weak electrostatic interactions of G-quadruplex loops with basic proteins and peptides improved the stability of long-loop G-quadruplexes and the interactions were strengthened under crowded conditions simulated by dextran. The comparison of the effects of different types of proteins and peptides indicated that excluded volume interactions and structural flexibility of both DNA and polypeptide chains influenced the efficiency of their interactions. This study provides insights into long-loop G-quadruplex stability in a crowded intracellular environment and the recognition of G-quadruplexes by arginine-rich domains of G-quadruplex-binding proteins.
Collapse
Affiliation(s)
- Kazuya Tanabe
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Kouichi Miyazaki
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hikari Umeno
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Marina Takemoto
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - S Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
6
|
Johnson RE, Murray MT, Roby DJ, Bycraft LJ, Churcher ZR, Yadav S, Johnson PE, Wetmore SD, Manderville RA. Unlocking Pb 2+ Sensing Potential in a DNA G-Quadruplex via Loop Modification with Fluorescent Chalcone Surrogates. ACS Sens 2023; 8:4756-4764. [PMID: 38063049 DOI: 10.1021/acssensors.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The ability of guanine (G)-rich DNA to bind toxic lead (Pb2+) ions within a G-quadruplex (GQ) motif is a leading DNA biosensor strategy. A major analytical hurdle for GQ detection of Pb2+ is competitive GQ templating by potassium (K+) ions. We employ the on-strand DNA synthesis of internal fluorescent chalcone surrogates within the 15-mer thrombin binding aptamer (TBA15) to address this challenge. Replacement of thymidine at the 3-position (T3) within TBA15 with an indole-4-hydroxy-indanone (Ind4HI) chalcone strongly decreases K+-GQ stability while enhancing Pb2+-GQ stability to increase Pb2+ binding specificity. The new T3-Ind4HI probe exhibits a 15-fold increase in fluorescence intensity upon binding of Pb2+ by the modified TBA15 and can detect 6.4 nM Pb2+ in the presence of 10 mM K+. Thus, replacement of the T3 residue of TBA15 with the new Ind4HI probe modulates metal ion affinity by native TBA15 to solve the analytical challenge posed by K+ in real water samples for detecting Pb2+ to meet regulatory guidelines by using a GQ biosensor.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry and Toxicology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Dylan J Roby
- Departments of Chemistry and Toxicology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Lucas J Bycraft
- Departments of Chemistry and Toxicology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Zachary R Churcher
- Department of Chemistry, York University, Toronto M3J 1P3, Ontario, Canada
| | - Saanya Yadav
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, Toronto M3J 1P3, Ontario, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
7
|
Ling X, Yao Y, Ding L, Ma J. The mechanism of UP1 binding and unfolding of human telomeric DNA G-quadruplex. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194985. [PMID: 37717939 DOI: 10.1016/j.bbagrm.2023.194985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
The human telomere contains multiple copies of the DNA sequence d(TTAGGG) which can fold into higher order intramolecular G-quadruplexes and regulate the maintenance of telomere length and chromosomal integrity. The nucleic acid binding protein heteronuclear ribonucleoprotein A1 (hnRNP A1) and its N-terminus proteolytic product UP1 have been shown to efficiently bind and unfold telomeric DNA G-quadruplex. However, the understanding of the molecular mechanism of the UP1 binding and unfolding telomeric G-quadruplexes is still limited. Here, we performed biochemical and biophysical characterizations of UP1 binding and unfolding of human telomeric DNA G-quadruplex d[AGGG(TTAGGG)3], and in combination of systematic site-direct mutagenesis of two tandem RNA recognition motifs (RRMs) in UP1, revealed that RRM1 is responsible for initial binding and unfolding, whereas RRM2 assists RRM1 to complete the unfolding of G-quadruplex. Isothermal titration calorimetry (ITC) and circular dichroism (CD) studies of the interactions between UP1 and DNA G-quadruplex variants indicate that the "TAG" binding motif in Loop2 of telomeric G-quadruplex is critical for UP1 recognition and G-quadruplex unfolding initiation. Together we depict a model for molecular mechanism of hnRNP A1 (UP1) binding and unfolding of the human telomeric DNA G-quadruplex.
Collapse
Affiliation(s)
- Xiaobin Ling
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuqi Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Ding
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
8
|
Kim H, Pak Y. Improving All-Atom Force Field to Accurately Describe DNA G-Quadruplex Loops. J Phys Chem B 2022; 126:6199-6209. [PMID: 35951994 DOI: 10.1021/acs.jpcb.2c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA G-quadruplex (GQ) displays structural polymorphisms, and interactions between its loops and flanking sequences critically determine which of the diverse GQ conformers is adopted. All-atom molecular dynamics (MD) simulations of GQs are computationally challenging due to slow folding times and force field (ff) artifacts. In an earlier study, a direct folding simulation of the simplest DNA GQ (TBA15) was first reported using a modified version of the AMBER bsc1 ff (bsc1_vdW ff). Despite this successful folding simulation, it was later found that the bsc1_vdW ff is somewhat limited in terms of describing loop structures of GQs, which is problematic because GQ loop regions play key roles in ligand binding to modulate GQ activities. In this study, we further modified the bsc1_vdW ff to enhance the GQ loop prediction by fine-tuning a limited number of van der Waals (vdW) parameters of the standard AMBER bsc1 ff to improve the GQ loop distribution of a target GQ system (three-layered antiparallel GQ; mHtel21). Test simulations of this newly generated ff (bsc1_vdWL ff) on DNA GQs with diverse topologies (hybrid1, hybrid2, and parallel propeller) revealed that loop structures were predicted more accurately than by the bsc1_vdW ff. We consider that enhanced sampling MD simulation methods in combination with bsc1_vdWL provide useful simulation protocols for resolving outstanding issues of DNA GQ folding and GQ/ligand binding at the all-atom level.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, S. Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, S. Korea
| |
Collapse
|
9
|
Tariq N, Kume T, Feroze UN, Macgregor RB. The Pressure Dependence of the Stability of the G-quadruplex Formed by d(TGGGGT). Life (Basel) 2022; 12:life12050765. [PMID: 35629431 PMCID: PMC9144232 DOI: 10.3390/life12050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
The G-quadruplex (GQ), a tetrahelix formed by guanine-rich nucleic acid sequences, is a potential drug target for several diseases. Monomolecular GQs are stabilized by guanine tetrads and non-guanine regions that form loops. Hydrostatic pressure destabilizes the folded, monomolecular GQ structures. In this communication, we present data on the effect of pressure on the conformational stability of the tetramolecular GQ, d[5′-TGGGGT-3′]4. This molecule does not have loops linking the tetrads; thus, its physical properties presumably reflect those of the tetrads alone. Understanding the properties of the tetrads will aid in understanding the contribution of the other structural components to the stability of GQ DNA. By measuring UV light absorption, we have studied the effect of hydrostatic pressure on the thermal stability of the tetramolecular d[5′-TGGGGT-3′]4 in the presence of sodium ions. Our data show that, unlike monomolecular GQ, the temperature at which d[5′-TGGGGT-3′]4 dissociates to form the constituent monomers is nearly independent of pressure up to 200 MPa. This implies that there is no net molar volume difference (∆V) between the GQ and the unfolded random-coil states. This finding further suggests that the large negative ∆V values for the unfolding of monomolecular GQ are due to the presence of the loop regions in those structures.
Collapse
|
10
|
Pal R, Deb I, Sarzynska J, Lahiri A. LNA-induced dynamic stability in a therapeutic aptamer: insights from molecular dynamics simulations. J Biomol Struct Dyn 2022; 41:2221-2230. [PMID: 35100936 DOI: 10.1080/07391102.2022.2029567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Modulation of structural and thermodynamic properties of nucleic acids with synthetic modifications is a promising area of research with possible applications in nanotechnology and nanotherapeutics. Locked nucleic acid (LNA) is one such modification in which the C4' and O2' atoms of the sugar moiety are connected through a methylene bridge. The LNA modified DNA aptamer RNV66, and its unmodified counterpart V7t1, both of which target the vascular endothelial growth factor (VEGF) implicated in oncogenic angiogenesis, have a G-rich tract that can fold into G-quadruplex structures. However, it is not understood why V7t1 has a polymorphic structure while its LNA modified counterpart RNV66 has a unique quadruplex fold with higher nuclease resistance, thermal stability and greater binding affinity for VEGF. In this work, we have performed extensive molecular dynamics simulations of RNV66 and V7t1 to study and compare the structural and dynamic consequences of the insertion of LNAs. It was observed that the increase in dynamic stability was significant in the presence of LNA residues and our protocol for combining different torsional parameters using OL15 for the DNA aptamer and parm99_LNA along with parmbsc0 and βOL15 for the LNAs nicely reproduced the experimentally observed conformational features of RNV66. Our observations would help in further theoretical studies in understanding the lack of frustration in the folding of the LNA modified aptamer and its higher affinity for VEGF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rupak Pal
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, Kolkata, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, Kolkata, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, Kolkata, India
| |
Collapse
|
11
|
Jana J, Weisz K. Thermodynamic Stability of G-Quadruplexes: Impact of Sequence and Environment. Chembiochem 2021; 22:2848-2856. [PMID: 33844423 PMCID: PMC8518667 DOI: 10.1002/cbic.202100127] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Indexed: 12/19/2022]
Abstract
G-quadruplexes have attracted growing interest in recent years due to their occurrence in vivo and their possible biological functions. In addition to being promising targets for drug design, these four-stranded nucleic acid structures have also been recognized as versatile tools for various technological applications. Whereas a large number of studies have yielded insight into their remarkable structural diversity, our current knowledge on G-quadruplex stabilities as a function of sequence and environmental factors only gradually emerges with an expanding collection of thermodynamic data. This minireview provides an overview of general rules that may be used to better evaluate quadruplex thermodynamic stabilities but also discusses present challenges in predicting most stable folds for a given sequence and environment.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of BiochemistryUniversität GreifswaldFelix-Hausdorff Str. 417489GreifswaldGermany
| | - Klaus Weisz
- Institute of BiochemistryUniversität GreifswaldFelix-Hausdorff Str. 417489GreifswaldGermany
| |
Collapse
|
12
|
Jana J, Weisz K. A Thermodynamic Perspective on Potential G-Quadruplex Structures as Silencer Elements in the MYC Promoter. Chemistry 2020; 26:17242-17251. [PMID: 32761687 PMCID: PMC7839732 DOI: 10.1002/chem.202002985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Indexed: 01/10/2023]
Abstract
Multiple G‐tracts within the promoter region of the c‐myc oncogene may fold into various G‐quadruplexes with the recruitment of different tracts and guanosine residues for the G‐core assembly. Thermodynamic profiles for the folding of wild‐type and representative truncated as well as mutated sequences were extracted by comprehensive DSC experiments. The unique G‐quadruplex involving consecutive G‐tracts II–V with formation of two one‐nucleotide and one central two‐nucleotide propeller loop, previously proposed to be the biologically most relevant species, was found to be the most stable fold in terms of its Gibbs free energy of formation at ambient temperatures. Its stability derives from its short propeller loops but also from the favorable type of loop residues. Whereas quadruplex folds with long propeller loops are significantly disfavored, a snap‐back loop structure formed by incorporating a 3’‐terminal guanosine into the empty position of a tetrad seems highly competitive based on its thermodynamic stability. However, its destabilization by extending the 3’‐terminus questions the significance of such a species under in vivo conditions.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
13
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
14
|
Effects of Length and Loop Composition on Structural Diversity and Similarity of (G 3TG 3N mG 3TG 3) G-Quadruplexes. Molecules 2020; 25:molecules25081779. [PMID: 32294984 PMCID: PMC7221631 DOI: 10.3390/molecules25081779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
A G-rich sequence containing three loops to connect four G-tracts with each ≥2 guanines can possibly form G-quadruplex structures. Given that all G-quadruplex structures comprise the stacking of G-quartets, the loop sequence plays a major role on their folding topology and thermal stability. Here circular dichroism, NMR, and PAGE are used to study the effect of loop length and base composition in the middle loop, and a single base difference in loop 1 and 3 on G-quadruplex formation of (G3HG3NmG3HG3) sequences with and without flanking nucleotides, where H is T, A, or C and N is T, A, C, or G. In addition, melting curve for G-quadruplex unfolding was used to provide relatively thermal stability of G-quadruplex structure after the addition of K+ overnight. We further studied the effects of K+ concentration on their stability and found structural changes in several sequences. Such (G3HG3NmG3HG3) configuration can be found in a number of native DNA sequences. The study of structural diversity and similarity from these sequences may allow us to establish the correlation between model sequences and native sequences. Moreover, several sequences upon interaction with a G-quadruplex ligand, BMVC, show similar spectral change, implying that structural similarity is crucial for drug development.
Collapse
|
15
|
Benabou S, Mazzini S, Aviñó A, Eritja R, Gargallo R. A pH-dependent bolt involving cytosine bases located in the lateral loops of antiparallel G-quadruplex structures within the SMARCA4 gene promotor. Sci Rep 2019; 9:15807. [PMID: 31676783 PMCID: PMC6825181 DOI: 10.1038/s41598-019-52311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Some lung and ovarian tumors are connected to the loss of expression of SMARCA4 gene. In its promoter region, a 44-nucleotides long guanine sequence prone to form G-quadruplex structures has been studied by means of spectroscopic techniques (circular dichroism, molecular absorption and nuclear magnetic resonance), size exclusion chromatography and multivariate analysis. The results have shown that the central 21-nucleotides long sequence comprising four guanine tracts of disparate length is able to fold into a pH-dependent ensemble of G-quadruplex structures. Based on acid-base titrations and melting experiments of wild and mutated sequences, the formation of a C·C+ base pair between cytosine bases present at the two lateral loops is shown to promote a reduction in conformational heterogeneity, as well as an increase in thermal stability. The formation of this base pair is characterized by a pKa value of 7.1 ± 0.2 at 20 °C and 150 mM KCl. This value, higher than those usually found in i-motif structures, is related to the additional stability provided by guanine tetrads in the G-quadruplex. To our knowledge, this is the first thermodynamic description of this base pair in loops of antiparallel G-quadruplex structures.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Pandith A, Siddappa RG, Seo YJ. Recent developments in novel blue/green/red/NIR small fluorescent probes for in cellulo tracking of RNA/DNA G-quadruplexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Nakano SI, Ayusawa T, Tanino Y, Sugimoto N. Stabilization of DNA Loop Structures by Large Cations. J Phys Chem B 2019; 123:7687-7694. [PMID: 31465227 DOI: 10.1021/acs.jpcb.9b06074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The DNA-binding properties of large cations differ from those of metal ions due to steric exclusion from base-paired regions. In this study, the thermal stability of DNA secondary structures, including duplexes, internal loops, bulge loops, hairpin loops, dangling ends, and G-quadruplexes, was investigated in the presence of cations of different sizes. Large cations, such as tetrabutylammonium and tetrapentylammonium ions, reduced the stability of fully matched duplexes but increased the stability of duplexes with a long loop. The cations also increased the stability of G-quadruplexes with a long loop, and the degree of stabilization was greater for low-stability G-quadruplexes. Analysis of the salt concentration dependence indicates that large cations bind to the loop nucleotides, leading to counteracting the destabilization effect on base pairing. It is likely that binding occurs when loop nucleotides are sufficiently flexible to allow for greater accessibility for large cations. These results provide insight into nucleic acid interactions with large cationic molecules and suggest a potential method for stabilizing noncanonical DNA structures under intracellular conditions.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Toshiya Ayusawa
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Yuichi Tanino
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan.,Frontier Institute for Biomolecular Engineering Research (FIBER) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| |
Collapse
|
18
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
19
|
Cheng M, Cheng Y, Hao J, Jia G, Zhou J, Mergny JL, Li C. Loop permutation affects the topology and stability of G-quadruplexes. Nucleic Acids Res 2019; 46:9264-9275. [PMID: 30184167 PMCID: PMC6182180 DOI: 10.1093/nar/gky757] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
G-quadruplexes are unusual DNA and RNA secondary structures ubiquitous in a variety of organisms including vertebrates, plants, viruses and bacteria. The folding topology and stability of intramolecular G-quadruplexes are determined to a large extent by their loops. Loop permutation is defined as swapping two or three of these regions so that intramolecular G-quadruplexes only differ in the sequential order of their loops. Over the past two decades, both length and base composition of loops have been studied extensively, but a systematic study on the effect of loop permutation has been missing. In the present work, 99 sequences from 21 groups with different loop permutations were tested. To our surprise, both conformation and thermal stability are greatly dependent on loop permutation. Loop permutation actually matters as much as loop length and base composition on G-quadruplex folding, with effects on Tm as high as 17°C. Sequences containing a longer central loop have a high propensity to adopt a stable non-parallel topology. Conversely, sequences containing a short central loop tend to form a parallel topology of lower stability. In addition, over half of interrogated sequences were found in the genomes of diverse organisms, implicating their potential regulatory roles in the genome or as therapeutic targets. This study illustrates the structural roles of loops in G-quadruplex folding and should help to establish rules to predict the folding pattern and stability of G-quadruplexes.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Inserm U1212, CNRS UMR5320, IECB, Université de Bordeaux, Pessac 33607, France.,Institute of Biophysics of the CAS, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
20
|
Sun L, Xie X, Weng W, Jin H. Structural and mechanistic insights into modified G-quadruplex thrombin-binding DNA aptamers. Biochem Biophys Res Commun 2019; 513:753-759. [PMID: 30992128 DOI: 10.1016/j.bbrc.2019.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Thrombin-binding aptamer (TBA) can fold into a G-quadruplex structure necessary for interacting with thrombin. When one thymidine residue of the TGT loop at position 7 is replaced with unlocked uracil (UNA), d-isothymidine (D-isoT) or l-isothymidine (L-isoT), these modified sequences display different activities. To date, the mechanisms of how D/L-isoT and UNA influence the biological properties of TBA have not been illustrated in the literature. In this paper, we fill this gap by probing the structure variations and binding modes of these modified TBAs via molecular dynamics (MD) simulation and free energy calculation. Comparative structural analyses demonstrated that both D-IsoT and UNA changed the local conformation of TGT loop and formed stronger interactions with the target protein. Particularly, D-IsoT and UNA adopted similar conformation which can well explain their similar biological activities. In addition, the flexibility of the two TT loops were described clearly. In contrast, L-IsoT at position 7 led to an obvious tendency to unfold. Free energy calculation and the analysis of key residues energy contributions eventually provide a clear picture of interactions for further understanding of the structure-activity relationships. Collectively, our findings open the way for a rational design of modified aptamers.
Collapse
Affiliation(s)
- Lidan Sun
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China.
| | - Xiaolan Xie
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China
| | - Wenting Weng
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
21
|
Prislan I, Sajko S, Ulrih NP, Fürst L. Proof of concept web application for understanding the energetic basis of oligonucleotide unfolding. RSC Adv 2019; 9:41453-41461. [PMID: 35541576 PMCID: PMC9076490 DOI: 10.1039/c9ra09800c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 11/21/2022] Open
Abstract
Measuring and quantifying thermodynamic parameters that determine both the stability of and interactions between biological macromolecules are an essential and necessary complement to structural studies. Although basic thermodynamic parameters for an observed process can be readily obtained, the data interpretation is often slow and analysis quality can be extremely variable. We have started to develop a web application that will help users to perform thermodynamic characterizations of oligonucleotide unfolding. The application can perform global fitting of calorimetric and spectroscopic data, and uses a three-state equilibrium model to obtain thermodynamic parameters for each transition step – namely, the Gibbs energy, the enthalpy, and the heat capacity. In addition, the application can define the number of K+ ions and the number of water molecules being released or taken up during unfolding. To test our application, we used UV spectroscopy, circular dichroism, and differential scanning calorimetry to monitor folding and unfolding of a model 22-nucleotide-long sequence of a human 3′-telomeric overhang, known as Tel22. The obtained data were uploaded to the web application and the global fit revealed that unfolding of Tel22 involves at least one intermediate state, and that K+ ions are released during the unfolding, whereas water molecules are taken up. A novel web application: performing global fitting of oligonucleotide unfolding experimental data in style.![]()
Collapse
Affiliation(s)
- Iztok Prislan
- Biotechnical Faculty
- University of Ljubljana
- Ljubljana
- Slovenia
| | - Sara Sajko
- Max Perutz Labs Vienna
- Medical University of Vienna
- 1030 Vienna
- Austria
| | | | - Luka Fürst
- Faculty of Computer and Information Science
- University of Ljubljana
- Ljubljana
- Slovenia
| |
Collapse
|
22
|
Solís-Calero C, Augusto TM, Carvalho HF. Human-specific features of the G-quadruplex in the androgen receptor gene promoter: A comparative structural and dynamics study. J Steroid Biochem Mol Biol 2018; 182:95-105. [PMID: 29709633 DOI: 10.1016/j.jsbmb.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The androgen receptor (AR) promoter contains guanine-rich regions that are able to fold into polymorphic G-quadruplex (GQ) structures, and whose deletion decreases AR gene transcription. Our attention was focused on this region because of the frequent termination of sequencing reactions during promoter methylation studies. UV and circular dichroism (CD) spectroscopy of synthetic oligonucleotides encompassing these guanine-rich regions suggested a parallel quadruplex topology with three guanine quartets and three side loops in the three cases. Melting curves revealed a lower thermostability of the human GQ compared to the rat/mouse QG structures, which is attributed to the presence of a longer central loop in the former. One molecular model is proposed for the highly similar sequences in the rat/mouse. Due to the polymorphism resulting from possible arrangements of the guanine tracts, two models were derived for the human GQ. Molecular dynamics (MD) simulations determined that both models for the human GQ had higher flexibility and lower stability than the rodent GQ models. These properties result from the presence of a longer central loop in the human GQ models, which contains 11 and 13 nucleotides, in comparison to the 2-nucleotide long loop in the rat/mouse GQ. Overall, the unveiled structural and dynamics features provide sufficient detail for the intelligent design of drugs targeting the human AR promoter.
Collapse
Affiliation(s)
- Christian Solís-Calero
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Taize M Augusto
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
23
|
Omaga CA, Fleming AM, Burrows CJ. The Fifth Domain in the G-Quadruplex-Forming Sequence of the Human NEIL3 Promoter Locks DNA Folding in Response to Oxidative Damage. Biochemistry 2018; 57:2958-2970. [PMID: 29718661 DOI: 10.1021/acs.biochem.8b00226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA oxidation is an inevitable and usually detrimental process, but the cell is capable of reversing this state because the cell possesses a highly developed set of DNA repair machineries, including the DNA glycosylase NEIL3 that is encoded by the NEIL3 gene. In this work, the G-rich promoter region of the human NEIL3 gene was shown to fold into a dynamic G-quadruplex (G4) structure under nearly physiological conditions using spectroscopic techniques (e.g., nuclear magnetic resonance, circular dichroism, fluorescence, and ultraviolet-visible) and DNA polymerase stop assays. The presence of 8-oxo-7,8-dihydroguanine (OG) modified the properties of the NEIL3 G4 and entailed the recruitment of the fifth domain to function as a "spare tire", in which an undamaged fifth G-track is swapped for the damaged section of the G4. The polymerase stop assay findings also revealed that owing to its dynamic polymorphism, the NEIL3 G4 is more readily bypassed by DNA polymerase I (Klenow fragment) than well-known oncogene G4s are. This study identifies the NEIL3 promoter possessing a G-rich element that can adopt a G4 fold, and when OG is incorporated, the sequence can lock into a more stable G4 fold via recruitment of the fifth track of Gs.
Collapse
Affiliation(s)
- Carla A Omaga
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
24
|
Tucker BA, Hudson JS, Ding L, Lewis E, Sheardy RD, Kharlampieva E, Graves D. Stability of the Na + Form of the Human Telomeric G-Quadruplex: Role of Adenines in Stabilizing G-Quadruplex Structure. ACS OMEGA 2018; 3:844-855. [PMID: 30023791 PMCID: PMC6045420 DOI: 10.1021/acsomega.7b01649] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
G-quadruplexes are higher order DNA structures that play significant roles in gene transcription and telomeric maintenance. The formation and stability of the G-quadruplex structures are under thermodynamic control and may be of biological significance for regulatory function of cellular processes. Here, we report the structural influence and energetic contributions of the adenine bases in the loop sequences that flank G-repeats in human telomeric DNA sequence. Spectroscopic and calorimetric techniques are used to measure the thermal stability and thermodynamic contributions to the stability of human telomeric G-quadruplexes that have been designed with systematic changes of A to T throughout the telomeric sequence. These studies demonstrate that the thermal stability of the G-quadruplex structure is directly related to the number and position of the adenines that are present in the telomeric sequence. The melting temperature (Tm) was reduced from 59 °C for the wild-type sequence to 47 °C for the sequence where all four adenines were replaced with thymines (0123TTT). Furthermore, the enthalpy required for transitioning from the folded to unfolded G-quadruplex structure was reduced by 15 kcal/mol when the adenines were replaced with thymines (37 kcal/mol for the wild-type telomeric sequence reduced to 22 kcal/mol for the sequence where all four adenines were replaced with thymines (0123TTT)). The circular dichroism melting studies for G-quadruplex sequences having a single A to T change showed significantly sloping pretransition baselines and their differential scanning calorimetry (DSC) thermograms revealed biphasic melting profiles. In contrast, the deoxyoligonucleotides having sequences with two or more A to T changes did not exhibit sloping baselines or biphasic DSC thermograms. We attribute the biphasic unfolding profile and reduction in the enthalpy of unfolding to the energetic contributions of adenine hydrogen bonding within the loops as well as the adenine stacking to the G-tetrads of the G-quadruplex structure.
Collapse
Affiliation(s)
- Brenna A. Tucker
- Department
of Chemistry, Department of Biochemistry and Molecular Genetics, and Comprehensive
Cancer Center, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| | - Jason S. Hudson
- Department
of Chemistry, Department of Biochemistry and Molecular Genetics, and Comprehensive
Cancer Center, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| | - Lei Ding
- Department
of Chemistry, Department of Biochemistry and Molecular Genetics, and Comprehensive
Cancer Center, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| | - Edwin Lewis
- Department
of Chemistry, Mississippi State University, Mississippi, Mississippi
State 39762, United
States
| | - Richard D. Sheardy
- Department
of Chemistry & Biochemistry, Texas Women’s
University, Denton, Texas 782042, United States
| | - Eugenia Kharlampieva
- Department
of Chemistry, Department of Biochemistry and Molecular Genetics, and Comprehensive
Cancer Center, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| | - David Graves
- Department
of Chemistry, Department of Biochemistry and Molecular Genetics, and Comprehensive
Cancer Center, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
25
|
Yang C, Kulkarni M, Lim M, Pak Y. Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level. Nucleic Acids Res 2017; 45:12648-12656. [PMID: 29112755 PMCID: PMC5728390 DOI: 10.1093/nar/gkx1079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022] Open
Abstract
The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10-12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers.
Collapse
Affiliation(s)
- Changwon Yang
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| | - Mandar Kulkarni
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| | - Manho Lim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
26
|
Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure. Biophys Chem 2017; 231:146-154. [DOI: 10.1016/j.bpc.2017.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/21/2022]
|
27
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
28
|
Fay MM, Lyons SM, Ivanov P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J Mol Biol 2017; 429:2127-2147. [PMID: 28554731 PMCID: PMC5603239 DOI: 10.1016/j.jmb.2017.05.017] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022]
Abstract
G-quadruplexes (G4s) are extremely stable DNA or RNA secondary structures formed by sequences rich in guanine. These structures are implicated in many essential cellular processes, and the number of biological functions attributed to them continues to grow. While DNA G4s are well understood on structural and, to some extent, functional levels, RNA G4s and their functions have received less attention. The presence of bona fide RNA G4s in cells has long been a matter of debate. The development of G4-specific antibodies and ligands hinted on their presence in vivo, but recent advances in RNA sequencing coupled with chemical footprinting suggested the opposite. In this review, we will critically discuss the biology of RNA G4s focusing on the molecular mechanisms underlying their proposed functions.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Yurenko YP, Novotný J, Marek R. Weak Supramolecular Interactions Governing Parallel and Antiparallel DNA Quadruplexes: Insights from Large-Scale Quantum Mechanics Analysis of Experimentally Derived Models. Chemistry 2017; 23:5573-5584. [PMID: 28225208 DOI: 10.1002/chem.201700236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 12/30/2022]
Abstract
The topology and energetics of guanine (G) quadruplexes is governed by supramolecular interactions within their strands. In this work, an extensive quantum mechanical (QM) study has been performed to analyze supramolecular interactions that shape the stems of (4+0) parallel (P) and (2+2) antiparallel (AP) quadruplex systems. The large-scale (≈400 atoms) models of P and AP were constructed from high-quality experimental structures. The results provide evidence that each of the P and AP structures is shaped by a distinct network of supramolecular interactions. Analysis of electron topological characteristics of hydrogen bonds in P and AP systems indicates that the P model benefits from stronger intratetrad hydrogen bonding. For intertetrad stacking interactions, both noncovalent interaction plot and energy decomposition analysis approaches suggest that the stem of the P quadruplex benefits more from stacking than that of the AP stem; the difference in energetic stabilization for the two topologies is about 10 %. Stronger hydrogen-bonding and stacking interactions in the stem of the P quadruplex, relative to those in the AP system, can be an important indicator to explain the experimental observations that guanine-rich oligonucleotides tend to form all-parallel stems with an all-anti orientation of nucleobases. However, in addition to intrinsic stabilization, partial desolvation effects, which affect the energetics and dynamics of the G-quadruplex folding process, call for further investigations.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| |
Collapse
|
30
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
31
|
Li YY, Dubins DN, Le DMNT, Leung K, Macgregor RB. The role of loops and cation on the volume of unfolding of G-quadruplexes related to HTel. Biophys Chem 2017; 231:55-63. [PMID: 28162829 DOI: 10.1016/j.bpc.2016.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
Abstract
In aqueous solutions containing sodium or potassium cations, oligodeoxyribonucleotides (ODNs) rich in guanine form four-stranded DNA structures called G-quadruplexes (G4s). These structures are destabilized by elevated hydrostatic pressure. Here, we use pressure to investigate the volumetric changes arising from the formation of G4 structures. G4s display a great deal of structural heterogeneity that depends on the stabilizing cation as well as the oligonucleotide sequence. Using UV thermal unfolding at different pressures, we have investigated the volume change of the helix-coil equilibrium of a series of ODNs whose sequences are related to the G-rich ODN HTel (d[A(GGGTTA)3GGG]), which contains four repeats of the human telomeric sequence. The experiments are conducted in aqueous buffers containing either 100mM NaCl or KCl at pH7.4. The G4s stabilized by Na+ are less sensitive to pressure perturbation than those stabilized by K+. The overall molar volume changes (ΔVtot) of the unfolding transition for all of the G4s are large and negative. A large fraction of the measured ΔVtot value arises from the re-hydration of the cations released from the interior of the folded structure. However, the differences in the measured ΔVtot values demonstrate that variations in the structure of G4s formed by each ODN, arising from differences in the sequence of the loops, contribute significantly to ΔVtot and presumably the hydration of the folded structures. Depending on the sequence of the loops, the magnitude of the measured ΔVtot can be larger or smaller than that of HTel in solutions containing sodium. However, the magnitude of ΔVtot is smaller than HTel for the unfolding of all G4s that are stabilized by potassium ions.
Collapse
Affiliation(s)
- Yang Yun Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Dianna My Nhi Thi Le
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Karen Leung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
32
|
Li YY, Macgregor RB. A Thermodynamic Study of Adenine and Thymine Substitutions in the Loops of the Oligodeoxyribonucleotide HTel. J Phys Chem B 2016; 120:8830-6. [PMID: 27487080 DOI: 10.1021/acs.jpcb.6b05601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Guanine-rich DNA oligodeoxyribonucleotides (ODN) can form four-stranded structures named quadruplexes (G4s), which are stabilized via the association of four guanine bases. Quadruplexes have a high level of conformational diversity depending on the molecularity, sequence, and the cation conditions of the G4 formation. Monomolecular G4 structures have nonguanine loops that usually consist of between one and four adenine and thymine residues. In the work reported here, we systematically modified the nucleotides in the loops of the 22 nucleotide ODN, HTel, which contains four repeats of the human telomeric sequence, GGGTTA. We studied the effect of different types of bases in the loops on the stability and topology of the G4s formed. We show that lower steric hindrance of pyrimidine residues increases the stability of G4s with a major enthalpic contribution. Stacking of the loop bases onto tetrads could compensate for the loss of rotational freedom. In addition, in the presence of sodium, the stabilities of the G4s are loop dependent. In the presence of potassium, the stability of G4 depend on the sequences of each loop. Lastly, in the presence of potassium ions, the modified HTel ODNs may exist in equilibrium of the two types of the hybrid topology, and these structures are stabilized by the second loop. Modifications of the bases in this loop change the topology and stability of the folded structures.
Collapse
Affiliation(s)
- Yang Yun Li
- Department of Pharmaceutical Sciences University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
33
|
Zhou J, Tateishi-Karimata H, Mergny JL, Cheng M, Feng Z, Miyoshi D, Sugimoto N, Li C. Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie 2016; 121:204-8. [DOI: 10.1016/j.biochi.2015.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
|
34
|
Scuotto M, Rivieccio E, Varone A, Corda D, Bucci M, Vellecco V, Cirino G, Virgilio A, Esposito V, Galeone A, Borbone N, Varra M, Mayol L. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative. Nucleic Acids Res 2015; 43:7702-16. [PMID: 26250112 PMCID: PMC4652776 DOI: 10.1093/nar/gkv789] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022] Open
Abstract
Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13.
Collapse
Affiliation(s)
- Maria Scuotto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Elisa Rivieccio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Alessia Varone
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Luciano Mayol
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| |
Collapse
|
35
|
Pramanik S, Tateishi-Karimata H, Sugimoto N. Organelle-mimicking liposome dissociates G-quadruplexes and facilitates transcription. Nucleic Acids Res 2014; 42:12949-59. [PMID: 25336617 PMCID: PMC4227800 DOI: 10.1093/nar/gku998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Important biological reactions involving nucleic acids occur near the surface of membranes such as the nuclear membrane (NM) and rough endoplasmic reticulum (ER); however, the interactions between biomembranes and nucleic acids are poorly understood. We report here that transcription was facilitated in solution with liposomes, which mimic a biomembrane surface, relative to the reaction in a homogeneous aqueous solution when the template was able to form a G-quadruplex. The G-quadruplex is known to be an inhibitor of transcription, but the stability of the G-quadruplex was decreased at the liposome surface because of unfavourable enthalpy. The destabilization of the G-quadruplex was greater at the surface of NM- and ER-mimicking liposomes than at the surfaces of liposomes designed to mimic other organelles. Thermodynamic analyses revealed that the G-rich oligonucleotides adopted an extended structure at the liposome surface, whereas in solution the compact G-quadruplex was formed. Our data suggest that changes in structure and stability of nucleic acids regulate biological reactions at membrane surfaces.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
36
|
Jodoin R, Bauer L, Garant JM, Mahdi Laaref A, Phaneuf F, Perreault JP. The folding of 5'-UTR human G-quadruplexes possessing a long central loop. RNA (NEW YORK, N.Y.) 2014; 20:1129-1141. [PMID: 24865610 PMCID: PMC4114690 DOI: 10.1261/rna.044578.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/21/2014] [Indexed: 05/31/2023]
Abstract
G-quadruplexes are widespread four-stranded structures that are adopted by G-rich regions of both DNA and RNA and are involved in essential biological processes such as mRNA translation. They are formed by the stacking of two or more G-quartets that are linked together by three loops. Although the maximal loop length is usually fixed to 7 nt in most G-quadruplex-predicting software, it has already been demonstrated that artificial DNA G-quadruplexes containing two distal loops that are limited to 1 nt each and a central loop up to 30 nt long are likely to form in vitro. This report demonstrates that such structures possessing a long central loop are actually found in the 5'-UTRs of human mRNAs. Firstly, 1453 potential G-quadruplex-forming sequences (PG4s) were identified through a bioinformatic survey that searched for sequences respecting the requirement for two 1-nt long distal loops and a long central loop of 2-90 nt in length. Secondly, in vitro in-line probing experiments confirmed and characterized the folding of eight candidates possessing central loops of 10-70 nt long. Finally, the biological effect of several G-quadruplexes with a long central loop on mRNA expression was studied in cellulo using a luciferase gene reporter assay. Clearly, the actual definition of G-quadruplex-forming sequences is too conservative and must be expanded to include the long central loop. This greatly expands the number of expected PG4s in the transcriptome. Consideration of these new candidates might aid in elucidating the potentially important biological implications of the G-quadruplex structure.
Collapse
Affiliation(s)
- Rachel Jodoin
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada J1E 4K8
| | - Lubos Bauer
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada J1E 4K8
| | - Jean-Michel Garant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada J1E 4K8
| | - Abdelhamid Mahdi Laaref
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada J1E 4K8
| | - Francis Phaneuf
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada J1E 4K8
| | - Jean-Pierre Perreault
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada J1E 4K8
| |
Collapse
|
37
|
Frees S, Menendez C, Crum M, Bagga PS. QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs. Hum Genomics 2014; 8:8. [PMID: 24885782 PMCID: PMC4017754 DOI: 10.1186/1479-7364-8-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/21/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Nucleic acids containing guanine tracts can form quadruplex structures via non-Watson-Crick base pairing. Formation of G-quadruplexes is associated with the regulation of important biological functions such as transcription, genetic instability, DNA repair, DNA replication, epigenetic mechanisms, regulation of translation, and alternative splicing. G-quadruplexes play important roles in human diseases and are being considered as targets for a variety of therapies. Identification of functional G-quadruplexes and the study of their overall distribution in genomes and transcriptomes is an important pursuit. Traditional computational methods map sequence motifs capable of forming G-quadruplexes but have difficulty in distinguishing motifs that occur by chance from ones which fold into G-quadruplexes. RESULTS We present Quadruplex forming 'G'-rich sequences (QGRS)-Conserve, a computational method for calculating motif conservation across exomes and supports filtering to provide researchers with more precise methods of studying G-quadruplex distribution patterns. Our method quantitatively evaluates conservation between quadruplexes found in homologous nucleotide sequences based on several motif structural characteristics. QGRS-Conserve also efficiently manages overlapping G-quadruplex sequences such that the resulting datasets can be analyzed effectively. CONCLUSIONS We have applied QGRS-Conserve to identify a large number of G-quadruplex motifs in the human exome conserved across several mammalian and non-mammalian species. We have successfully identified multiple homologs of many previously published G-quadruplexes that play post-transcriptional regulatory roles in human genes. Preliminary large-scale analysis identified many homologous G-quadruplexes in the 5'- and 3'-untranslated regions of mammalian species. An expectedly smaller set of G-quadruplex motifs was found to be conserved across larger phylogenetic distances. QGRS-Conserve provides means to build datasets that can be filtered and categorized in a variety of biological dimensions for more targeted studies in order to better understand the roles that G-quadruplexes play.
Collapse
Affiliation(s)
- Scott Frees
- Department of Computer Science, Ramapo College of New Jersey, 505 Ramapo Valley Road, Mahwah, NJ 08807, USA
| | - Camille Menendez
- Department of Bioinformatics, Ramapo College of New Jersey, 505 Ramapo Valley Road, Mahwah, NJ 08807, USA
| | - Matt Crum
- Department of Bioinformatics, Ramapo College of New Jersey, 505 Ramapo Valley Road, Mahwah, NJ 08807, USA
| | - Paramjeet S Bagga
- Department of Bioinformatics, Ramapo College of New Jersey, 505 Ramapo Valley Road, Mahwah, NJ 08807, USA
| |
Collapse
|
38
|
Nakano SI, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 2013; 114:2733-58. [PMID: 24364729 DOI: 10.1021/cr400113m] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
39
|
Zhu H, Xiao S, Liang H. Structural dynamics of human telomeric G-quadruplex loops studied by molecular dynamics simulations. PLoS One 2013; 8:e71380. [PMID: 23951152 PMCID: PMC3738534 DOI: 10.1371/journal.pone.0071380] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/30/2013] [Indexed: 11/18/2022] Open
Abstract
Loops which are linkers connecting G-strands and supporting the G-tetrad core in G-quadruplex are important for biological roles of G-quadruplexes. TTA loop is a common sequence which mainly resides in human telomeric DNA (hTel) G-quadruplex. A series of molecular dynamics (MD) simulations were carried out to investigate the structural dynamics of TTA loops. We found that (1) the TA base pair formed in TTA loops are very stable, the occupied of all hydrogen bonds are more than 0.95. (2) The TA base pair makes the adjacent G-quartet more stable than others. (3) For the edgewise loop and the diagonal loop, most loop bases are stacking with others, only few bases have considerable freedom. (4) The stabilities of these stacking structures are distinct. Part of the loops, especially TA base pairs, and bases stacking with the G-quartet, maintain certain stable conformations in the simulation, but other parts, like TT and TA stacking structures, are not stable enough. For the first time, spontaneous conformational switches of TTA edgewise loops were observed in our long time MD simulations. (5) For double chain reversal loop, it is really hard to maintain a stable conformation in the long time simulation under present force fields (parm99 and parmbsc0), as it has multiple conformations with similar free energies.
Collapse
Affiliation(s)
- Hong Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
40
|
Abstract
This review summarizes the results of structural studies carried out with analogs of G-quadruplexes built from natural nucleotides. Several dozens of base-, sugar-, and phosphate derivatives of the biological building blocks have been incorporated into more than 50 potentially quadruplex forming DNA and RNA oligonucleotides and the stability and folding topology of the resultant intramolecular, bimolecular and tetramolecular architectures characterized. The TG4T, TG5T, the 15 nucleotide-long thrombin binding aptamer, and the human telomere repeat AG3(TTAG3)3 sequences were modified in most cases, and four guanine analogs can be noted as being particularly useful in structural studies. These are the fluorescent 2-aminopurine, the 8-bromo-, and 8-methylguanines, and the hypoxanthine. The latter three analogs stabilize a given fold in a mixture of structures making possible accurate structural determinations by circular dichroism and nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Janos Sagi
- a Rimstone Laboratory , RLI, 29 Lancaster Way, Cheshire , CT , 06410 , USA
| |
Collapse
|
41
|
Pagano B, Randazzo A, Fotticchia I, Novellino E, Petraccone L, Giancola C. Differential scanning calorimetry to investigate G-quadruplexes structural stability. Methods 2013; 64:43-51. [PMID: 23500655 DOI: 10.1016/j.ymeth.2013.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 01/20/2023] Open
Abstract
Differential Scanning Calorimetry (DSC) is a straightforward methodology to characterize the energetics of thermally-induced transitions of DNA and other biological macromolecules. Therefore, DSC has been used to study the thermodynamic stability of several nucleic acids structures. G-quadruplexes are among the most important non-canonical nucleic acid architectures that are receiving great consideration. This article reports examples on the contribution of DSC to the knowledge of G-quadruplex structures. The selected case studies show the potential of this method in investigating the structure stability of G-quadruplex forming nucleic acids, and in providing information on their structural complexity. Indeed, DSC can determine thermodynamic parameters of G-quadruplex folding/unfolding processes, but it can also be useful to reveal the formation of multiple conformations or the presence of intermediate states along the unfolding pathway, and to evaluate the impact of chemical modifications on their structural stability. This article aims to show that DSC is an important complementary methodology to structural techniques, such as NMR and X-ray crystallography, in the study of G-quadruplex forming nucleic acids.
Collapse
Affiliation(s)
- Bruno Pagano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Smestad J, Maher LJ. Ion-dependent conformational switching by a DNA aptamer that induces remyelination in a mouse model of multiple sclerosis. Nucleic Acids Res 2013; 41:1329-42. [PMID: 23175609 PMCID: PMC3553947 DOI: 10.1093/nar/gks1093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We recently reported that a guanosine-rich 40-mer DNA aptamer (LJM-3064) mediates remyelination in the Theiler's murine encephalomyelitis virus mouse model of multiple sclerosis. Here, we characterize the G-quadruplex forms of this aptamer in vitro, and demonstrate using circular dichroism spectroscopy that LJM-3064 undergoes a monovalent ion-dependent conformational switch. In the presence of sodium ions and no potassium ions, LJM-3064 adopts an antiparallel-stranded G-quadruplex structure. When presented with low concentrations of potassium ions in a buffer that mimics the composition of interstitial fluid and blood plasma, LJM-3064 rapidly switches to a parallel-stranded G-quadruplex conformation, which is presumably the physiologically active folded form. We characterize these conformational states using dimethyl sulfate reactivity studies and Bal 31 nuclease probing. Our analysis indicates that only the 5'-terminal 26 nucleotides are involved in G-quadruplex formation. Thermodynamic characterization of LJM-3064 at physiologically relevant ion concentrations reveals the G-quadruplex to be metastable at human body temperature. These data provide important structural and thermodynamic insights that may be valuable in optimizing LJM-3064 as a therapeutic remyelinating agent.
Collapse
Affiliation(s)
- John Smestad
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
43
|
Rode AB, Endoh T, Tateishi-Karimata H, Takahashi S, Sugimoto N. Real-time monitoring of DNA hybridization kinetics on living cell surfaces. Chem Commun (Camb) 2013; 49:8444-6. [DOI: 10.1039/c3cc42990c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Fujimoto T, Nakano SI, Sugimoto N, Miyoshi D. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions. J Phys Chem B 2012; 117:963-72. [PMID: 23153339 DOI: 10.1021/jp308402v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.
Collapse
Affiliation(s)
- Takeshi Fujimoto
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
45
|
Zhang D, Shen H, Li G, Zhao B, Yu A, Zhao Q, Wang H. Specific and Sensitive Fluorescence Anisotropy Sensing of Guanine-Quadruplex Structures via a Photoinduced Electron Transfer Mechanism. Anal Chem 2012; 84:8088-94. [DOI: 10.1021/ac302320x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dapeng Zhang
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for Eco-Environmental
Sciences, Chinese Academy of Sciences,
Beijing, 100085, P. R. China
| | - Hujun Shen
- State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R.
China
| | - Guohui Li
- State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R.
China
| | - Bailin Zhao
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for Eco-Environmental
Sciences, Chinese Academy of Sciences,
Beijing, 100085, P. R. China
| | - Anchi Yu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R.
China
| | - Qiang Zhao
- Research Center for
Environmental
Science and Engineering, Shanxi University, Taiyuan, Shanxi Province, 030006, P. R. China
| | - Hailin Wang
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for Eco-Environmental
Sciences, Chinese Academy of Sciences,
Beijing, 100085, P. R. China
| |
Collapse
|
46
|
Miyoshi D, Fujimoto T, Sugimoto N. Molecular Crowding and Hydration Regulating of G-Quadruplex Formation. Top Curr Chem (Cham) 2012; 330:87-110. [DOI: 10.1007/128_2012_335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Dolinnaya NG, Yuminova AV, Spiridonova VA, Arutyunyan AM, Kopylov AM. Coexistence of G-quadruplex and duplex domains within the secondary structure of 31-mer DNA thrombin-binding aptamer. J Biomol Struct Dyn 2012; 30:524-31. [PMID: 22734515 DOI: 10.1080/07391102.2012.687518] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of thrombin-binding DNA aptamers have been developed during recent years. So far the structure of just a single one, 15-mer thrombin-binding aptamer (15TBA), has been solved as G-quadruplex. Structures of others, showing variable anticoagulation activities, are still not known yet. In this paper, we applied the circular dichroism and UV spectroscopy to characterize the temperature unfolding and conformational features of 31-mer thrombin-binding aptamer (31TBA), whose sequence has a potential to form G-quadruplex and duplex domains. Both structural domains were monitored independently in 31TBA and in several control oligonucleotides unable to form either the duplex region or the G-quadruplex region. The major findings are as follows: (1) both duplex and G-quadruplex domains coexist in intramolecular structure of 31TBA, (2) the formation of duplex domain does not change the fold of G-quadruplex, which is very similar to that of 15TBA, and (3) the whole 31TBA structure disrupts if either of two domains is not formed: the absence of duplex structure in 31TBA abolishes G-quadruplex, and vice versa, the lack of G-quadruplex folding results in disallowing the duplex domain.
Collapse
Affiliation(s)
- N G Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
48
|
Hu Q, Zhang K, Jin H, Chen X, Hu M, Wang S. Electrochemical investigation on the interaction of benzene sulfonyl 5-fluorouracil derivatives with double-stranded DNA and G-quadruplex DNA. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4582-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Trajkovski M, da Silva MW, Plavec J. Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J Am Chem Soc 2012; 134:4132-41. [PMID: 22303871 DOI: 10.1021/ja208483v] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multidimensional heteronuclear NMR study has demonstrated that a guanine-rich DNA oligonucleotide originating from the N-myc gene folds into G-quadruplex structures in the presence of K(+), NH(4)(+), and Na(+) ions. A monomeric G-quadruplex formed in K(+) ion containing solution exhibits three G-quartets and flexible propeller-type loops. The 3D structure with three single nucleotide loops represents a missing element in structures of parallel G-quadruplexes. The structural features together with the high temperature stability are suggestive of the specific biological role of G-quadruplex formation within the intron of the N-myc gene. An increase in K(+) ion and oligonucleotide concentrations resulted in transformation of the monomeric G-quadruplex into a dimeric form. The dimeric G-quadruplex exhibits six stacked G-quartets, parallel strand orientations, and propeller-type loops. A link between the third and the fourth G-quartets consists of two adenine residues that are flipped out to facilitate consecutive stacking of six G-quartets.
Collapse
Affiliation(s)
- Marko Trajkovski
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
50
|
Fujimoto T, Nakano SI, Miyoshi D, Sugimoto N. The effects of molecular crowding on the structure and stability of g-quadruplexes with an abasic site. J Nucleic Acids 2011; 2011:857149. [PMID: 21949901 PMCID: PMC3178115 DOI: 10.4061/2011/857149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 12/17/2022] Open
Abstract
Both cellular environmental factors and chemical modifications critically affect the properties of nucleic acids. However, the structure and stability of DNA containing abasic sites under cell-mimicking molecular crowding conditions remain unclear. Here, we investigated the molecular crowding effects on the structure and stability of the G-quadruplexes including a single abasic site. Structural analysis by circular dichroism showed that molecular crowding by PEG200 did not affect the topology of the G-quadruplex structure with or without an abasic site. Thermodynamic analysis further demonstrated that the degree of stabilization of the G-quadruplex by molecular crowding decreased with substitution of an abasic site for a single guanine. Notably, we found that the molecular crowding effects on the enthalpy change for G-quadruplex formation had a linear relationship with the abasic site effects depending on its position. These results are useful for predicting the structure and stability of G-quadruplexes with abasic sites in the cell-mimicking conditions.
Collapse
Affiliation(s)
- Takeshi Fujimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|