1
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
2
|
Meesilpavikkai K, Zhou Z, Kaikaew K, Phakham S, van der Spek PJ, Swagemakers S, Venter DJ, de Bie M, Schrijver B, Schliehe C, Kaiser F, Dalm VASH, van Hagen PM, Hirankarn N, IJspeert H, Dik WA. A patient-based murine model recapitulates human STAT3 gain-of-function syndrome. Clin Immunol 2024; 266:110312. [PMID: 39019339 DOI: 10.1016/j.clim.2024.110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
STAT3 gain-of-function (GOF) variants results in a heterogeneous clinical syndrome characterized by early onset immunodeficiency, multi-organ autoimmunity, and lymphoproliferation. While 191 documented cases with STAT3 GOF variants have been reported, the impact of individual variants on immune regulation and the broad clinical spectrum remains unclear. We developed a Stat3p.L387R mouse model, mirroring a variant identified in a family exhibiting common STAT3 GOF symptoms, and rare phenotypes including pulmonary hypertension and retinal vasculitis. In vitro experiments revealed increased STAT3 phosphorylation, nuclear migration, and DNA binding of the variant. Our Stat3p.L387R model displayed similar traits from previous Stat3GOF strains, such as splenomegaly and lymphadenopathy. Notably, Stat3p.L387R/+ mice exhibited heightened embryonic lethality compared to prior Stat3GOF/+ models and ocular abnormalities were observed. This research underscores the variant-specific pathology in Stat3p.L387R/+ mice, highlighting the ability to recapitulate human STAT3 GOF syndrome in patient-specific transgenic murine models. Additionally, such models could facilitate tailored treatment development.
Collapse
Affiliation(s)
- Kornvalee Meesilpavikkai
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Zijun Zhou
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kasiphak Kaikaew
- Center of Excellence in Alternative and Complementary Medicine of Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suphattra Phakham
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Deon J Venter
- Department of Pathology, Mater Health Services, Brisbane, Queensland, Australia
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabian Kaiser
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Woźniczka M, Sutradhar M, Chmiela M, Gonciarz W, Pająk M. Equilibria in the aqueous system of cobalt(II) based on 2-picolinehydroxamic acid and N-(2-hydroxybenzyl)phenylalanine and its ability to inhibit the propagation of cancer cells. J Inorg Biochem 2023; 249:112389. [PMID: 37806005 DOI: 10.1016/j.jinorgbio.2023.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Mixed-ligand complexes of cobalt(II) with two bioligands, viz. 2-picolinehydroxamic acid and the reduced Schiff base N-(2-hydroxybenzyl)phenylalanine, were studied in aqueous solution by potentiometry and UV-Vis spectroscopic analysis. The coordination mode of the complexes and their stability were determined and compared to their parent species. Stacking interactions between the rings present in the ligands influence the stability of the complexes. Also, UV-Vis spectroscopy revealed that the stacking interactions affected the intercalation of DNA and mixed-ligand complexes. The in vitro anticancer activity of the free ligand 2-picolinehydroxamic acid and the complexes was tested against cervical and gastric human adenocarcinoma epithelial cell lines. At concentrations of 0.06 and 0.11 mM, the mixed-ligand structures showed the ability to reduce gastric cancer cells with no inhibitory effect on mouse fibroblasts. The cytotoxic effect was accompanied by damage to the cell nuclei, which may confirm that the complexes demonstrate effective binding to DNA. No determination of minimal inhibitory and bactericidal/fungicidal concentrations against the test organisms was possible at higher complex concentrations due to precipitation.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Manas Sutradhar
- Faculdade de Engenharia, Universidade Lusófona - Centro Universitário de Lisboa, Campo Grande 376, Lisboa 1749-024, Portugal; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Ghoshal M, Bechtel TD, Gibbons JG, McLandsborough L. Adaptive laboratory evolution of Salmonella enterica in acid stress. Front Microbiol 2023; 14:1285421. [PMID: 38033570 PMCID: PMC10687551 DOI: 10.3389/fmicb.2023.1285421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Adaptive laboratory evolution (ALE) studies play a crucial role in understanding the adaptation and evolution of different bacterial species. In this study, we have investigated the adaptation and evolution of Salmonella enterica serovar Enteritidis to acetic acid using ALE. Materials and methods Acetic acid concentrations below the minimum inhibitory concentration (sub-MIC) were used. Four evolutionary lineages (EL), namely, EL1, EL2, EL3, and EL4, of S. Enteritidis were developed, each demonstrating varying levels of resistance to acetic acid. Results The acetic acid MIC of EL1 remained constant at 27 mM throughout 70 days, while the MIC of EL2, EL3, and EL4 increased throughout the 70 days. EL4 was adapted to the highest concentration of acetic acid (30 mM) and demonstrated the highest increase in its MIC against acetic acid throughout the study, reaching an MIC of 35 mM on day 70. The growth rates of the evolved lineages increased over time and were dependent on the concentration of acetic acid used during the evolutionary process. EL4 had the greatest increase in growth rate, reaching 0.33 (h-1) after 70 days in the presence of 30 mM acetic acid as compared to EL1, which had a growth rate of 0.2 (h-1) after 70 days with no exposure to acetic acid. Long-term exposure to acetic acid led to an increased MIC of human antibiotics such as ciprofloxacin and meropenem against the S. enterica evolutionary lineages. The MIC of ciprofloxacin for EL1 stayed constant at 0.016 throughout the 70 days while that of EL4 increased to 0.047. Bacterial whole genome sequencing revealed single-nucleotide polymorphisms in the ELs in various genes known to be involved in S. enterica virulence, pathogenesis, and stress response including phoP, phoQ, and fhuA. We also observed genome deletions in some of the ELs as compared to the wild-type S. Enteritidis which may have contributed to the bacterial acid adaptation. Discussion This study highlights the potential for bacterial adaptation and evolution under environmental stress and underscores the importance of understanding the development of cross resistance to antibiotics in S. enterica populations. This study serves to enhance our understanding of the pathogenicity and survival strategies of S. enterica under acetic acid stress.
Collapse
Affiliation(s)
- Mrinalini Ghoshal
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Tyler D. Bechtel
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
5
|
Dai L, Zhang J, Wang X, Yang X, Pan F, Yang L, Zhao Y. Protein DEK and DTA Aptamers: Insight Into the Interaction Mechanisms and the Computational Aptamer Design. Front Mol Biosci 2022; 9:946480. [PMID: 35928230 PMCID: PMC9345330 DOI: 10.3389/fmolb.2022.946480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
By blocking the DEK protein, DEK-targeted aptamers (DTAs) can reduce the formation of neutrophil extracellular traps (NETs) to reveal a strong anti-inflammatory efficacy in rheumatoid arthritis. However, the poor stability of DTA has greatly limited its clinical application. Thus, in order to design an aptamer with better stability, DTA was modified by methoxy groups (DTA_OMe) and then the exact DEK–DTA interaction mechanisms were explored through theoretical calculations. The corresponding 2′-OCH3-modified nucleotide force field was established and the molecular dynamics (MD) simulations were performed. It was proved that the 2′-OCH3-modification could definitely enhance the stability of DTA on the premise of comparative affinity. Furthermore, the electrostatic interaction contributed the most to the binding of DEK–DTA, which was the primary interaction to maintain stability, in addition to the non-specific interactions between positively-charged residues (e.g., Lys and Arg) of DEK and the negatively-charged phosphate backbone of aptamers. The H-bond network analysis reminded that eight bases could be mutated to probably enhance the affinity of DTA_OMe. Therein, replacing the 29th base from cytosine to thymine of DTA_OMe was theoretically confirmed to be with the best affinity and even better stability. These research studies imply to be a promising new aptamer design strategy for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Lijun Dai
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Jiangnan Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Xiaonan Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Feng Pan
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
- *Correspondence: Longhua Yang, ; Yongxing Zhao,
| | - Yongxing Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China
- *Correspondence: Longhua Yang, ; Yongxing Zhao,
| |
Collapse
|
6
|
Liu XY, Zhang X, Yang JB, Wu CY, Wang Q, Lu ZL, Tang Q. Multifunctional amphiphilic peptide dendrimer as nonviral gene vectors for effective cancer therapy via combined gene/photodynamic therapies. Colloids Surf B Biointerfaces 2022; 217:112651. [PMID: 35759892 DOI: 10.1016/j.colsurfb.2022.112651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
Gene therapy holds great promise for treatment of gene-associated diseases. However, safe and successful clinical application urgently requires further advancement of constructing efficient delivery systems. Herein, three amphiphilic peptide dendrimers (TTC-L-KRR/KKK/KHH), containing the natural amino acid residues (lysine K, arginine R, and histidine H) and AIE-based photosensitizer (tetraphenylethenethiophene modified cyanoacrylate, TTC) modified with alkyl chain (L), have been designed and prepared for improving therapeutic potency via the combination of gene therapy (GT) and photodynamic therapy (PDT). All three compounds possessed typical aggregation-induced emission (AIE) characteristics and ultralow critical micelle concentrations (CMCs). The liposomes consisting of amphiphilic peptide dendrimers and dioleoylphosphatidylethanolamine (DOPE) can effectively bind DNA into nanoparticles with appropriate sizes, regular morphology and good biocompatibility. Among them, liposomes TTC-L-KKK/DOPE exhibited the highest transfection efficiency up to 5.7-fold as compared with Lipo2000 in HeLa cells. Meanwhile, rapid endocytosis, successful endo/lysosomal escape, gene release and rapid nuclear delivery of DNA revealed the superiority of liposomes TTC-L-KKK/DOPE during gene delivery process. More importantly, efficient reactive oxygen species (ROS) generation by TTC-L-KKK/DOPE led to effective PDT, thus improving therapeutic potency via combining with p53 mediated-gene therapy. Our work brought novel insight and direction for the construction of bio-safe and bio-imaging liposome as the multifunctional nonviral gene vectors for the effective combined gene/photodynamic therapies.
Collapse
Affiliation(s)
- Xu-Ying Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing-Bo Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cheng-Yan Wu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qian Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Quan Tang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Caetano DLZ, Metzler R, Cherstvy AG, de Carvalho SJ. Adsorption of lysozyme into a charged confining pore. Phys Chem Chem Phys 2021; 23:27195-27206. [PMID: 34821240 DOI: 10.1039/d1cp03185f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several applications arise from the confinement of proteins on surfaces because their stability and biological activity are enhanced. It is also known that the way in which a protein adsorbs on the surface is important for its biological function since its active sites should not be obstructed. In this study, the adsorption properties of hen egg-white lysozyme, HEWL, into a negatively charged silica pore is examined by employing a coarse-grained model and constant-pH Monte Carlo simulations. The role of electrostatic interactions is taken into account via including the Debye-Hückel potentials into the Cα structure-based model. We evaluate the effects of pH, salt concentration, and pore radius on the protein preferential orientation and spatial distribution of its residues regarding the pore surface. By mapping the residues that stay closer to the pore surface, we find that the increase of pH leads to orientational changes of the adsorbed protein when the solution pH gets closer to the HEWL isoelectric point. Under these conditions, the pKa shift of these important residues caused by the adsorption into the charged confining surface results in a HEWL charge distribution that stabilizes the adsorption in the observed protein orientation. We compare our observations to the results of the pKa shift for HEWL available in the literature and to some experimental data.
Collapse
Affiliation(s)
- Daniel L Z Caetano
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, Brazil.,Center for Computational Engineering and Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Sidney J de Carvalho
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, Brazil.
| |
Collapse
|
8
|
Huang TC, Fischer WB. Sequence–function correlation of the transmembrane domains in NS4B of HCV using a computational approach. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Park JY, Kim HJ, Pathak C, Yoon HJ, Kim DH, Park SJ, Lee BJ. Induced DNA bending by unique dimerization of HigA antitoxin. IUCRJ 2020; 7:748-760. [PMID: 32695421 PMCID: PMC7340258 DOI: 10.1107/s2052252520006466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The bacterial toxin-antitoxin (TA) system regulates cell growth under various environmental stresses. Mycobacterium tuberculosis, the causative pathogen of tuberculosis (TB), has three HigBA type II TA systems with reverse gene organization, consisting of the toxin protein HigB and labile antitoxin protein HigA. Most type II TA modules are transcriptionally autoregulated by the antitoxin itself. In this report, we first present the crystal structure of the M. tuberculosis HigA3 antitoxin (MtHigA3) and MtHigA3 bound to its operator DNA complex. We also investigated the interaction between MtHigA3 and DNA using NMR spectroscopy. The MtHigA3 antitoxin structure is a homodimer that contains a structurally well conserved DNA-binding domain at the N-terminus and a dimerization domain at the C-terminus. Upon comparing the HigA homologue structures, a distinct difference was found in the C-terminal region that possesses the β-lid, and diverse orientations of two helix-turn-helix (HTH) motifs from HigA homologue dimers were observed. The structure of MtHigA3 bound to DNA reveals that the promoter DNA is bound to two HTH motifs of the MtHigA3 dimer presenting 46.5° bending, and the distance between the two HTH motifs of each MtHigA3 monomer was increased in MtHigA3 bound to DNA. The β-lid, which is found only in the tertiary structure of MtHigA3 among the HigA homologues, causes the formation of a tight dimerization network and leads to a unique arrangement for dimer formation that is related to the curvature of the bound DNA. This work could contribute to the understanding of the HigBA system of M. tuberculosis at the atomic level and may contribute to the development of new antibiotics for TB treatment.
Collapse
Affiliation(s)
- Jin-Young Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jung Kim
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Chinar Pathak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Leicester Institute of Structural and Chemical Biology, University of Leicester, United Kingdom
| | - Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 534-2 Yeonsu-dong,Yeonsu-gu, Incheon 13120, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Li X, Lalić J, Baeza-Centurion P, Dhar R, Lehner B. Changes in gene expression predictably shift and switch genetic interactions. Nat Commun 2019; 10:3886. [PMID: 31467279 PMCID: PMC6715729 DOI: 10.1038/s41467-019-11735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022] Open
Abstract
Non-additive interactions between mutations occur extensively and also change across conditions, making genetic prediction a difficult challenge. To better understand the plasticity of genetic interactions (epistasis), we combine mutations in a single protein performing a single function (a transcriptional repressor inhibiting a target gene). Even in this minimal system, genetic interactions switch from positive (suppressive) to negative (enhancing) as the expression of the gene changes. These seemingly complicated changes can be predicted using a mathematical model that propagates the effects of mutations on protein folding to the cellular phenotype. More generally, changes in gene expression should be expected to alter the effects of mutations and how they interact whenever the relationship between expression and a phenotype is nonlinear, which is the case for most genes. These results have important implications for understanding genotype-phenotype maps and illustrate how changes in genetic interactions can often—but not always—be predicted by hierarchical mechanistic models. Non-additive genetic interactions are plastic and can complicate genetic prediction. Here, using deep mutagenesis of the lambda repressor, Li et al. reveal that changes in gene expression can alter the strength and direction of genetic interactions between mutations in many genes and develop mathematical models for predicting them.
Collapse
Affiliation(s)
- Xianghua Li
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Jasna Lalić
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Pablo Baeza-Centurion
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Riddhiman Dhar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Pg. Luis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
11
|
Munshi S, Gopi S, Asampille G, Subramanian S, Campos LA, Atreya HS, Naganathan AN. Tunable order-disorder continuum in protein-DNA interactions. Nucleic Acids Res 2019; 46:8700-8709. [PMID: 30107436 PMCID: PMC6158747 DOI: 10.1093/nar/gky732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/31/2018] [Indexed: 11/23/2022] Open
Abstract
DNA-binding protein domains (DBDs) sample diverse conformations in equilibrium facilitating the search and recognition of specific sites on DNA over millions of energetically degenerate competing sites. We hypothesize that DBDs have co-evolved to sense and exploit the strong electric potential from the array of negatively charged phosphate groups on DNA. We test our hypothesis by employing the intrinsically disordered DBD of cytidine repressor (CytR) as a model system. CytR displays a graded increase in structure, stability and folding rate on increasing the osmolarity of the solution that mimics the non-specific screening by DNA phosphates. Electrostatic calculations and an Ising-like statistical mechanical model predict that CytR exhibits features of an electric potential sensor modulating its dimensions and landscape in a unique distance-dependent manner, while DNA plays the role of a non-specific macromolecular chaperone. Accordingly, CytR binds its natural half-site faster than the diffusion-controlled limit and even random DNA conforming to an electrostatic-steering binding mechanism. Our work unravels for the first time the synergistic features of a natural electrostatic potential sensor, a novel binding mechanism driven by electrostatic frustration and disorder, and the role of DNA in promoting distance-dependent protein structural transitions critical for switching between specific and non-specific DNA-binding modes.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Luis A Campos
- National Biotechnology Center, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
12
|
Semenyuk P, Muronetz V. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. Int J Mol Sci 2019; 20:E1252. [PMID: 30871103 PMCID: PMC6429204 DOI: 10.3390/ijms20051252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Interaction of proteins with charged macromolecules is involved in many processes in cells. Firstly, there are many naturally occurred charged polymers such as DNA and RNA, polyphosphates, sulfated glycosaminoglycans, etc., as well as pronouncedly charged proteins such as histones or actin. Electrostatic interactions are also important for "generic" proteins, which are not generally considered as polyanions or polycations. Finally, protein behavior can be altered due to post-translational modifications such as phosphorylation, sulfation, and glycation, which change a local charge of the protein region. Herein we review molecular modeling for the investigation of such interactions, from model polyanions and polycations to unfolded proteins. We will show that electrostatic interactions are ubiquitous, and molecular dynamics simulations provide an outstanding opportunity to look inside binding and reveal the contribution of electrostatic interactions. Since a molecular dynamics simulation is only a model, we will comprehensively consider its relationship with the experimental data.
Collapse
Affiliation(s)
- Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
13
|
Korolev N, Lyubartsev AP, Nordenskiöld L. A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure. Sci Rep 2018; 8:1543. [PMID: 29367745 PMCID: PMC5784010 DOI: 10.1038/s41598-018-19875-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chromatin condensation is driven by the energetically favourable interaction between nucleosome core particles (NCPs). The close NCP-NCP contact, stacking, is a primary structural element of all condensed states of chromatin in vitro and in vivo. However, the molecular structure of stacked nucleosomes as well as the nature of the interactions involved in its formation have not yet been systematically studied. Here we undertake an investigation of both the structural and physico-chemical features of NCP structure and the NCP-NCP stacking. We introduce an “NCP-centred” set of parameters (NCP-NCP distance, shift, rise, tilt, and others) that allows numerical characterisation of the mutual positions of the NCPs in the stacking and in any other structures formed by the NCP. NCP stacking in more than 140 published NCP crystal structures were analysed. In addition, coarse grained (CG) MD simulations modelling NCP condensation was carried out. The CG model takes into account details of the nucleosome structure and adequately describes the long range electrostatic forces as well as excluded volume effects acting in chromatin. The CG simulations showed good agreement with experimental data and revealed the importance of the H2A and H4 N-terminal tail bridging and screening as well as tail-tail correlations in the stacked nucleosomes.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
14
|
Kar P, Cherstvy AG, Metzler R. Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation. Phys Chem Chem Phys 2018; 20:7931-7946. [DOI: 10.1039/c7cp06922g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. We here uncover the implications of colocalisation of protein production and DNA binding sites via computer simulations.
Collapse
Affiliation(s)
- Prathitha Kar
- Dept of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bengaluru
- India
- Institute for Physics & Astronomy
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
15
|
Wang WX, Wu Y, Li HW. Regulation on the aggregation-induced emission (AIE) of DNA-templated silver nanoclusters by BSA and its hydrolysates. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Liu L, Cherstvy AG, Metzler R. Facilitated Diffusion of Transcription Factor Proteins with Anomalous Bulk Diffusion. J Phys Chem B 2017; 121:1284-1289. [DOI: 10.1021/acs.jpcb.6b12413] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Liu
- CAS
Key Laboratory of Soft Matter Chemistry, Dept. of Polymer Science
and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
17
|
Peng B, Muthukumar M. Modeling competitive substitution in a polyelectrolyte complex. J Chem Phys 2016; 143:243133. [PMID: 26723618 DOI: 10.1063/1.4936256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution.
Collapse
Affiliation(s)
- B Peng
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - M Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
18
|
Niranjani G, Murugan R. Theory on the mechanism of site-specific DNA-protein interactions in the presence of traps. Phys Biol 2016; 13:046003. [PMID: 27434174 DOI: 10.1088/1478-3975/13/4/046003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The speed of site-specific binding of transcription factor (TFs) proteins with genomic DNA seems to be strongly retarded by the randomly occurring sequence traps. Traps are those DNA sequences sharing significant similarity with the original specific binding sites (SBSs). It is an intriguing question how the naturally occurring TFs and their SBSs are designed to manage the retarding effects of such randomly occurring traps. We develop a simple random walk model on the site-specific binding of TFs with genomic DNA in the presence of sequence traps. Our dynamical model predicts that (a) the retarding effects of traps will be minimum when the traps are arranged around the SBS such that there is a negative correlation between the binding strength of TFs with traps and the distance of traps from the SBS and (b) the retarding effects of sequence traps can be appeased by the condensed conformational state of DNA. Our computational analysis results on the distribution of sequence traps around the putative binding sites of various TFs in mouse and human genome clearly agree well the theoretical predictions. We propose that the distribution of traps can be used as an additional metric to efficiently identify the SBSs of TFs on genomic DNA.
Collapse
Affiliation(s)
- G Niranjani
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
19
|
Lange M, Kochugaeva M, Kolomeisky AB. Protein search for multiple targets on DNA. J Chem Phys 2016; 143:105102. [PMID: 26374061 DOI: 10.1063/1.4930113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein-DNA interactions are crucial for all biological processes. One of the most important fundamental aspects of these interactions is the process of protein searching and recognizing specific binding sites on DNA. A large number of experimental and theoretical investigations have been devoted to uncovering the molecular description of these phenomena, but many aspects of the mechanisms of protein search for the targets on DNA remain not well understood. One of the most intriguing problems is the role of multiple targets in protein search dynamics. Using a recently developed theoretical framework we analyze this question in detail. Our method is based on a discrete-state stochastic approach that takes into account most relevant physical-chemical processes and leads to fully analytical description of all dynamic properties. Specifically, systems with two and three targets have been explicitly investigated. It is found that multiple targets in most cases accelerate the search in comparison with a single target situation. However, the acceleration is not always proportional to the number of targets. Surprisingly, there are even situations when it takes longer to find one of the multiple targets in comparison with the single target. It depends on the spatial position of the targets, distances between them, average scanning lengths of protein molecules on DNA, and the total DNA lengths. Physical-chemical explanations of observed results are presented. Our predictions are compared with experimental observations as well as with results from a continuum theory for the protein search. Extensive Monte Carlo computer simulations fully support our theoretical calculations.
Collapse
Affiliation(s)
- Martin Lange
- Johannes Gutenberg University, Mainz 55122, Germany
| | - Maria Kochugaeva
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
20
|
Jiang Q, Yue D, Nie Y, Xu X, He Y, Zhang S, Wagner E, Gu Z. Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery. Mol Pharm 2016; 13:1809-21. [DOI: 10.1021/acs.molpharmaceut.5b00967] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Jiang
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Dong Yue
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Yu Nie
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Xianghui Xu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Yiyan He
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Shiyong Zhang
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Ernst Wagner
- Center
for Drug Research, Department of Pharmacy, Pharmaceutical Biology-Biotechnology,
and Center for NanoScience (CeNS), Ludwig-Maximilians-Universitat, Butenandtstrasse 5-13, D-81377, Munich, Germany
| | - Zhongwei Gu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| |
Collapse
|
21
|
Dutta S, Jho YS. Adsorption of highly charged Gaussian polyelectrolytes onto oppositely charged surfaces. J Chem Phys 2016; 144:094902. [PMID: 26957178 DOI: 10.1063/1.4942023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In many biological processes highly charged biopolymers are adsorbed onto oppositely charged surfaces of macroions and membranes. They form strongly correlated structures close to the surface which cannot be explained by the conventional Poisson-Boltzmann theory. In this work strong coupling theory is used to study the adsorption of highly charged Gaussian polyelectrolytes. Two cases of adsorptions are considered, when the Gaussian polyelectrolytes are confined (a) by one charged wall, and (b) between two charged walls. The effects of salt and the geometry of the polymers on their adsorption-depletion transitions in the strong coupling regime are discussed.
Collapse
Affiliation(s)
- Sandipan Dutta
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784, South Korea
| | - Y S Jho
- Department of Physics, Asia Pacific Center for Theoretical Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
22
|
Yusufaly TI, Li Y, Singh G, Olson WK. Arginine-phosphate salt bridges between histones and DNA: intermolecular actuators that control nucleosome architecture. J Chem Phys 2015; 141:165102. [PMID: 25362343 DOI: 10.1063/1.4897978] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Structural bioinformatics and van der Waals density functional theory are combined to investigate the mechanochemical impact of a major class of histone-DNA interactions, namely, the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. Principal component analysis reveals that the configurational fluctuations of the sugar-phosphate backbone display sequence-specific directionality and variability, and clustering of nucleosome crystal structures identifies two major salt-bridge configurations: a monodentate form in which the arginine end-group guanidinium only forms one hydrogen bond with the phosphate, and a bidentate form in which it forms two. Density functional theory calculations highlight that the combination of sequence, denticity, and salt-bridge positioning enables the histones to apply a tunable mechanochemical stress to the DNA via precise and specific activation of backbone deformations. The results suggest that selection for specific placements of van der Waals contacts, with high-precision control of the spatial distribution of intermolecular forces, may serve as an underlying evolutionary design principle for the structure and function of nucleosomes, a conjecture that is corroborated by previous experimental studies.
Collapse
Affiliation(s)
- Tahir I Yusufaly
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Yun Li
- Department of Chemistry and Biochemistry, Delaware Valley College, Doylestown, Pennsylvania 18901, USA
| | - Gautam Singh
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
23
|
O' Lee DJ, Wynveen A, Albrecht T, Kornyshev AA. Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignments. J Chem Phys 2015; 142:045101. [PMID: 25638008 DOI: 10.1063/1.4905291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homologous gene shuffling between DNA molecules promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition has remained an unsolved puzzle of molecular biology. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has, however, been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular, electrostatic ones. In this proposed mechanism, sequences that have the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts. The difference between the two energies is termed the "recognition energy." Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding is termed the "recognition well." We find there is a recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations and consider more rigorously the optimization of the orientations of the fragments about their long axes upon calculating these recognition energies. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. When torsional flexibility of the DNA molecules is introduced, we find excellent agreement between the analytical approximation and simulations.
Collapse
Affiliation(s)
- Dominic J O' Lee
- Department of Chemistry, Imperial College London, SW7 2AZ London, United Kingdom
| | - Aaron Wynveen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Tim Albrecht
- Department of Chemistry, Imperial College London, SW7 2AZ London, United Kingdom
| | - Alexei A Kornyshev
- Department of Chemistry, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
24
|
Huang JT, Wang T, Huang SR, Li X. Prediction of protein folding rates from simplified secondary structure alphabet. J Theor Biol 2015; 383:1-6. [PMID: 26247139 DOI: 10.1016/j.jtbi.2015.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/20/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Protein folding is a very complicated and highly cooperative dynamic process. However, the folding kinetics is likely to depend more on a few key structural features. Here we find that secondary structures can determine folding rates of only large, multi-state folding proteins and fails to predict those for small, two-state proteins. The importance of secondary structures for protein folding is ordered as: extended β strand > α helix > bend > turn > undefined secondary structure>310 helix > isolated β strand > π helix. Only the first three secondary structures, extended β strand, α helix and bend, can achieve a good correlation with folding rates. This suggests that the rate-limiting step of protein folding would depend upon the formation of regular secondary structures and the buckling of chain. The reduced secondary structure alphabet provides a simplified description for the machine learning applications in protein design.
Collapse
Affiliation(s)
- Jitao T Huang
- Department of Chemistry and National Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Titi Wang
- Department of Chemistry and National Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Shanran R Huang
- Department of Chemistry and National Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- Department of Chemistry and National Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Meyer S, Everaers R. Inferring coarse-grain histone-DNA interaction potentials from high-resolution structures of the nucleosome. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064101. [PMID: 25563807 DOI: 10.1088/0953-8984/27/6/064101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.
Collapse
Affiliation(s)
- Sam Meyer
- Université de Lyon, Laboratoire de Physique and Centre Blaise Pascal, Ecole normale supérieure de Lyon, UMR CNRS 5672, Lyon, France. Université de Lyon, INSA-Lyon, INRIA, LIRIS, CNRS UMR 5205, Lyon, France. Université de Lyon, Microbiologie Adaptation et Pathogénie, INSA-Lyon, CNRS UMR 5240, Lyon,France
| | | |
Collapse
|
26
|
Drillon G, Audit B, Argoul F, Arneodo A. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064102. [PMID: 25563930 DOI: 10.1088/0953-8984/27/6/064102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in the DNA sequence. At the smaller few hundred bp scale of gene promoters, CpG-rich promoters of housekeeping genes found nearby ubiquitous MaOris as well as CpG-poor promoters of tissue-specific genes found nearby cell-type-specific MaOris, both correspond to in vivo NFRs that are not coded as nucleosome-excluding-energy barriers. Whereas the former promoters are likely to correspond to high occupancy transcription factor binding regions, the latter are an illustration that gene regulation in human is typically cell-type-specific.
Collapse
Affiliation(s)
- Guénola Drillon
- Université de Lyon, F-69000 Lyon, France. Laboratoire de Physique, CNRS UMR 5672, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | | | | | | |
Collapse
|
27
|
Role of indirect readout mechanism in TATA box binding protein-DNA interaction. J Comput Aided Mol Des 2015; 29:283-95. [PMID: 25575717 DOI: 10.1007/s10822-014-9828-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.
Collapse
|
28
|
Kolesnikov AL, Budkov YA, Nogovitsyn EA. Coarse-Grained Model of Glycosaminoglycans in Aqueous Salt Solutions. A Field-Theoretical Approach. J Phys Chem B 2014; 118:13037-49. [DOI: 10.1021/jp503749a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrei L. Kolesnikov
- Institut
fur Nichtklassische Chemie e.V., Universität Leipzig, 04109 Leipzig, Germany
- Department
of Physics, Ivanovo State University, Ermaka 39, 153025 Ivanovo, Russia
| | - Yurij A. Budkov
- Institute
of Solution Chemistry, Russian Academy of Sciences 153045, Academicheskaya 1, Ivanovo, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | | |
Collapse
|
29
|
Cherstvy AG, Teif VB. Electrostatic effect of H1-histone protein binding on nucleosome repeat length. Phys Biol 2014; 11:044001. [PMID: 25078656 DOI: 10.1088/1478-3975/11/4/044001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
30
|
|
31
|
de Carvalho SJ, Metzler R, Cherstvy AG. Critical adsorption of polyelectrolytes onto charged Janus nanospheres. Phys Chem Chem Phys 2014; 16:15539-50. [DOI: 10.1039/c4cp02207f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The conditions of critical polyelectrolyte adsorption onto spherical charged Janus nano-particles are exploited by Monte-Carlo computer simulations and theoretically.
Collapse
Affiliation(s)
| | - Ralf Metzler
- Institute for Physics and Astronomy
- University of Potsdam
- Potsdam-Golm, Germany
- Department of Physics
- Tampere University of Technology
| | - Andrey G. Cherstvy
- Institute for Physics and Astronomy
- University of Potsdam
- Potsdam-Golm, Germany
| |
Collapse
|
32
|
Quan G, Zhu Y, Tong C. The numerical study of the adsorption of bi-disperse flexible polyelectrolytes onto the surface of two charged objects. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Using protein granularity to extract the protein sequence features. J Theor Biol 2013; 331:48-53. [DOI: 10.1016/j.jtbi.2013.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 11/21/2022]
|
34
|
Cherstvy AG, Teif VB. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging. J Biol Phys 2013; 39:363-85. [PMID: 23860914 PMCID: PMC3689366 DOI: 10.1007/s10867-012-9294-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/11/2012] [Indexed: 11/26/2022] Open
Abstract
Chromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specific protein-bridging interactions facilitate long-range pairing of chromatin fragments, while for closely-juxtaposed fibers electrostatic forces can in addition yield fine-tuned structure-specific recognition and pairing. These pairing effects can account for some features observed for mitotic and inter-phase chromatins.
Collapse
Affiliation(s)
- A G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.
| | | |
Collapse
|
35
|
Veksler A, Kolomeisky AB. Speed-selectivity paradox in the protein search for targets on DNA: is it real or not? J Phys Chem B 2013; 117:12695-701. [PMID: 23316873 DOI: 10.1021/jp311466f] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein search for targets on DNA starts all major biological processes. Although significant experimental and theoretical efforts have been devoted to investigation of these phenomena, mechanisms of protein-DNA interactions during the search remain not fully understood. One of the most surprising observations is known as a speed-selectivity paradox. It suggests that experimentally observed fast findings of targets require smooth protein-DNA binding potentials, while the stability of the specific protein-DNA complex imposes a large energy gap which should significantly slow down the protein molecule. We developed a discrete-state stochastic approach that allowed us to investigate explicitly target search phenomena and to analyze the speed-selectivity paradox. A general dynamic phase diagram for different search regimes is constructed. The effect of the target position on search dynamics is investigated. Using experimentally observed parameters, it is found that slow protein diffusion on DNA does not lead to an increase in the search times. Thus, our theory resolves the speed-selectivity paradox by arguing that it does not exist. It is just an artifact of using approximate continuum theoretical models for analyzing protein search in the region of the parameter space beyond the range of validity of these models. In addition, the presented method, for the first time, provides an explanation for fast target search at the level of single protein molecules. Our theoretical predictions agree with all available experimental observations, and extensive Monte Carlo computer simulations are performed to support analytical calculations.
Collapse
Affiliation(s)
- Alex Veksler
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | | |
Collapse
|
36
|
Strong and Weak Polyelectrolyte Adsorption onto Oppositely Charged Curved Surfaces. POLYELECTROLYTE COMPLEXES IN THE DISPERSED AND SOLID STATE I 2013. [DOI: 10.1007/12_2012_183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Regulation of the H4 tail binding and folding landscapes via Lys-16 acetylation. Proc Natl Acad Sci U S A 2012; 109:17857-62. [PMID: 22988066 DOI: 10.1073/pnas.1201805109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDP) are a broad class of proteins with relatively flat energy landscapes showing a high level of functional promiscuity, which are frequently regulated through posttranslational covalent modifications. Histone tails, which are the terminal segments of the histone proteins, are prominent IDPs that are implicated in a variety of signaling processes, which control chromatin organization and dynamics. Although a large body of work has been done on elucidating the roles of posttranslational modifications in functional regulation of IDPs, molecular mechanisms behind the observed behaviors are not fully understood. Using extensive atomistic molecular dynamics simulations, we found in this work that H4 tail mono-acetylation at LYS-16, which is a key covalent modification, induces a significant reorganization of the tail's conformational landscape, inducing partial ordering and enhancing the propensity for alpha-helical segments. Furthermore, our calculations of the potentials of mean force between the H4 tail and a DNA fragment indicate that contrary to the expectations based on simple electrostatic reasoning, the Lys-16 mono-acetylated H4 tail binds to DNA stronger than the unacetylated protein. Based on these results, we propose a molecular mechanism for the way Lys-16 acetylation might lead to experimentally observed disruption of compact chromatin fibers.
Collapse
|
38
|
Cherstvy AG, Winkler RG. Polyelectrolyte adsorption onto oppositely charged interfaces: image-charge repulsion and surface curvature. J Phys Chem B 2012; 116:9838-45. [PMID: 22794191 DOI: 10.1021/jp304980e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We analyze theoretically the influence of low-dielectric boundaries on the adsorption of flexible polyelectrolytes onto planar and spherical oppositely charged surfaces in electrolyte solutions. We rationalize to what extent polymer chains are depleted from adsorbing interfaces by repulsive image forces. We employ the WKB (Wentzel-Kramers-Brillouin) quantum mechanical method for the Green function of the Edwards equation to determine the adsorption equilibrium. Scaling relations are determined for the critical adsorption strength required to initiate polymer adsorption onto these low-dielectric supports. Image-force repulsion shifts the equilibrium toward the desorbed state, demanding larger surface charge densities and polyelectrolyte linear charge densities for the adsorption to take place. The effect is particularly pronounced for a planar interface in a low-salt regime, where a dramatic change in the scaling behavior for the adsorption-desorption transition is predicted. For the adsorbed state, polymers with higher charge densities are displaced further from the interface by image-charge repulsions. We discuss relevant experimental evidence and argue about possible biological applications of the results.
Collapse
Affiliation(s)
- A G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | |
Collapse
|
39
|
Kolomeisky AB, Veksler A. How to accelerate protein search on DNA: location and dissociation. J Chem Phys 2012; 136:125101. [PMID: 22462896 DOI: 10.1063/1.3697763] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the most important features of biological systems that controls their functioning is the ability of protein molecules to find and recognize quickly specific target sites on DNA. Although these phenomena have been studied extensively, detailed mechanisms of protein-DNA interactions during the search are still not well understood. Experiments suggest that proteins typically find their targets fast by combining three-dimensional and one-dimensional motions, and most of the searching time proteins are non-specifically bound to DNA. However these observations are surprising since proteins diffuse very slowly on DNA, and it seems that the observed fast search cannot be achieved under these conditions for single proteins. Here we propose two simple mechanisms that might explain some of these controversial observations. Using first-passage time analysis, it is shown explicitly that the search can be accelerated by changing the location of the target and by effectively irreversible dissociations of proteins. Our theoretical predictions are supported by Monte Carlo computer simulations.
Collapse
|
40
|
Jiménez-Balsa A, Pazos E, Martínez-Albardonedo B, Mascareñas JL, Vázquez ME. Temporary Electrostatic Impairment of DNA Recognition: Light-Driven DNA Binding of Peptide Dimers. Angew Chem Int Ed Engl 2012; 51:8825-9. [DOI: 10.1002/anie.201201627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Indexed: 12/18/2022]
|
41
|
Jiménez-Balsa A, Pazos E, Martínez-Albardonedo B, Mascareñas JL, Vázquez ME. Temporary Electrostatic Impairment of DNA Recognition: Light-Driven DNA Binding of Peptide Dimers. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Saiz L. The physics of protein-DNA interaction networks in the control of gene expression. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:193102. [PMID: 22516977 DOI: 10.1088/0953-8984/24/19/193102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein-DNA interaction networks play a central role in many fundamental cellular processes. In gene regulation, physical interactions and reactions among the molecular components together with the physical properties of DNA control how genes are turned on and off. A key player in all these processes is the inherent flexibility of DNA, which provides an avenue for long-range interactions between distal DNA elements through DNA looping. Such versatility enables multiple interactions and results in additional complexity that is remarkably difficult to address with traditional approaches. This topical review considers recent advances in statistical physics methods to study the assembly of protein-DNA complexes with loops, their effects in the control of gene expression, and their explicit application to the prototypical lac operon genetic system of the E. coli bacterium. In the last decade, it has been shown that the underlying physical properties of DNA looping can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including the balance between robustness and sensitivity of the induction process. These physical properties are largely dependent on the free energy of DNA looping, which accounts for DNA bending and twisting effects. These new physical methods have also been used in reverse to uncover the actual in vivo free energy of looping double-stranded DNA in living cells, which was not possible with existing experimental techniques. The results obtained for DNA looping by the lac repressor inside the E. coli bacterium showed a more malleable DNA than expected as a result of the interplay of the simultaneous presence of two distinct conformations of looped DNA.
Collapse
Affiliation(s)
- Leonor Saiz
- Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
43
|
The interplay of mutations and electronic properties in disease-related genes. Sci Rep 2012; 2:272. [PMID: 22355784 PMCID: PMC3280594 DOI: 10.1038/srep00272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 01/16/2012] [Indexed: 11/13/2022] Open
Abstract
Electronic properties of DNA are believed to play a crucial role in many phenomena in living organisms, for example the location of DNA lesions by base excision repair (BER) glycosylases and the regulation of tumor-suppressor genes such as p53 by detection of oxidative damage. However, the reproducible measurement and modelling of charge migration through DNA molecules at the nanometer scale remains a challenging and controversial subject even after more than a decade of intense efforts. Here we show, by analysing 162 disease-related genes from a variety of medical databases with a total of almost 20,000 observed pathogenic mutations, a significant difference in the electronic properties of the population of observed mutations compared to the set of all possible mutations. Our results have implications for the role of the electronic properties of DNA in cellular processes, and hint at the possibility of prediction, early diagnosis and detection of mutation hotspots.
Collapse
|
44
|
Chirgadze YN, Sivozhelezov VS, Polozov RV, Stepanenko VA, Ivanov VV. Recognition Rules for Binding of Homeodomains to Operator DNA. J Biomol Struct Dyn 2012; 29:715-31. [DOI: 10.1080/073911012010525019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Towards a molecular view of transcriptional control. Curr Opin Struct Biol 2012; 22:160-7. [PMID: 22296921 DOI: 10.1016/j.sbi.2012.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/21/2022]
Abstract
The accumulation of experimental data over recent years has fueled theoretical work on how transcription factors (TFs) search for and recognise their DNA target sites, how they interact with one another, or with other DNA-binding proteins, and how they cope with the compaction of DNA within bacterial nucleoids or within eukaryotic chromatin. Many models have been built to study the kinetic, thermodynamic and mechanistic aspects of these questions. In some cases they have resulted in a relatively clear consensus view, but a number of questions remain controversial. We present an overview of recent work, with an emphasis on models that provide, or can inspire, a better understanding of transcriptional control at a detailed molecular level.
Collapse
|
46
|
Cherstvy AG. Critical polyelectrolyte adsorption under confinement: planar slit, cylindrical pore, and spherical cavity. Biopolymers 2012; 97:311-7. [PMID: 22241107 DOI: 10.1002/bip.22023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/02/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023]
Abstract
We explore the properties of adsorption of flexible polyelectrolyte chains in confined spaces between the oppositely charged surfaces in three basic geometries. A method of approximate uniformly valid solutions for the Green function equation for the eigenfunctions of polymer density distributions is developed to rationalize the critical adsorption conditions. The same approach was implemented in our recent study for the "inverse" problem of polyelectrolyte adsorption onto a planar surface, and on the outer surface of rod-like and spherical obstacles. For the three adsorption geometries investigated, the theory yields simple scaling relations for the minimal surface charge density that triggers the chain adsorption, as a function of the Debye screening length and surface curvature. The encapsulation of polyelectrolytes is governed by interplay of the electrostatic attraction energy toward the adsorbing surface and entropic repulsion of the chain squeezed into a thin slit or small cavities. Under the conditions of surface-mediated confinement, substantially larger polymer linear charge densities are required to adsorb a polyelectrolyte inside a charged spherical cavity, relative to a cylindrical pore and to a planar slit (at the same interfacial surface charge density). Possible biological implications are discussed briefly in the end.
Collapse
Affiliation(s)
- A G Cherstvy
- Institute of Complex Systems, ICS-2, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
47
|
Havukainen H, Halskau Ø, Skjaerven L, Smedal B, Amdam GV. Deconstructing honeybee vitellogenin: novel 40 kDa fragment assigned to its N terminus. ACTA ACUST UNITED AC 2011; 214:582-92. [PMID: 21270306 DOI: 10.1242/jeb.048314] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitellogenin, an egg-yolk protein precursor common to oviparous animals, is found abundantly in honeybee workers - a caste of helpers that do not usually lay eggs. Instead, honeybee vitellogenin (180 kDa) participates in processes other than reproduction: it influences hormone signaling, food-related behavior, immunity, stress resistance and longevity. The molecular basis of these functions is largely unknown. Here, we establish and compare the molecular properties of vitellogenin from honeybee hemolymph (blood) and abdominal fat body, two compartments that are linked to vitellogenin functions. Our results reveal a novel 40 kDa vitellogenin fragment in abdominal fat body tissue, the main site for vitellogenin synthesis and storage. Using MALDI-TOF combined with MS/MS mass-spectroscopy, we assign the 40 kDa fragment to the N terminus of vitellogenin, whereas a previously observed 150 kDa fragment corresponded to the remainder of the protein. We show that both protein units are N glycosylated and phosphorylated. Focusing on the novel 40 kDa fragment, we present a homology model based on the structure of lamprey lipovitellin that includes a conserved β-barrel-like shape, with a lipophilic cavity in the interior and two insect-specific loops that have not been described before. Our data indicate that the honeybee fat body vitellogenin experiences cleavage unlike hemolymph vitellogenin, a pattern that can suggest a tissue-specific role. Our experiments advance the molecular understanding of vitellogenin, of which the multiple physiological and behavioral effects in honeybees are well established.
Collapse
Affiliation(s)
- Heli Havukainen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | | | | | | | | |
Collapse
|
48
|
Mori H, Ueno-Noto K. A Theoretical Study of the Physicochemical Mechanisms Associated with DNA Recognition Modulation in Artificial Zinc-Finger Proteins. J Phys Chem B 2011; 115:4774-80. [DOI: 10.1021/jp1097348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hirotoshi Mori
- Division of Advanced Sciences, Ocha-dai Academic Production, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kaori Ueno-Noto
- Division of Advanced Sciences, Ocha-dai Academic Production, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
49
|
Cherstvy AG. DNA Cyclization: Suppression or Enhancement by Electrostatic Repulsions? J Phys Chem B 2011; 115:4286-94. [DOI: 10.1021/jp2003479] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. G. Cherstvy
- Institute of Complex Systems, ICS-2, Theoretical Soft Matter and Biophysics, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
50
|
Cherstvy AG. Electrostatic interactions in biological DNA-related systems. Phys Chem Chem Phys 2011; 13:9942-68. [DOI: 10.1039/c0cp02796k] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|