1
|
R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences. Int J Mol Sci 2021; 22:ijms222312857. [PMID: 34884661 PMCID: PMC8657672 DOI: 10.3390/ijms222312857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
R-loops are common non-B nucleic acid structures formed by a three-stranded nucleic acid composed of an RNA–DNA hybrid and a displaced single-stranded DNA (ssDNA) loop. Because the aberrant R-loop formation leads to increased mutagenesis, hyper-recombination, rearrangements, and transcription-replication collisions, it is regarded as important in human diseases. Therefore, its prevalence and distribution in genomes are studied intensively. However, in silico tools for R-loop prediction are limited, and therefore, we have developed the R-loop tracker tool, which was implemented as a part of the DNA Analyser web server. This new tool is focused upon (1) prediction of R-loops in genomic DNA without length and sequence limitations; (2) integration of R-loop tracker results with other tools for nucleic acids analyses, including Genome Browser; (3) internal cross-evaluation of in silico results with experimental data, where available; (4) easy export and correlation analyses with other genome features and markers; and (5) enhanced visualization outputs. Our new R-loop tracker tool is freely accessible on the web pages of DNA Analyser tools, and its implementation on the web-based server allows effective analyses not only for DNA segments but also for full chromosomes and genomes.
Collapse
|
2
|
Tu C, Dai Y, Zhang Y, Wang W, Wu L. A simple fluorescent strategy based on triple-helix molecular switch for sensitive detection of chloramphenicol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117415. [PMID: 31374352 DOI: 10.1016/j.saa.2019.117415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
A simple fluorescent strategy based on the formation of triple-helix molecular switch (THMS) between a signal transduction probe (STP) and an aptamer (Apt) was constructed for the determination of chloramphenicol (CAP). A weak fluorescence intensity was observed for STP solution due to the proximity of fluorophore and quencher through intramolecular DNA hybridization, causing the fluorescence quenching. The fluorescence intensity of the system was significantly enhanced after the addition of Apt. It was attributed to the formation of THMS between the Apt and STP through the Watson-Crick and Hoogsteen base pairing, resulting in the restoration of fluorescence because of the long distance between the fluorophore and quencher of STP. The fluorescence intensity of the system decreased due to the release of STP caused by the specific binding between Apt and CAP. The quantitative analysis of CAP could be achieved based on the decreased fluorescence intensity. The parameters affecting the performance of THMS including the Apt arm length, pH of buffer solution, Mg2+ concentration and the formation time of THMS were investigated in detail. Under the optimal conditions (Apt arm length of 9 bases, pH of 6.5, 2.5 × 103 μmol L-1 Mg2+, THMS formation time of 30 min), the decreased fluorescence intensity and the concentration of chloramphenicol were linear in the range of 5.0 × 10-3-2.0 × 10-1 μmol L-1 with the correlation coefficient of 0.9963. The limit of detection was 1.2 nmol L-1. Subsequently, the developed method was applied to the analysis of chloramphenicol in honey sample, and the recovery was between 84.5% and 103.0% with relative standard deviation less than 4.6%.
Collapse
Affiliation(s)
- Chunyan Tu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuanyuan Dai
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liang Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Carr CE, Ganugula R, Shikiya R, Soto AM, Marky LA. Effect of dC → d(m 5C) substitutions on the folding of intramolecular triplexes with mixed TAT and C +GC base triplets. Biochimie 2018; 146:156-165. [PMID: 29277568 PMCID: PMC5811340 DOI: 10.1016/j.biochi.2017.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Oligonucleotide-directed triple helix formation has been recognized as a potential tool for targeting genes with high specificity. Cystosine methylation in the 5' position is both ubiquitous and a stable regulatory modification, which could potentially stabilize triple helix formation. In this work, we have used a combination of calorimetric and spectroscopic techniques to study the intramolecular unfolding of four triplexes and two duplexes. We used the following triplex control sequence, named Control Tri, d(AGAGAC5TCTCTC5TCTCT), where C5 are loops of five cytosines. From this sequence, we studied three other sequences with dC → d(m5C) substitutions on the Hoogsteen strand (2MeH), Crick strand (2MeC) and both strands (4MeHC). Calorimetric studies determined that methylation does increase the thermal and enthalpic stability, leading to an overall favorable free energy, and that this increased stability is cumulative, i.e. methylation on both the Hoogsteen and Crick strands yields the largest favorable free energy. The differential uptake of protons, counterions and water was determined. It was found that methylation increases cytosine protonation by shifting the apparent pKa value to a higher pH; this increase in proton uptake coincides with a release of counterions during folding of the triplex, likely due to repulsion from the increased positive charge from the protonated cytosines. The immobilization of water was not affected for triplexes with methylated cytosines on their Hoogsteen or Crick strands, but was seen for the triplex where both strands are methylated. This may be due to the alignment in the major groove of the methyl groups on the cytosines with the methyl groups on the thymines which causes an increase in structural water along the spine of the triplex.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Rajkumar Ganugula
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Ronald Shikiya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Ana Maria Soto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA.
| |
Collapse
|
4
|
Carr CE, Marky LA. Effect of GCAA stabilizing loops on three- and four-way intramolecular junctions. Phys Chem Chem Phys 2018; 20:5046-5056. [PMID: 29388988 DOI: 10.1039/c7cp08329g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tetraloops are a common way of changing the melting behavior of a DNA or RNA structure without changing the sequence of the stem. Because of the ubiquitous nature of tetraloops, our goal is to understand the effect a GCAA tetraloop, which belongs to the GNRA family of tetraloops, has on the unfolding thermodynamics of intramolecular junctions. Specifically, we have described the melting behavior of intramolecular three-way and four-way junctions where a T5 loop has been replaced with a GCAA tetraloops in different positions. Their thermodynamic profiles, including ΔnNa+ and ΔnW, were analyzed based on the position of the tetraloop. We obtained between -16.7 and -27.5 kcal mol-1 for all junctions studied. The experimental data indicates the influence of the GCAA tetraloop is primarily dictated by the native unfolding of the junction; if the tetraloop is placed on a stem that unfolds as a single domain when the tetraloop is not present, it will unfold as a single domain when the tetraloop is present but with a higher thermal stability. Conversely, if the tetraloop is placed on a stem which unfolds cooperatively with other stems when the tetraloop is not present, the tetraloop will increase the thermal stability of all the stems in the melting domain. The oligonucleotide structure and not the tetraloop itself affects ion uptake; three-way junctions do not gain an increase in ion uptake, but four-way junctions do. This is not the case for water immobilization, where the position of the tetraloop dictates the amount of water immobilized.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | |
Collapse
|
5
|
Reiling-Steffensmeier C, Marky LA. Structural Insight into the Unbound State of the DNA Analogue of the PreQ 1 Riboswitch: A Thermodynamic Approach. Biochemistry 2017; 56:6231-6239. [PMID: 29076719 DOI: 10.1021/acs.biochem.7b00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preQ1 riboswitch aptamer domain is very dynamic in its unbound state with the ability to form multiple structures: a hairpin, kissing hairpins, and pseudoknot-like structure. The aim of this study is to determine whether the DNA analogue (PreQ1) is able to form structures similar to that of the reported RNA aptamer. Using a thermodynamic approach, we report on structural determination using differential scanning calorimetry under different salt conditions. Further analysis of the primary sequence allowed us to design modified molecules to determine what potential structures are forming in this single-stranded DNA analogue. We found, in a 16 mM Na+ solution, PreQ1 has three transitions with TM values of 14.8, 19.4, and 26.2 °C and a total ΔH of -44.7 kcal/mol. With the increase in salt concentration to 116 mM, there are TM values of 22.3, 28.7, and 38.9 °C and a ΔH of -69.1 kcal/mol, while at 216 mM, the three transitions have TM values of 24.4, 31.6, and 42.9 °C with a total ΔH of -71.5 kcal/mol. Therefore, the increase in enthalpy is due to the formation of additional base-pair stacks. The modified molecules, which would inhibit pseudoknot formation, kissing hairpins, and internal loop interactions, were fully characterized and compared to the native DNA analogue. The analysis of the enthalpy and differential binding of counterions allows us to conclude this single-stranded DNA analogue under physiological conditions is not forming a pseudoknot-like structure. Instead, two potential structures, Compact-Hairpin and Kissing-Complex, are more likely and could be in equilibrium.
Collapse
Affiliation(s)
- Calliste Reiling-Steffensmeier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A Marky
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
6
|
Carr CE, Marky LA. Melting Behavior of a DNA Four-Way Junction Using Spectroscopic and Calorimetric Techniques. J Am Chem Soc 2017; 139:14443-14455. [DOI: 10.1021/jacs.7b06429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carolyn E. Carr
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A. Marky
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
7
|
Carr CE, Marky LA. Investigation of the Melting Behavior of DNA Three-Way Junctions in the Closed and Open States. Biophys J 2017; 113:529-539. [PMID: 28793208 DOI: 10.1016/j.bpj.2017.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022] Open
Abstract
Intramolecular three-way junctions are commonly found in both DNA and RNA. These structures are functionally relevant in ribozymes, riboswitches, rRNA, and during replication. In this work, we present a thermodynamic description of the unfolding of DNA intramolecular three-way junctions. We used a combination of spectroscopic and calorimetric techniques to investigate the folding/unfolding thermodynamics of two three-way junctions with a closed (Closed-J) or open (Open-J) junction and their appropriate control stem-loop motifs (GAAATT-Hp, CTATC-Hp, and Dumbbell). The overall results show that both junctions are stable over a wide range of salt concentrations. However, Open-J is more stable due to a higher enthalpy contribution from the formation of a higher number of basepair stacks whereas Closed-J has a defined structure and retains the basepair stacking of all three stems. The comparison of the experimental results of Closed-J and Open-J with those of their component stem-loop motifs allowed us to be more specific about their cooperative unfolding. For instance, Closed-J sacrifices thermal stability of the Dumbbell structure to maintain an overall folded state. At higher salt concentration, the simultaneous unfolding of the above domains is lost, resulting in the unfolding of the three separate stems. In contrast, the junction of Open-J in low salt retains the thermal and enthalpic stability of the Dumbbell structure although sacrificing stability of the CTATC stem. The relative stability of Dumbbell is the primary reason for the higher ΔG°(5), or free energy, value seen for Open-J at low salt. Higher salt not only maintains thermal stability of the Dumbbell structure in Open-J but causes the CTATC stem to fully fold.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
8
|
Brázda V, Coufal J. Recognition of Local DNA Structures by p53 Protein. Int J Mol Sci 2017; 18:ijms18020375. [PMID: 28208646 PMCID: PMC5343910 DOI: 10.3390/ijms18020375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
9
|
The Complementarity of the Loop to the Stem in DNA Pseudoknots Gives Rise to Local TAT Base-Triplets. Methods Enzymol 2016. [PMID: 26794363 DOI: 10.1016/bs.mie.2015.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Pseudoknots belong to an RNA structural motif that has significant roles in the biological function of RNA. An example is ribosomal frameshifting; in this mechanism, the formation of a local triplex changes the reading frame that allows for differences in the translation of mRNAs. In this work, we have used a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry (DSC) to determine the unfolding thermodynamics of a set of DNA pseudoknots with the following sequence: d(TCTCTTnAAAAAAAAGAGAT5TTTTTTT), where "Tn" is a thymine loop with n=5 (PsK-5), 7 (PsK-7), 9 (PsK-9), or 11 (PsK-11). All four oligonucleotides form intramolecular pseudoknots, and the increase in the length of this loop yielded more stable pseudoknots due to higher transition temperatures and higher unfolding enthalpies. This indicates formation of one and three TAT/TAT stacks in PsK-9 and PsK-11, respectively. We have flipped one AT for a TA base pair in the core stem of these pseudoknots, preventing in this way the formation of these base-triplet stacks. The DSC curves of these pseudoknots yielded lower unfolding enthalpies, confirming the formation of a local triplex in PsK-9 and PsK-11. Furthermore, we have investigated the reaction of PsK-5 and PsK-9 with their partially complementary strands: directly by isothermal titration calorimetry and indirectly by creating a Hess cycle with the DSC data. Relative to the PsK-5 reaction, PsK-9 reacts with its complementary strand with less favorable free energy and enthalpy contributions; this indicates PsK-9 is more stable and more compact due to the formation of a local triplex.
Collapse
|
10
|
Reiling C, Khutsishvili I, Huang K, Marky LA. Loop Contributions to the Folding Thermodynamics of DNA Straight Hairpin Loops and Pseudoknots. J Phys Chem B 2015; 119:1939-46. [DOI: 10.1021/jp5116417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Calliste Reiling
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska
Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Irine Khutsishvili
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska
Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Kai Huang
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska
Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A. Marky
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska
Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
11
|
Abstract
Incorporation of a 5-methyl-2-thiocytosine base to the parallel homopyrimidine region of a triplex DNA receptor enabled selective molecular recognition of an inosine ligand.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Chemistry and Environmental Science
- New Jersey Institute of Technology
- Newark
- USA
| | - Peter C. Tlatelpa
- Department of Chemistry and Environmental Science
- New Jersey Institute of Technology
- Newark
- USA
| |
Collapse
|
12
|
Affiliation(s)
- Yuhao Du
- College of Chemistry and Molecular Sciences; Wuhan University; Hubei; Wuhan; 430072; P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Hubei; Wuhan; 430072; P. R. China
| |
Collapse
|
13
|
Palamarchuk GV, Shishkin OV, Gorb L, Leszczynski J. Nucleic acid bases in anionic 2'-deoxyribonucleotides: a DFT/B3LYP study of structures, relative stability, and proton affinities. J Phys Chem B 2013; 117:2841-9. [PMID: 23425497 DOI: 10.1021/jp311363c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protonation of nucleobases in anions of canonical 2'-deoxyribonucleotides has been investigated by the DFT computational study at the B3LYP/aug-cc-pvdz level of theory. It is demonstrated that the protonation leads to a significant decrease of conformational space of purine nucleotides while almost all conformers found for non-protonated molecules correspond to minima of the potential energy surface for protonated mdTMP and mdCMP. However, in all nucleotides, only one conformer is populated. This applies to all tautomers of protonated molecules except the mdTMP and mdCMP with the proton attached to the carbonyl group where a minor population of second conformer is observed. Protonation of nucleobase leads to significant elongation of the N-glycosidic bond. These findings agree well with suggestions that protonation of nucleobase is a first step in cleavage of the glycosidic bond. The oxygen atoms of both carbonyl groups of thymine and the N3 atom of the pyrimidine ring of cytosine, guanine, and adenine represent the most preferable sites for protonation of anions of 2'-deoxyrobonucleotides. The highest proton affinity is observed for the base in mdGMP and the lowest for the thymine moiety in mdTMP. It should be noted that calculated values of the proton affinities in anionic nucleotides are significantly higher (by 2-3 eV) than for nucleosides and neutral nucleotides. This allows assuming that the proton affinity of the base in DNA macromolecule may be tuned by changing the extent of shielding or neutralization of negative charge of the phosphate group.
Collapse
Affiliation(s)
- Gennady V Palamarchuk
- STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61001, Ukraine
| | | | | | | |
Collapse
|
14
|
Beck A, Vijayanathan V, Thomas T, Thomas TJ. Ionic microenvironmental effects on triplex DNA stabilization: cationic counterion effects on poly(dT)·poly(dA)·poly(dT). Biochimie 2013; 95:1310-8. [PMID: 23454377 DOI: 10.1016/j.biochi.2013.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/18/2013] [Indexed: 12/18/2022]
Abstract
The structure and conformation of nucleic acids are influenced by metal ions, polyamines, and the microenvironment. In poly(purine) · poly(pyrimidine) sequences, triplex DNA formation is facilitated by metal ions, polyamines and other ligands. We studied the effects of mono- and di-valent metal ions, and ammonium salts on the stability of triple- and double-stranded structures formed from poly(dA) and poly(dT) by measuring their respective melting temperatures. In the presence of metal ions, the absorbance versus temperature profile showed two transitions: Tm1 for triplex to duplex and single stranded DNA, and Tm2 for duplex DNA melting to single stranded DNA. Monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+) and [Formula: see text] ) promoted triplex DNA at concentrations ≥150 mM. Tm1 varied from 49.8 °C in the presence of 150 mM Li(+) to 30.6 °C in the presence of 150 mM K(+). [Formula: see text] was very effective in stabilizing triplex DNA and its efficacy decreased with increasing substitution of the hydrogen atoms with methyl, ethyl, propyl and butyl groups. As in the case of monovalent cations, a concentration-dependent increase in Tm1 was observed with divalent ions and triplex DNA stabilization decreased in the order: Mg(2+) > Ca(2+) > Sr(2+) > Ba(2+). All positively charged cations increased the melting temperature of duplex DNA. Values of Δn (number of ions released) on triplex DNA melting were 0.46 ± 0.06 and 0.18 ± 0.02, respectively, for mono- and di-valent cations, as calculated from 1/Tm1 versus ln[M(+,2+)] plots. The corresponding values for duplex DNA were 0.25 ± 0.02 and 0.12 ± 0.02, respectively, for mono- and di-valent cations. Circular dichroism spectroscopic studies showed distinct conformational changes in triplex DNA stabilized by alkali metal and ammonium ions. Our results might be useful in developing triplex forming oligonucleotide based gene silencing techniques.
Collapse
Affiliation(s)
- Amanda Beck
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ 08903, USA
| | | | | | | |
Collapse
|
15
|
Yu Y, Liu Y, Zhen SJ, Huang CZ. A graphene oxide enhanced fluorescence anisotropy strategy for DNAzyme-based assay of metal ions. Chem Commun (Camb) 2013; 49:1942-4. [DOI: 10.1039/c3cc38129c] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Chang CL, Lando DY, Fridman AS, Hu CK. Thermal stability of DNA with interstrand crosslinks. Biopolymers 2012; 97:807-17. [DOI: 10.1002/bip.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Zheng J, Li J, Jiang Y, Jin J, Wang K, Yang R, Tan W. Design of aptamer-based sensing platform using triple-helix molecular switch. Anal Chem 2011; 83:6586-92. [PMID: 21793587 DOI: 10.1021/ac201314y] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For successful assay development of an aptamer-based biosensor, various design principles and strategies, including a highly selective molecular recognition element and a novel signal transduction mechanism, have to be engineered together. Herein, we report a new type of aptamer-based sensing platform which is based on a triple-helix molecular switch (THMS). The THMS consists of a central, target specific aptamer sequence flanked by two arm segments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP). The STP is doubly labeled with pyrene at the 5'- and 3'-end, respectively, and initially designed as a hairpin-shaped structure, thus, bringing the two pyrenes into spacer proximity. Bindings of two arm segments of the aptamer with the loop sequence of STP enforce the STP to form an "open" configuration. Formation of aptamer/target complex releases the STP, leading to new signal readout. To demonstrate the feasibility and universality of our design, three aptamers which bind to human α-thrombin (Tmb), adenosine triphosphate (ATP), and L-argininamide (L-Arm), respectively, were selected as models. The universality of the approach is achieved by virtue of altering the aptamer sequence without change of the triple-helix structure.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | | | | | | | | | | |
Collapse
|
18
|
A selective adenosine sensor derived from a triplex DNA aptamer. Anal Bioanal Chem 2011; 400:3035-40. [PMID: 21547431 DOI: 10.1007/s00216-011-4996-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/27/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study is to develop a selective adenosine aptamer sensor using a rational approach. Unlike traditional RNA aptamers developed from SELEX, duplex DNA containing an abasic site can function as a general scaffold to rationally design aptamers for small aromatic molecules. We discovered that abasic site-containing triplex DNA can also function as an aptamer and provide better affinity than duplex DNA aptamers. A novel adenosine aptamer sensor was designed using such a triplex. The aptamer is modified with furano-dU in the binding site to sense the binding. The sensor bound adenosine has a dissociation constant of 400 nM, more than tenfold stronger than the adenosine aptamer developed from SELEX. The binding quenched furano-dU fluorescence by 40%. It was also demonstrated in this study that this sensor is selective for adenosine over uridine, cytidine, guanosine, ATP, and AMP. The detection limit of this sensor is about 50 nM. The sensor can be used to quantify adenosine concentrations between 50 nM and 2 μM.
Collapse
|
19
|
Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol 2011; 8:427-39. [PMID: 21525785 DOI: 10.4161/rna.8.3.14999] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of double-stranded DNA to form a triple-helical structure by hydrogen bonding with a third strand is well established, but the biological functions of these structures remain largely unknown. There is considerable albeit circumstantial evidence for the existence of nucleic triplexes in vivo and their potential participation in a variety of biological processes including chromatin organization, DNA repair, transcriptional regulation, and RNA processing has been investigated in a number of studies to date. There is also a range of possible mechanisms to regulate triplex formation through differential expression of triplex-forming RNAs, alteration of chromatin accessibility, sequence unwinding and nucleotide modifications. With the advent of next generation sequencing technology combined with targeted approaches to isolate triplexes, it is now possible to survey triplex formation with respect to their genomic context, abundance and dynamical changes during differentiation and development, which may open up new vistas in understanding genome biology and gene regulation.
Collapse
Affiliation(s)
- Fabian A Buske
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
| | | | | |
Collapse
|
20
|
Abstract
Differential methods of scanning micro-calorimetry and UV spectrophotometry were used for understanding the interaction of natural anti-tumour antibiotic actinomycin D with cluster sites of native and fragmented DNA during thermal melting. At low (micro-molar) concentrations, the actinomycin molecules penetrate into unwound regions of DNA, but not into the double helix. Moreover, they stabilize the fragmented DNA and increase a total melting point. Actinomycin D interacts with fractions of native DNA even at very low concentrations (at the antibiotic/nucleotide ratio of 1:868) and stabilizes the most loose clusters. At high concentrations, it destabilizes the double helix.
Collapse
Affiliation(s)
- Nikolai Vekshin
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
21
|
Arslan P, Jyo A, Ihara T. Reversible circularization of an anthracene-modified DNA conjugate through bimolecular triplex formation and its analytical application. Org Biomol Chem 2010; 8:4843-8. [PMID: 20734012 DOI: 10.1039/c0ob00282h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared an oligodeoxyribonucleotide conjugate (5-3ant(2)18) carrying two anthracenes, each of which was tethered to both ends of the conjugate through hexamethylene linker chains. The conjugate has a mirror repeat of two heptamer sequences, such that it forms a bimolecular triplex with the single stranded target, forming a two-fold U-shaped conformation. The conformation of the conjugate in its triplex structure could be frozen instantaneously by circularization through photodimerization of the anthracenes. Compared with the duplex formation of linear probes with relevant sequences, bimolecular triplex formation of 5-3ant(2)18 shows a unique feature in its target recognition; it binds the target tightly, yet still retains high sequence selectivity. Circularization of 5-3ant(2)18 by UV photoirradiation was verified as the probe reaction for a DNA assay. The probe reaction could be performed in a few seconds over a wide range of temperatures, at least between 0 and 25 °C. In addition, the reaction could be regarded as a reversible method for the preparation of circular DNA that shows higher affinity for the target.
Collapse
Affiliation(s)
- Pelin Arslan
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | | | | |
Collapse
|