1
|
Kiessling AJ, Cina JA. Monitoring the evolution of intersite and interexciton coherence in electronic excitation transfer via wave-packet interferometry. J Chem Phys 2020; 152:244311. [PMID: 32610990 DOI: 10.1063/5.0008766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We detail an experimental strategy for tracking the generation and time-development of electronic coherence within the singly excited manifold of an energy-transfer dimer. The technique requires that the two monomers have nonparallel electronic transition-dipole moments and that these possess fixed orientations in space. It makes use of two-dimensional wave-packet interferometry (WPI or whoopee) measurements in which the A, B, C, and D pulses have respective polarizations e, e, e, and e'. In the case of energy-transfer coupling that is weak or strong compared to electronic-nuclear interactions, it is convenient to follow the evolution of intersite or interexciton coherence, respectively. Under weak coupling, e could be perpendicular to the acceptor chromophore's transition dipole moment and the unit vector e' would be perpendicular to the donor's transition dipole. Under strong coupling, e could be perpendicular to the ground-to-excited transition dipole to the lower exciton level and e' would be perpendicular to the ground-to-excited transition dipole to the upper exciton level. If the required spatial orientation can be realized for an entire ensemble, experiments of the kind proposed could be performed by either conventional four-wave-mixing or fluorescence-detected WPI methods. Alternatively, fluorescence-detected whoopee experiments of this kind could be carried out on a single energy-transfer dimer of fixed orientation. We exhibit detailed theoretical expressions for the desired WPI signal, explain the physical origin of electronic coherence detection, and show calculated observed-coherence signals for model dimers with one, two, or three internal vibrational modes per monomer and both weak and strong energy-transfer coupling.
Collapse
Affiliation(s)
- Alexis J Kiessling
- Department of Chemistry and Biochemistry, Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Jeffrey A Cina
- Department of Chemistry and Biochemistry, Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
2
|
White AJ, Galperin M. Inelastic transport: a pseudoparticle approach. Phys Chem Chem Phys 2012; 14:13809-19. [DOI: 10.1039/c2cp41017f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Yuen-Zhou J, Aspuru-Guzik A. Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers. J Chem Phys 2011; 134:134505. [PMID: 21476762 DOI: 10.1063/1.3569694] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Is it possible to infer the time evolving quantum state of a multichromophoric system from a sequence of two-dimensional electronic spectra (2D-ES) as a function of waiting time? Here we provide a positive answer for a tractable model system: a coupled dimer. After exhaustively enumerating the Liouville pathways associated to each peak in the 2D-ES, we argue that by judiciously combining the information from a series of experiments varying the polarization and frequency components of the pulses, detailed information at the amplitude level about the input and output quantum states at the waiting time can be obtained. This possibility yields a quantum process tomography (QPT) of the single-exciton manifold, which completely characterizes the open quantum system dynamics through the reconstruction of the process matrix. In this manuscript, we present the general theory as well as specific and numerical results for a homodimer, for which we prove that signals stemming from coherence to population transfer and vice versa vanish upon isotropic averaging, therefore, only allowing for a partial QPT in such case. However, this fact simplifies the spectra, and it follows that only two polarization controlled experiments (and no pulse-shaping requirements) suffice to yield the elements of the process matrix, which survive under isotropic averaging. Redundancies in the 2D-ES amplitudes allow for the angle between the two site transition dipole moments to be self-consistently obtained, hence simultaneously yielding structural and dynamical information of the dimer. Model calculations are presented, as well as an error analysis in terms of the angle between the dipoles and peak amplitude extraction. In the second article accompanying this study, we numerically exemplify the theory for heterodimers and carry out a detailed error analysis for such case. This investigation reveals an exciting quantum information processing (QIP) approach to spectroscopic experiments of excitonic systems, and hence, bridges an important gap between theoretical studies on excitation energy transfer from the QIP standpoint and experimental methods to study such systems in the chemical physics community.
Collapse
Affiliation(s)
- Joel Yuen-Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
4
|
Biggs JD, Cina JA. Calculations of nonlinear wave-packet interferometry signals in the pump-probe limit as tests for vibrational control over electronic excitation transfer. J Chem Phys 2010; 131:224302. [PMID: 20001031 DOI: 10.1063/1.3257597] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The preceding paper [J. D. Biggs and J. A. Cina, J. Chem. Phys. 131, 224101 (2009)] (referred to here as Paper 1), describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). External influence can, for example, be exerted by inducing coherent intramolecular vibration in one of the chromophores prior to short-pulse electronic excitation of the other. Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized "control" pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Paper 1 investigates control-pulse-influenced nl-WPI as a tool for the spectroscopic evaluation of the effect of coherent molecular vibration on excitation transfer, presenting general expressions for the nl-WPI difference signal from a dimer following the action of a control pulse of arbitrary polarization and shape. Electronic excitation is to be effected and its interchromophore transfer monitored by resonant pump and probe "pulses," respectively, each consisting of an optical-phase-controlled ultrashort pulse-pair having arbitrary polarization, duration, center frequency, and other characteristics. Here we test both the control strategy and its spectroscopic investigation-with some sacrifice of amplitude-level detail-by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference signals for (1) a model excitation-transfer complex in which two equal-energy monomers each support one moderately Franck-Condon active intramolecular vibration; (2) a simplified model of the covalent dimer dithia-anthracenophane, representing its EET dynamics following selective impulsive excitation of the weakly Franck-Condon active nu(12) anthracene vibration at 385 cm(-1); and (3) a model complex featuring moderate electronic-vibrational coupling in which the site energy of the acceptor chromophore is lower than that of the donor.
Collapse
Affiliation(s)
- Jason D Biggs
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
5
|
Chapman CT, Cina JA. Semiclassical treatments for small-molecule dynamics in low-temperature crystals using fixed and adiabatic vibrational bases. J Chem Phys 2007; 127:114502. [PMID: 17887852 DOI: 10.1063/1.2754270] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Time-resolved coherent nonlinear optical experiments on small molecules in low-temperature host crystals are exposing valuable information on quantum mechanical dynamics in condensed media. We make use of generic features of these systems to frame two simple, comprehensive theories that will enable the efficient calculations of their ultrafast spectroscopic signals and support their interpretation in terms of the underlying chemical dynamics. Without resorting to a simple harmonic analysis, both treatments rely on the identification of normal coordinates to unambiguously partition the well-structured guest-host complex into a system and a bath. Both approaches expand the overall wave function as a sum of product states between fully anharmonic vibrational basis states for the system and approximate Gaussian wave packets for the bath degrees of freedom. The theories exploit the fact that ultrafast experiments typically drive large-amplitude motion in a few intermolecular degrees of freedom of higher frequency than the crystal phonons, while these intramolecular vibrations indirectly induce smaller-amplitude--but still perhaps coherent--motion among the lattice modes. The equations of motion for the time-dependent parameters of the bath wave packets are fairly compact in a fixed vibrational basis/Gaussian bath (FVB/GB) approach. An alternative adiabatic vibrational basis/Gaussian bath (AVB/GB) treatment leads to more complicated equations of motion involving adiabatic and nonadiabatic vector potentials. Computational demands for propagation of the parameter equations of motion appear quite manageable for tens or hundreds of atoms and scale similarly with system size in the two cases. Because of the time-scale separation between intermolecular and lattice vibrations, the AVB/GB theory may in some instances require fewer vibrational basis states than the FVB/GB approach. Either framework should enable practical first-principles calculations of nonlinear optical signals from molecules in cryogenic matrices and their semiclassical interpretation in terms of electronic and vibrational decoherence and vibrational population relaxation, all within a pure-state description of the macroscopic many-body complex.
Collapse
Affiliation(s)
- Craig T Chapman
- Department of Chemistry, Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
6
|
Egorova D, Gelin MF, Domcke W. Time- and frequency-resolved fluorescence spectra of nonadiabatic dissipative systems: What photons can tell us. J Chem Phys 2005; 122:134504. [PMID: 15847478 DOI: 10.1063/1.1862618] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The monitoring of the excited-state dynamics by time- and frequency-resolved spontaneous emission spectroscopy has been studied in detail for a model exhibiting an excited-state curve crossing. The model represents characteristic aspects of the photoinduced ultrafast dynamics in large molecules in the gas or condensed phases and accounts for strong nonadiabatic and electron-vibrational coupling effects, as well as for vibrational relaxation and optical dephasing. A comprehensive overview of the dependence of spontaneous emission spectra on the characteristics of the excitation and detection processes (such as carrier frequencies, pump/gate pulse durations, as well as optical dephasing) is presented. A systematic comparison of ideal spectra, which provide simultaneously perfect time and frequency resolution and thus contain maximal information on the system dynamics, with actually measurable time- and frequency-gated spectra has been carried out. The calculations of real time- and frequency-gated spectra demonstrate that complementary information on the excited-state dynamics can be extracted when the duration of the gate pulse is varied.
Collapse
Affiliation(s)
- Dassia Egorova
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | | | |
Collapse
|
7
|
Cina JA, Fleming GR. Vibrational Coherence Transfer and Trapping as Sources for Long-Lived Quantum Beats in Polarized Emission from Energy Transfer Complexes. J Phys Chem A 2004. [DOI: 10.1021/jp047015u] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey A. Cina
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Graham R. Fleming
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
8
|
|
9
|
Yoo HS, DeWitt MJ, Pate BH. Vibrational Dynamics of Terminal Acetylenes: I. Comparison of the Intramolecular Vibrational Energy Redistribution Rate of Gases and the Total Relaxation Rate of Dilute Solutions at Room Temperature. J Phys Chem A 2004. [DOI: 10.1021/jp027543a] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hyun S. Yoo
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Merrick J. DeWitt
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Brooks H. Pate
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| |
Collapse
|
10
|
Pisliakov AV, Gelin MF, Domcke W. Detection of Electronic and Vibrational Coherence Effects in Electron-Transfer Systems by Femtosecond Time-Resolved Fluorescence Spectroscopy: Theoretical Aspects. J Phys Chem A 2003. [DOI: 10.1021/jp027491p] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. V. Pisliakov
- Institute of Physical and Theoretical Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany, and Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Skaryna Avenue 70, Minsk 220072, Belarus
| | - M. F. Gelin
- Institute of Physical and Theoretical Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany, and Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Skaryna Avenue 70, Minsk 220072, Belarus
| | - W. Domcke
- Institute of Physical and Theoretical Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany, and Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Skaryna Avenue 70, Minsk 220072, Belarus
| |
Collapse
|
11
|
Gelin MF, Pisliakov AV, Egorova D, Domcke W. A simple model for the calculation of nonlinear optical response functions and femtosecond time-resolved spectra. J Chem Phys 2003. [DOI: 10.1063/1.1547751] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 2002. [DOI: 10.1016/s0301-0104(02)00604-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Yang M, Fleming GR. Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 2002. [DOI: 10.1016/s0301-0104(01)00540-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Došlić N, Stare J, Mavri J. Hydrogen bonding in picolinic acid N-oxide. Part II: A proposal for dissipative laser driven proton transfer dynamics. Chem Phys 2001. [DOI: 10.1016/s0301-0104(01)00350-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Ohta K, Larsen DS, Yang M, Fleming GR. Influence of intramolecular vibrations in third-order, time-domain resonant spectroscopies. II. Numerical calculations. J Chem Phys 2001. [DOI: 10.1063/1.1359241] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
16
|
Shen YC, Cina JA. What can short-pulse pump-probe spectroscopy tell us about Franck-Condon dynamics? J Chem Phys 1999. [DOI: 10.1063/1.478032] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Guo H, Chen R. Short-time Chebyshev propagator for the Liouville–von Neumann equation. J Chem Phys 1999. [DOI: 10.1063/1.478570] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|